1
|
Obeagu EI, Okoroiwu GI, Ubosi NI, Obeagu GU, Onohuean H, Muhammad T, Adias TC. Revolution in malaria detection: unveiling current breakthroughs and tomorrow's possibilities in biomarker innovation. Ann Med Surg (Lond) 2024; 86:5859-5876. [PMID: 39359838 PMCID: PMC11444567 DOI: 10.1097/ms9.0000000000002383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/06/2024] [Indexed: 10/04/2024] Open
Abstract
The ongoing battle against malaria has seen significant advancements in diagnostic methodologies, particularly through the discovery and application of novel biomarkers. Traditional diagnostic techniques, such as microscopy and rapid diagnostic tests, have their limitations in terms of sensitivity, specificity, and the ability to detect low-level infections. Recent breakthroughs in biomarker research promise to overcome these challenges, providing more accurate, rapid, and non-invasive detection methods. These advancements are critical in enhancing early detection, guiding effective treatment, and ultimately reducing the global malaria burden. Innovative approaches in biomarker detection are leveraging cutting-edge technologies like next-generation sequencing, proteomics, and metabolomics. These techniques have led to the identification of new biomarkers that can be detected in blood, saliva, or urine, offering less invasive and more scalable options for widespread screening. For instance, the discovery of specific volatile organic compounds in the breath of infected individuals presents a revolutionary non-invasive diagnostic tool. Additionally, the integration of machine learning algorithms with biomarker data is enhancing the precision and predictive power of malaria diagnostics, making it possible to distinguish between different stages of infection and identify drug-resistant strains. Looking ahead, the future of malaria detection lies in the continued exploration of multi-biomarker panels and the development of portable, point-of-care diagnostic devices. The incorporation of smartphone-based technologies and wearable biosensors promises to bring real-time monitoring and remote diagnostics to even the most resource-limited settings.
Collapse
Affiliation(s)
| | - G. I.A. Okoroiwu
- Department of Public Health Science, Faculty of Health Sciences, National Open University of Nigeria, Jabi, Abuja
| | - N. I. Ubosi
- Department of Public Health Science, Faculty of Health Sciences, National Open University of Nigeria, Jabi, Abuja
| | | | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Kampala
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Tukur Muhammad
- Department of Science Education & Educational Foundations, Faculty of Education Kampala International University Western Campus
| | - Teddy C. Adias
- Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Federal University Otuoke, Bayelsa State, Nigeria
| |
Collapse
|
2
|
Li X, Dang Z, Tang W, Zhang H, Shao J, Jiang R, Zhang X, Huang F. Detection of Parasites in the Field: The Ever-Innovating CRISPR/Cas12a. BIOSENSORS 2024; 14:145. [PMID: 38534252 DOI: 10.3390/bios14030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The rapid and accurate identification of parasites is crucial for prompt therapeutic intervention in parasitosis and effective epidemiological surveillance. For accurate and effective clinical diagnosis, it is imperative to develop a nucleic-acid-based diagnostic tool that combines the sensitivity and specificity of nucleic acid amplification tests (NAATs) with the speed, cost-effectiveness, and convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease, holds promise in point-of-care testing (POCT). CRISPR/Cas12a is presently employed for the detection of Plasmodium falciparum, Toxoplasma gondii, Schistosoma haematobium, and other parasites in blood, urine, or feces. Compared to traditional assays, the CRISPR assay has demonstrated notable advantages, including comparable sensitivity and specificity, simple observation of reaction results, easy and stable transportation conditions, and low equipment dependence. However, a common issue arises as both amplification and cis-cleavage compete in one-pot assays, leading to an extended reaction time. The use of suboptimal crRNA, light-activated crRNA, and spatial separation can potentially weaken or entirely eliminate the competition between amplification and cis-cleavage. This could lead to enhanced sensitivity and reduced reaction times in one-pot assays. Nevertheless, higher costs and complex pre-test genome extraction have hindered the popularization of CRISPR/Cas12a in POCT.
Collapse
Affiliation(s)
- Xin Li
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenqiang Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850002, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jianwei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui Jiang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
3
|
Alemayehu A. Biology and epidemiology of Plasmodium falciparum and Plasmodium vivax gametocyte carriage: Implication for malaria control and elimination. Parasite Epidemiol Control 2023; 21:e00295. [PMID: 36950502 PMCID: PMC10025134 DOI: 10.1016/j.parepi.2023.e00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/01/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Malaria is among the leading public health problems worldwide. Female anopheles mosquito orchestrates the transmission of malaria by taking gametocytes and introducing sporozoite while taking blood meals. Interrupting transmission is the major strategy for malaria elimination. The gametocyte stage is essential for the onward transmission of malaria. Thus, understanding its basic biology and epidemiology is key to malaria control and elimination. Therefore, the current review focuses on revealing the biology, prevalence, and determinants of gametocyte carriage as well as its implication on mitigation of malaria. It also illustrates the role of asymptomatic and sub-microscopic Plasmodium infections and G-6-PD deficiency in gametocyte carriage and hence malaria transmission. Gametocytogenesis is initiated at committed merozoites and gives rise to the development of gametocytes. The trigger for gametocytogenesis depends on the host, parasite, and intervention factors. Gametocytes pass through five developmental stages identifiable by molecular markers. A considerable number of malaria patients carry gametocytes at a sub-microscopic level, thereby serving as a potential infectious reservoir of transmission. Factors involving the human host, Plasmodium parasite, and intervention parameters play a critical role in gametocyte biology and prevalence. The contribution of asymptomatic and sub-microscopic infections to malaria transmission is unknown. The clear impact of G-6-PD deficiency on malaria control and elimination remains unclear. Lack of clarity on such issues might impede the success of interventions. Basic science and epidemiological studies should continue to overcome the challenges and cope with the ever-evolving parasite and guide interventions.
