1
|
Stămăteanu LO, Pleşca CE, Miftode IL, Bădescu AC, Manciuc DC, Hurmuzache ME, Roșu MF, Miftode RȘ, Obreja M, Miftode EG. " Primum, non nocere": The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era-Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe. Antibiotics (Basel) 2024; 13:461. [PMID: 38786189 PMCID: PMC11117487 DOI: 10.3390/antibiotics13050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI), though identified nearly five decades ago, still remains a major challenge, being associated with significant mortality rates. The strains classified as hypervirulent, notably 027/NAP1/BI, have garnered substantial attention from researchers and clinicians due to their direct correlation with the severity of the disease. Our study aims to elucidate the significance of toxigenic Clostridioides difficile (CD) strains in the clinical and therapeutic aspects of managing patients diagnosed with CDI. We conducted a single-center prospective study, including patients with CDI from north-eastern Romania. We subsequently conducted molecular biology testing to ascertain the prevalence of the presumptive 027/NAP1/BI strain within aforementioned geographic region. The patients were systematically compared and assessed both clinically and biologically, employing standardized and comparative methodologies. The study enrolled fifty patients with CDI admitted between January 2020 and June 2020. Among the investigated patients, 43 (86%) exhibited infection with toxigenic CD strains positive for toxin B genes (tcdB), binary toxin genes (cdtA and cdtB), and deletion 117 in regulatory genes (tcdC), while the remaining 7 (14%) tested negative for binary toxin genes (cdtA and cdtB) and deletion 117 in tcdC. The presence of the presumptive 027/NAP1/BI strains was linked to a higher recurrence rate (35.56%, p = 0.025), cardiovascular comorbidities (65.1% vs. 14.2%, p = 0.016), and vancomycin treatment (55.8% vs. 14.3%, p = 0.049). The findings of our investigation revealed an elevated incidence of colitis attributed to presumptive 027/NAP1/BI. Despite the prevalence of the presumptive 027 strain and its associated heightened inflammation among the patients studied, no significant differences were observed regarding the clinical course or mortality outcomes.
Collapse
Affiliation(s)
- Lidia Oana Stămăteanu
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Claudia Elena Pleşca
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Ionela Larisa Miftode
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Aida Corina Bădescu
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Doina Carmen Manciuc
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Mihnea Eudoxiu Hurmuzache
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Manuel Florin Roșu
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
- Surgical (Dentoalveolar and Maxillofacial Surgery) Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Ștefan Miftode
- Department of Internal Medicine I (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maria Obreja
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Egidia Gabriela Miftode
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| |
Collapse
|
2
|
van Prehn J, Crobach MJT, Baktash A, Duszenko N, Kuijper EJ. Diagnostic Guidance for C. difficile Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:33-56. [PMID: 38175470 DOI: 10.1007/978-3-031-42108-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Diagnosis of Clostridioides difficile infection (CDI) can be challenging. First of all, there has been debate on which of the two reference assays, cell cytotoxicity neutralization assay (CCNA) or toxigenic culture (TC), should be considered the gold standard for CDI detection. Although the CCNA suffers most from suboptimal storage conditions and subsequent toxin degradation, TC is reported to falsely increase CDI detection rates as it cannot differentiate CDI patients from patients asymptomatically colonised by toxigenic C. difficile. Several rapid assays are available for CDI detection and fall into three broad categories: (1) enzyme immunoassays for glutamate dehydrogenase, (2) enzyme immunoassays or single-molecule array assays for toxins A/B and (3) nucleic acid amplification tests detecting toxin genes. All three categories have their own limitations, being suboptimal specificity and/or sensitivity or the inability to discern colonised patients from CDI patients. In light of these limitations, multi-step algorithmic testing has been advocated by international guidelines (IDSA/SHEA and ESCMID) in order to optimize diagnostic accuracy. As a result, a survey performed in 2018-2019 in Europe revealed that most of all hospital sites reported using more than one test to diagnose CDI. CDI incidence rates are also influenced by sample selection criteria, as several studies have shown that if not all unformed stool samples are tested for CDI, many cases may be missed due to an absence of clinical suspicion. Since methods for diagnosing CDI remain imperfect, there has been a growing interest in alternative testing strategies like faecal microbiota biomarkers, immune modulating interleukins, cytokines and imaging methods. At the moment, these alternative methods might play an adjunctive role, but they are not suitable to replace conventional CDI testing strategies.
Collapse
Affiliation(s)
- Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands.
- ESCMID Study Group for C. difficile (ESGCD) and Study Group for Host and Microbiota Interaction (ESGHAMI), Basel, Switzerland.
| | - Monique J T Crobach
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Amoe Baktash
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Nikolas Duszenko
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
- ESCMID Study Group for C. difficile (ESGCD) and Study Group for Host and Microbiota Interaction (ESGHAMI), Basel, Switzerland
| |
Collapse
|
3
|
Anwar F, Roxas BAP, Shehab KW, Ampel N, Viswanathan VK, Vedantam G. Low-Toxin Clostridioides difficile RT027 Strains Exhibit Robust Virulence. Emerg Microbes Infect 2022; 11:1982-1993. [PMID: 35880487 PMCID: PMC9361768 DOI: 10.1080/22221751.2022.2105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Clostridioides difficile is a leading cause of healthcare-associated infections worldwide. Currently, there is a lack of consensus for an optimal diagnostic method for C. difficile infection (CDI). Multi-step diagnostic algorithms use enzyme immunosorbent analysis (EIA)-based detection of C. difficile toxins TcdA/TcdB in stool, premised on the rationale that EIA toxin-negative (Tox−) patients have less severe disease and shorter diarrhoea duration. The aim of this study was to characterize toxigenic (i.e. tcdA/tcdB-positive) C. difficile strains isolated from diarrheic patient stool with an EIA Tox− (i.e. “discrepant”) CDI diagnostic test result. Recovered strains were DNA fingerprinted (ribotyped), subjected to multiple toxin, genome and proteome evaluations, and assessed for virulence. Overall, of 1243 C. difficile-positive patient stool specimens from Southern Arizona hospitals, 31% were discrepant. For RT027 (the most prevalent ribotype)-containing specimens, 34% were discrepant; the corresponding RT027 isolates were cytotoxic to cultured fibroblasts, but their total toxin levels were comparable to, or lower than, the historic low-toxin-producing C. difficile strain CD630. Nevertheless, these low-toxin RT027 strains (LT-027) exhibited similar lethality to a clade-matched high-toxin RT027 strain in Golden Syrian hamsters, and heightened colonization and persistence in mice. Genomics and proteomics analyses of LT-027 strains identified unique genes and altered protein abundances, respectively, relative to high-toxin RT027 strains. Collectively, our data highlight the robust virulence of LT-027 C. difficile, provide a strong argument for reconsidering the clinical significance of a Tox− EIA result, and underscore the potential limitations of current diagnostic protocols.
Collapse
Affiliation(s)
- Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Bryan Angelo P Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Kareem W Shehab
- Department of Pediatrics, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.,BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.,BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA.,Southern Arizona VA Healthcare System, Tucson, AZ, USA
| |
Collapse
|
4
|
van Prehn J, Reigadas E, Vogelzang EH, Bouza E, Hristea A, Guery B, Krutova M, Norén T, Allerberger F, Coia JE, Goorhuis A, van Rossen TM, Ooijevaar RE, Burns K, Scharvik Olesen BR, Tschudin-Sutter S, Wilcox MH, Vehreschild MJGT, Fitzpatrick F, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin Microbiol Infect 2021; 27 Suppl 2:S1-S21. [PMID: 34678515 DOI: 10.1016/j.cmi.2021.09.038] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
SCOPE In 2009, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first treatment guidance document for Clostridioides difficile infection (CDI). This document was updated in 2014. The growing literature on CDI antimicrobial treatment and novel treatment approaches, such as faecal microbiota transplantation (FMT) and toxin-binding monoclonal antibodies, prompted the ESCMID study group on C. difficile (ESGCD) to update the 2014 treatment guidance document for CDI in adults. METHODS AND QUESTIONS Key questions on CDI treatment were formulated by the guideline committee and included: What is the best treatment for initial, severe, severe-complicated, refractory, recurrent and multiple recurrent CDI? What is the best treatment when no oral therapy is possible? Can prognostic factors identify patients at risk for severe and recurrent CDI and is there a place for CDI prophylaxis? Outcome measures for treatment strategy were: clinical cure, recurrence and sustained cure. For studies on surgical interventions and severe-complicated CDI the outcome was mortality. Appraisal of available literature and drafting of recommendations was performed by the guideline drafting group. The total body of evidence for the recommendations on CDI treatment consists of the literature described in the previous guidelines, supplemented with a systematic literature search on randomized clinical trials and observational studies from 2012 and onwards. The Grades of Recommendation Assessment, Development and Evaluation (GRADE) system was used to grade the strength of our recommendations and the quality of the evidence. The guideline committee was invited to comment on the recommendations. The guideline draft was sent to external experts and a patients' representative for review. Full ESCMID endorsement was obtained after a public consultation procedure. RECOMMENDATIONS Important changes compared with previous guideline include but are not limited to: metronidazole is no longer recommended for treatment of CDI when fidaxomicin or vancomycin are available, fidaxomicin is the preferred agent for treatment of initial CDI and the first recurrence of CDI when available and feasible, FMT or bezlotoxumab in addition to standard of care antibiotics (SoC) are preferred for treatment of a second or further recurrence of CDI, bezlotoxumab in addition to SoC is recommended for the first recurrence of CDI when fidaxomicin was used to manage the initial CDI episode, and bezlotoxumab is considered as an ancillary treatment to vancomycin for a CDI episode with high risk of recurrence when fidaxomicin is not available. Contrary to the previous guideline, in the current guideline emphasis is placed on risk for recurrence as a factor that determines treatment strategy for the individual patient, rather than the disease severity.
Collapse
Affiliation(s)
- Joffrey van Prehn
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Erik H Vogelzang
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Adriana Hristea
- University of Medicine and Pharmacy Carol Davila, National Institute for Infectious Diseases Prof Dr Matei Bals, Romania
| | - Benoit Guery
- Infectious Diseases Specialist, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Torbjorn Norén
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | | | - John E Coia
- Department of Clinical Microbiology, Hospital South West Jutland and Department of Regional Health Research IRS, University of Southern Denmark, Esbjerg, Denmark
| | - Abraham Goorhuis
- Department of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Tessel M van Rossen
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Rogier E Ooijevaar
- Department of Gastroenterology, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Karen Burns
- Departments of Clinical Microbiology, Beaumont Hospital & Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Sarah Tschudin-Sutter
- Department of Infectious Diseases and Infection Control, University Hospital Basel, University Basel, Universitatsspital, Basel, Switzerland
| | - Mark H Wilcox
- Department of Microbiology, Old Medical, School Leeds General Infirmary, Leeds Teaching Hospitals & University of Leeds, Leeds, United Kingdom
| | - Maria J G T Vehreschild
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ed J Kuijper
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | | |
Collapse
|
5
|
van Rossen TM, Ooijevaar RE, Vandenbroucke-Grauls CMJE, Dekkers OM, Kuijper EJ, Keller JJ, van Prehn J. Prognostic factors for severe and recurrent Clostridioides difficile infection: a systematic review. Clin Microbiol Infect 2021; 28:321-331. [PMID: 34655745 DOI: 10.1016/j.cmi.2021.09.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI), its subsequent recurrences (rCDIs), and severe CDI (sCDI) provide a significant burden for both patients and the healthcare system. Identifying patients diagnosed with initial CDI who are at increased risk of developing sCDI/rCDI could lead to more cost-effective therapeutic choices. In this systematic review we aimed to identify clinical prognostic factors associated with an increased risk of developing sCDI or rCDI. METHODS PubMed, Embase, Emcare, Web of Science and COCHRANE Library databases were searched from database inception through March, 2021. The study eligibility criteria were cohort and case-control studies. Participants were patients ≥18 years old diagnosed with CDI, in which clinical or laboratory factors were analysed to predict sCDI/rCDI. Risk of bias was assessed by using the Quality in Prognostic Research (QUIPS) tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool modified for prognostic studies. Study selection was performed by two independent reviewers. Overview tables of prognostic factors were constructed to assess the number of studies and the respective effect direction and statistical significance of an association. RESULTS 136 studies were included for final analysis. Greater age and the presence of multiple comorbidities were prognostic factors for sCDI. Identified risk factors for rCDI were greater age, healthcare-associated CDI, prior hospitalization, proton pump inhibitors (PPIs) started during or after CDI diagnosis, and previous rCDI. CONCLUSIONS Prognostic factors for sCDI and rCDI could aid clinicians to make treatment decisions based on risk stratification. We suggest that future studies use standardized definitions for sCDI/rCDI and systematically collect and report the risk factors assessed in this review, to allow for meaningful meta-analysis of risk factors using data of high-quality trials.
Collapse
Affiliation(s)
- Tessel M van Rossen
- Amsterdam UMC, VU University Medical Center, Medical Microbiology & Infection Control, Amsterdam Infection & Immunity, Amsterdam, the Netherlands.
| | - Rogier E Ooijevaar
- Amsterdam UMC, VU University Medical Center, Gastroenterology & Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Christina M J E Vandenbroucke-Grauls
- Amsterdam UMC, VU University Medical Center, Medical Microbiology & Infection Control, Amsterdam Infection & Immunity, Amsterdam, the Netherlands; Aarhus University, Clinical Epidemiology, Aarhus, Denmark
| | - Olaf M Dekkers
- Leiden University Medical Center, Clinical Epidemiology, Leiden, the Netherlands
| | - Ed J Kuijper
- Leiden University Medical Center, Center for Infectious Diseases, Medical Microbiology, Leiden, the Netherlands
| | - Josbert J Keller
- Haaglanden Medical Center, Gastroenterology & Hepatology, The Hague, the Netherlands; Leiden University Medical Center, Gastroenterology & Hepatology, Leiden, the Netherlands
| | - Joffrey van Prehn
- Leiden University Medical Center, Center for Infectious Diseases, Medical Microbiology, Leiden, the Netherlands
| |
Collapse
|
6
|
Multidrug resistant Clostridium difficile ribotype 027 in southwestern Virginia, 2007 to 2013. Anaerobe 2018; 52:16-21. [DOI: 10.1016/j.anaerobe.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
|
7
|
Diagnostic Guidance for C. difficile Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:27-44. [PMID: 29383662 DOI: 10.1007/978-3-319-72799-8_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diagnosis of Clostridium difficile infection (CDI) can be challenging. First of all, there has been debate on which of the two reference assays, cell cytotoxicity neutralization assay (CCNA) or toxigenic culture (TC) should be considered the gold standard for CDI detection. Although the CCNA suffers most from suboptimal storage conditions and subsequent toxin degradation, TC is reported to falsely increase CDI detection rates as it cannot differentiate CDI patients from patients asymptomatically colonised by toxigenic C. difficile. Several rapid assays are available for CDI detection and fall into three broad categories: (1) enzyme immunoassays for glutamate dehydrogenase, (2) enzyme immunoassays for toxins A/B and (3) nucleic acid amplification tests detecting toxin genes. All three categories have their own limitations, being suboptimal specificity and/or sensitivity or the inability to discern colonised patients from CDI patients. In light of these limitations, multi-step algorithmic testing has now been advocated by international guidelines in order to optimize diagnostic accuracy. Despite these recommendations, testing methods between hospitals vary widely, which impacts CDI incidence rates. CDI incidence rates are also influenced by sample selection criteria, as several studies have shown that if not all unformed stool samples are tested for CDI, many cases may be missed due to an absence of clinical suspicion. Since methods for diagnosing CDI remain imperfect, there has been a growing interest in alternative testing strategies like faecal biomarkers, immune modulating interleukins, cytokines and imaging methods. At the moment, these alternative methods might play an adjunctive role, but they are not suitable to replace conventional CDI testing strategies.
Collapse
|
8
|
Faecal lactoferrin and calprotectin in patients with Clostridium difficile infection: a case–control study. Eur J Clin Microbiol Infect Dis 2017; 36:2423-2430. [DOI: 10.1007/s10096-017-3080-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022]
|
9
|
Martínez-Meléndez A, Camacho-Ortiz A, Morfin-Otero R, Maldonado-Garza HJ, Villarreal-Treviño L, Garza-González E. Current knowledge on the laboratory diagnosis of Clostridium difficile infection. World J Gastroenterol 2017; 23:1552-1567. [PMID: 28321156 PMCID: PMC5340807 DOI: 10.3748/wjg.v23.i9.1552] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/21/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile (C. difficile) is a spore-forming, toxin-producing, gram-positive anaerobic bacterium that is the principal etiologic agent of antibiotic-associated diarrhea. Infection with C. difficile (CDI) is characterized by diarrhea in clinical syndromes that vary from self-limited to mild or severe. Since its initial recognition as the causative agent of pseudomembranous colitis, C. difficile has spread around the world. CDI is one of the most common healthcare-associated infections and a significant cause of morbidity and mortality among older adult hospitalized patients. Due to extensive antibiotic usage, the number of CDIs has increased. Diagnosis of CDI is often difficult and has a substantial impact on the management of patients with the disease, mainly with regards to antibiotic management. The diagnosis of CDI is primarily based on the clinical signs and symptoms and is only confirmed by laboratory testing. Despite the high burden of CDI and the increasing interest in the disease, episodes of CDI are often misdiagnosed. The reasons for misdiagnosis are the lack of clinical suspicion or the use of inappropriate tests. The proper diagnosis of CDI reduces transmission, prevents inadequate or unnecessary treatments, and assures best antibiotic treatment. We review the options for the laboratory diagnosis of CDI within the settings of the most accepted guidelines for CDI diagnosis, treatment, and prevention of CDI.
Collapse
|
10
|
Aptekorz M, Szczegielniak A, Wiechuła B, Harmanus C, Kuijper E, Martirosian G. Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe 2017; 45:106-113. [PMID: 28216085 DOI: 10.1016/j.anaerobe.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
Clostridium difficile is an important healthcare-associated pathogen, responsible for a broad spectrum of diarrheal diseases. The aim of this prospective study was to determine the occurrence of C. difficile infection (CDI), to characterize cultured C. difficile strains and to investigate the association of fecal lactoferrin with CDI. Between January 2013 and June 2014, 148 stool samples were obtained from adult diarrheal patients (C. difficile as a suspected pathogen) hospitalized in different healthcare facilities of 15 Silesian hospitals. Out of 134 isolated C. difficile strains, 108 were ribotyped: 82.4% belonged to Type 027, 2.8% to Type 176, 2.8% to Type 014, 1.9% to Type 010 and 0.9% to Types 001, 018, 020 and 046 each. In total, 6.5% non-typable strains were identified. All Type 027 isolates contained both toxin genes tcdA & tcdB, and binary toxin genes (cdtA &cdtB). Susceptibility testing revealed that all Type 027 isolates were sensitive to metronidazole and vancomycin and resistant to moxifloxacin, ciprofloxacin, imipenem and erythromycin. Of 89 Type 027 strains, 16 had a ermB (688 bp) gene coinciding with high levels of erythromycin resistance (MIC >256 μg/mL). Of 16 ermB positive strains, 14 demonstrated also high level of resistance to clindamycin (>256 μg/mL). A significant difference (p = 0.004) in lactoferrin level was found between C. difficile toxin-positive (n = 123; median 185.9 μg/mL; IQR 238.8) and toxin-negative (n = 25; median 22.4 μg/mL; IQR 141.7) fecal samples. Stool samples from n = 89 patients with CDI caused by Type 027 demonstrated significantly higher (p = 0.03) lactoferrin level (median 173.0 μg/mL; IQR 237.3) than from patients with CDI caused by other ribotypes and non-typable C. difficile strains (median 189.4 μg/mL; IQR 190.8).
Collapse
Affiliation(s)
- Małgorzata Aptekorz
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland
| | - Anna Szczegielniak
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland
| | - Barbara Wiechuła
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland
| | - Celine Harmanus
- Department of Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ed Kuijper
- Department of Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gayane Martirosian
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland.
| |
Collapse
|
11
|
Bielakova K, Fernandova E, Matejovska-Kubesova H, Weber P, Prudius D, Bednar J. Can we improve the therapy of Clostridium difficile infection in elderly patients? Wien Klin Wochenschr 2016; 128:592-8. [PMID: 27501856 DOI: 10.1007/s00508-016-1056-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/08/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clostridium difficile infection (CDI) is becoming a serious problem predominantly in geriatric patients, who are a significant risk group. The goal of this study was to evaluate the risk factors for mortality in CDI patients and to construct a binary logistic regression model that describes the probability of mortality in geriatric patients suffering from CDI. METHODS In this retrospective study, we evaluated a group of 235 patients over 65 years of age with confirmed diagnoses of CDI, hospitalized at the Department of Internal Medicine, Geriatrics and General Practice, Brno, from January 2008 to December 2013. The examined group comprised 148 women (63 %) and 87 men (37 %). For the diagnosis of CDI, confirmation of A and B toxins in the patients' stool or an autopsy confirmation was crucial. RESULTS The impact of antibiotic therapy on the increased incidence of CDI was clearly confirmed in our study group when examining patients' histories. Other risk factors included cerebrovascular disease, dementia, the presence of pressure ulcers, and immobility. Our new model consisted of a combination of the following parameters: the number of antibiotics used (from patients' history), nutritional status (Mini Nutritional Assessment short-form test), presence of pressure ulcers, and occurrence of fever. CONCLUSION Our logistic regression model may predict mortality in geriatric patients suffering from CDI. This could help improve the therapeutic process.
Collapse
Affiliation(s)
- Katarina Bielakova
- Department of Internal Medicine, Geriatrics and General Practice, Faculty of Medicine, Masaryk University, Faculty Hospital Brno, Jihlavska 20, 62500, Brno, Czech Republic.
| | - Emmanuela Fernandova
- Department of Internal Medicine, Geriatrics and General Practice, Faculty of Medicine, Masaryk University, Faculty Hospital Brno, Jihlavska 20, 62500, Brno, Czech Republic
| | - Hana Matejovska-Kubesova
- Department of Internal Medicine, Geriatrics and General Practice, Faculty of Medicine, Masaryk University, Faculty Hospital Brno, Jihlavska 20, 62500, Brno, Czech Republic
| | - Pavel Weber
- Department of Internal Medicine, Geriatrics and General Practice, Faculty of Medicine, Masaryk University, Faculty Hospital Brno, Jihlavska 20, 62500, Brno, Czech Republic
| | - Dana Prudius
- Department of Internal Medicine, Geriatrics and General Practice, Faculty of Medicine, Masaryk University, Faculty Hospital Brno, Jihlavska 20, 62500, Brno, Czech Republic
| | - Josef Bednar
- Department of Statistics and Optimization, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
12
|
Rajabally N, Kullin B, Ebrahim K, Brock T, Weintraub A, Whitelaw A, Bamford C, Watermeyer G, Thomson S, Abratt V, Reid S. A comparison of Clostridium difficile diagnostic methods for identification of local strains in a South African centre. J Med Microbiol 2016; 65:320-327. [PMID: 26860329 DOI: 10.1099/jmm.0.000231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Accurate diagnosis of Clostridium difficile infection is essential for disease management. A clinical and molecular analysis of C. difficile isolated from symptomatic patients at Groote Schuur Hospital, South Africa, was conducted to establish the most suitable clinical test for the diagnosis and characterization of locally prevalent strains. C. difficile was detected in stool samples using enzyme-based immunoassays (EIA) and nucleic acid amplification methods, and their performance was compared with that of C. difficile isolation using direct selective culture combined with specific PCR to detect the C. difficile tpi gene, toxin A and B genes and binary toxin genes. Toxigenic isolates were characterized further by ribotyping. Selective culture isolated 32 C. difficile strains from 145 patients (22 %). Of these, the most prevalent (50 %) were of ribotype 017 (toxin A- B+) while 15.6 % were ribotype 001 (toxin A+B+). No ribotype 027 strains or binary toxin genes (cdtA and cdtB) were detected. The test sensitivities and specificities, respectively, of four commercial clinical diagnostic methods were as follows: ImmunoCard Toxins A & B (40 % and 99.1 %), VIDAS C. difficile Toxin A & B (50 % and 99.1 %), GenoType CDiff (86.7 % and 88.3 %) and Xpert C. difficile (90 % and 97.3 %). Ribotype 001 and 017 strains had a 100 % detection rate by Xpert C. difficile, 100 % and 93.3 % by GenoType CDiff, 75 % and 53.3 % by ImmunoCard and 75 % and 60 % by VIDAS, respectively. The overall poor performance of EIA suggests that a change to PCR-based testing would assist diagnosis and ensure reliable detection of locally prevalent C. difficile 017 strains.
Collapse
Affiliation(s)
- Naayil Rajabally
- Department of Medicine, Division of Gastroenterology, University of Cape Town, Cape Town, South Africa
| | - Brian Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Kaleemuddeen Ebrahim
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Tunehafo Brock
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andrej Weintraub
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden
| | - Andrew Whitelaw
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Colleen Bamford
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Gillian Watermeyer
- Department of Medicine, Division of Gastroenterology, University of Cape Town, Cape Town, South Africa
| | - Sandie Thomson
- Department of Medicine, Division of Gastroenterology, University of Cape Town, Cape Town, South Africa
| | - Valerie Abratt
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Sharon Reid
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Biomarkers of Gastrointestinal Host Responses to Microbial Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Rodriguez C, Taminiau B, Van Broeck J, Delmée M, Daube G. Clostridium difficile infection and intestinal microbiota interactions. Microb Pathog 2015; 89:201-9. [PMID: 26549493 DOI: 10.1016/j.micpath.2015.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/11/2023]
Abstract
Clostridium difficile remains the leading cause of healthcare-associated diarrhoea and outbreaks continue to occur worldwide. Aside from nosocomial C. difficile infection, the bacterium is also increasingly important as a community pathogen. Furthermore, asymptomatic carriage of C. difficile in neonates, adults and animals is also well recognised. The investigation of the gut's microbial communities, in both healthy subjects and patients suffering C. difficile infection (CDI), provides findings and information relevant for developing new successful approaches for its treatment, such as faecal microbiota transplantation, or for the prophylaxis of the infection by modification of the gut microbiota using functional foods and beverages. The analysis of all available data shows new insights into the role of intestinal microbiota in health and disease.
Collapse
Affiliation(s)
- C Rodriguez
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - B Taminiau
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - J Van Broeck
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de Microbiologie Médicale, Université Catholique de Louvain, Brussels, Belgium
| | - M Delmée
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de Microbiologie Médicale, Université Catholique de Louvain, Brussels, Belgium
| | - G Daube
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Shields K, Araujo-Castillo RV, Theethira TG, Alonso CD, Kelly CP. Recurrent Clostridium difficile infection: From colonization to cure. Anaerobe 2015; 34:59-73. [PMID: 25930686 PMCID: PMC4492812 DOI: 10.1016/j.anaerobe.2015.04.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Clostridium difficile infection (CDI) is increasingly prevalent, dangerous and challenging to prevent and manage. Despite intense national and international attention the incidence of primary and of recurrent CDI (PCDI and RCDI, respectively) have risen rapidly throughout the past decade. Of major concern is the increase in cases of RCDI resulting in substantial morbidity, morality and economic burden. RCDI management remains challenging as there is no uniformly effective therapy, no firm consensus on optimal treatment, and reliable data regarding RCDI-specific treatment options is scant. Novel therapeutic strategies are critically needed to rapidly, accurately, and effectively identify and treat patients with, or at-risk for, RCDI. In this review we consider the factors implicated in the epidemiology, pathogenesis and clinical presentation of RCDI, evaluate current management options for RCDI and explore novel and emerging therapies.
Collapse
Affiliation(s)
- Kelsey Shields
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| | - Roger V Araujo-Castillo
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Lowry Medical Office Building, Suite GB 110 Francis Street, Boston, MA 02215, United States.
| | - Thimmaiah G Theethira
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| | - Carolyn D Alonso
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Lowry Medical Office Building, Suite GB 110 Francis Street, Boston, MA 02215, United States.
| | - Ciaran P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| |
Collapse
|
16
|
Archbald-Pannone LR, McMurry TL, Guerrant RL, Warren CA. Delirium and other clinical factors with Clostridium difficile infection that predict mortality in hospitalized patients. Am J Infect Control 2015; 43:690-3. [PMID: 25920706 DOI: 10.1016/j.ajic.2015.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Clostridium difficile infection (CDI) severity has increased, especially among hospitalized older adults. We evaluated clinical factors to predict mortality after CDI. METHODS We collected data from inpatients diagnosed with CDI at a U.S. academic medical center (HSR-IRB#13630). We evaluated age, Charlson comorbidity index (CCI), whether patients were admitted from a long-term care facility, whether patients were in an intensive care unit (ICU) at the time of diagnosis, white blood cell count (WBC), blood urea nitrogen (BUN), low body mass index, and delirium as possible predictors. A parsimonious predictive model was chosen using the Akaike information criterion (AIC) and a best subsets model selection algorithm. The area under the receiver operating characteristic curve was used to assess the model's comparative, with the AIC as the selection criterion for all subsets to measure fit and control for overfitting. RESULTS From the 362 subjects, the selected model included CCI, WBC, BUN, ICU, and delirium. The logistic regression coefficients were converted to a points scale and calibrated so that each unit on the CCI contributed 2 points, ICU admission contributed 5 points, each unit of WBC (natural log scale) contributed 3 points, each unit of BUN contributed 5 points, and delirium contributed 11 points.Our model shows substantial ability to predict short-term mortality in patients hospitalized with CDI. CONCLUSION Patients who were diagnosed in the ICU and developed delirium are at the highest risk for dying within 30 days of CDI diagnosis.
Collapse
Affiliation(s)
- Laurie R Archbald-Pannone
- Division of General, Geriatric, Palliative, and Hospital Medicine, Department of Internal Medicine, University of Virginia, Charlottesville, VA; Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia, Charlottesville, VA.
| | - Timothy L McMurry
- Division of Biostatistics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia, Charlottesville, VA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Planche T, Wilcox MH. Diagnostic Pitfalls in Clostridium difficile Infection. Infect Dis Clin North Am 2015; 29:63-82. [DOI: 10.1016/j.idc.2014.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Martin J. The contribution of strains and hosts to outcomes in Clostridium difficile infection. Infect Dis Clin North Am 2015; 29:51-61. [PMID: 25582645 DOI: 10.1016/j.idc.2014.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acquisition of Clostridium difficile spores can be followed by a spectrum of clinical outcomes ranging from asymptomatic transit through the bowel to severe colitis and death. This clinical variability is a product of bacterial virulence and host susceptibility to the pathogen. It is important to identify patients at high risk of poor outcome so that increased monitoring and optimal treatment strategies can be instigated. This article discusses the evidence linking strain type to clinical outcome, including the importance of toxin and nontoxin virulence factors. It reviews host factors and their relationship with C difficile infection susceptibility, recurrence, and mortality.
Collapse
Affiliation(s)
- Jessica Martin
- University of Leeds, Old Medical School, Leeds General Infirmary, Leeds LS1 3EX, UK.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Clostridium difficile infection (CDI) ranges from asymptomatic colonization to severe colitis and death. The physiologic and molecular mechanisms determining disease outcome are thus far poorly understood. Here, we review recent advances in the relationship between host response to infection and disease outcome. Furthermore, we review recent studies on the relationship between intestinal microbial ecology and pathogenesis of CDI. RECENT FINDINGS Severe CDI is characterized by toxin-induced epithelial injury and marked intestinal inflammation. Recent studies demonstrate that systemic markers of inflammation correlate with disease outcome. Peripheral neutrophil count, C-reactive protein, and proinflammatory cytokines are elevated in patients with severe disease as compared with asymptomatic controls. Furthermore, fecal inflammatory biomarkers are better predictors of disease severity and diarrhea persistence than C. difficile abundance. A landmark study reported higher than 80% success rate of fecal microbiota transplantation for treatment of recurrent CDI. The commensal microbes responsible for C. difficile protection, and the molecular basis by which microbial ecology impacts disease outcome, are under active investigation. SUMMARY Under conditions of altered microbial ecology, C. difficile incites epithelial injury and marked intestinal inflammation, the primary determinant of disease outcome. Restoration of a diverse intestinal microbial population by fecal microbiota transplantation attenuates disease and prevents recurrence by mechanisms that are yet to be fully elucidated.
Collapse
|
20
|
Rodriguez C, Korsak N, Taminiau B, Avesani V, Van Broeck J, Delmée M, Daube G. Clostridium difficile infection in elderly nursing home residents. Anaerobe 2014; 30:184-7. [PMID: 25152228 DOI: 10.1016/j.anaerobe.2014.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/17/2014] [Accepted: 08/08/2014] [Indexed: 02/06/2023]
Abstract
Age-related changes in intestinal flora and host defences, the receipt of antibiotic treatment, and the presence of underlying diseases are some of the most common risk factors associated with Clostridium difficile infection. Therefore, retirement care facilities for elderly people have been pinpointed as frequent sources of contamination. There is only limited data regarding the presence and epidemiology of C. difficile in nursing homes, and this gap in the current literature emphasises the need to gain a better understanding of the situation in order to prevent the emergence of new outbreaks among this population group.
Collapse
Affiliation(s)
- C Rodriguez
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - N Korsak
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - B Taminiau
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - V Avesani
- Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - J Van Broeck
- Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - M Delmée
- Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - G Daube
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
21
|
Clostridium difficile ribotype 027 is most prevalent among inpatients admitted from long-term care facilities. J Hosp Infect 2014; 88:218-21. [PMID: 25228227 DOI: 10.1016/j.jhin.2014.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 06/27/2014] [Indexed: 01/05/2023]
Abstract
Intestinal inflammation was evaluated using faecal lactoferrin and ribotype in 196 hospitalized adults with Clostridium difficile infection to determine the impact of ribotype 027 in long-term care facilities (LTCFs). LTCF residents (n=28) had greater antibiotic use (P=0.049) and more ribotype 027 infection [odds ratio (OR): 4.87; 95% confidence interval (CI): 2.02-11.74; P<0.01], compared to those admitted from home. Patients infected with ribotype 027 strains had worse six-month mortality (OR: 1.90; 95% CI: 1.08-3.34; P=0.03) and more inflammation (95.26 vs 36.08 μg/mL; P=0.006), compared to those infected with non-027 strains. This study was not designed to determine acquisition site, but, in this population, suggests that the location from which the patient has been admitted is strongly associated with ribotype 027 and more severe C. difficile disease.
Collapse
|
22
|
Archbald-Pannone LR. Quantitative Fecal Lactoferrin as a Biomarker for Severe Clostridium difficile Infection in Hospitalized Patients. ACTA ACUST UNITED AC 2014; 2:3. [PMID: 25401164 DOI: 10.13188/2373-1133.1000006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The incidence and severity of Clostridium difficile infection (CDI) have increased over the past decade, especially among hospitalized patients. In this study, we determined the value of published criteria for severe CDI in predicting 3 month mortality, as well as the utility of fecal lactoferrin as a biomarker for severe CDI. METHODS Pilot Year 1 of IRB approved (HSR-IRB# 13630) prospective cohort study of hospitalized patients with CDI at US academic medical center (10/08-4/10). Medical records of hospitalized patients with clinically diagnosed CDI, via toxin assay, were evaluated to objectively define severe CDI based on current guidelines. A stool sample from CDI diagnosis was analyzed for amount of fecal lactoferrin (IBD-SCAN, TechLab, Inc.). Data was analyzed using SPSS for student's t-test and chi-squared, significance p ≤ 0.05. RESULTS 79 subjects consented and enrolled, mean age was 64 years (standard deviation, sd, 17.2), 48 (61%) female, and average Charlson co-morbidity score was 5.8 (sd 3.8). Subjects with severe CDI were 5 times more likely to die within 3 months of diagnosis (Odds Ratio 5.66 (95% Confidence Interval 2.03-15.79), p=0.001) and had significantly more fecal lactoferrin (580.0 (sd 989.0) vs. 181.7 (sd 244.2) µg/mL, p=0.018), compared to those that did not meet severe CDI criteria. CONCLUSION In this pilot study, subjects who meet defined criteria for severe CDI had higher mortality and more intestinal inflammation. These preliminary results were, however, underpowered to show a direct association of lactoferrin with mortality. Larger cohort studies are needed to optimize a criterion for severe CDI and evaluate a direct association of lactoferrin and mortality in hospitalized patients with CDI.
Collapse
|