Collapse
Affiliation(s)
- Aklilu Alemayehu
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
4
|
Urine and Saliva: Relevant Specimens for Malaria Diagnosis? Diagnostics (Basel) 2022; 12:diagnostics12122989. [PMID: 36552996 PMCID: PMC9777261 DOI: 10.3390/diagnostics12122989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Blood remains the specimen of preference for malaria diagnosis, whether it is for microscopic, nucleic acid-based or biomarker detection of Plasmodium present in a patient. However, concerning the disadvantages of blood drawing, specimens that can be non-invasively collected under non-hygienic settings would come in handy for malaria diagnosis in endemic areas with limited resources. Although the current approaches using saliva or urine might not be as sensitive and specific as using blood, the potential of these two specimens should not be underestimated and efforts in developing diagnostic methods for Plasmodium detection specifically in these two specimens should continue without giving up. This review not only compiles and summarizes the sensitivity and specificity achieved by various detection approaches when using these samples for malaria diagnosis, it also intends to enhance the possibility of using saliva and urine for diagnostic purposes by describing how Plasmodium nucleic acid and antigens may likely be present in these samples. This review may hopefully encourage and motivate researchers in developing saliva- and urine-based diagnostic methods for Plasmodium detection to facilitate the control and eradication of malaria. In summary, the presence of Plasmodium DNA and antigens in urine and saliva makes these two specimens relevant and useful for malaria diagnosis.
Collapse
|
5
|
Ozturk EA, Caner A. Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections. Acta Parasitol 2022; 67:1-17. [PMID: 34176040 DOI: 10.1007/s11686-021-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liquid biopsy refers to the sampling and molecular analysis of body fluids such as blood, saliva, and urine in contrast to conventional tissue biopsies. Liquid biopsy approach can offer powerful non-invasive biomarkers (circulating markers) for diagnosis and monitoring treatment response of a variety of diseases, including parasitic infections. METHODS In this review, we concentrate on cell-free DNA (cfDNA), microRNA (miRNA), and exosomes in the published literature. RESULTS Considering the high prevalence and severity of parasitic infections worldwide, circulating biomarkers can provide a new insight into the diagnosis and prognosis of parasites in the near future. Moreover, identifying and characterizing parasite- or host-derived circulating markers are important for a better understanding of the pathogenesis of parasite infection and host-parasite relationship at the molecular level. Profiling of biomarkers for parasitic diseases is a promising potential field, though further studies and optimization strategies are required, both in vitro and in vivo. CONCLUSION In this review, we discuss three approaches in the liquid biopsy including circulating cfDNA, miRNAs, and exosomes for diagnosis and evaluation of parasites and summarize circulating biomarkers in non-invasive samples during parasitic infections.
Collapse
Affiliation(s)
- Eylem Akdur Ozturk
- Department of Parasitology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ayse Caner
- Department of Parasitology, Ege University Faculty of Medicine, 35100, Izmir, Turkey.
- Cancer Research Center, Ege University, Izmir, Turkey.
| |
Collapse
|
6
|
Azam M, Upmanyu K, Gupta R, Sruthy KS, Matlani M, Savargaonkar D, Singh R. Development of Two-Tube Loop-Mediated Isothermal Amplification Assay for Differential Diagnosis of Plasmodium falciparum and Plasmodium vivax and Its Comparison with Loopamp™ Malaria. Diagnostics (Basel) 2021; 11:diagnostics11091689. [PMID: 34574030 PMCID: PMC8467429 DOI: 10.3390/diagnostics11091689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/04/2022] Open
Abstract
To strengthen malaria surveillance, field-appropriate diagnostics requiring limited technical resources are of critical significance. Loop-mediated isothermal amplification (LAMP) based malaria diagnostic assays are potential point-of-care tests with high sensitivity and specificity and have been used in low-resource settings. Plasmodium vivax–specific consensus repeat sequence (CRS)-based and Plasmodium falciparum–specific 18S rRNA primers were designed, and a two-tube LAMP assay was developed. The diagnostic performance of a closed-tube LAMP assay and Loopamp™ Malaria Detection (Pan/Pf, Pv) kit was investigated using nested PCR confirmed mono- and co-infections of P. vivax and P. falciparum positive (n = 149) and negative (n = 67) samples. The closed-tube Pv LAMP assay showed positive amplification in 40 min (limit of detection, LOD 0.7 parasites/µL) and Pf LAMP assay in 30 min (LOD 2 parasites/µL). Pv LAMP and Pf LAMP demonstrated a sensitivity and specificity of 100% (95% CI, 95.96–100% and 89.85–100%, respectively). The LoopampTM Pan/Pf Malaria Detection kit demonstrated a sensitivity and specificity of 100%, whereas LoopampTM Pv showed a sensitivity of 98.36% (95% CI, 91.28–99.71%) and specificity of 100% (95% CI, 87.54–100%). The developed two-tube LAMP assay is highly sensitive (LOD ≤ 2 parasite/µL), demonstrating comparable results with the commercial Loopamp™ Malaria Detection (Pf/pan) kit, and was superior in detecting the P. vivax co-infection that remained undetected by the Loopamp™ Pv kit. The developed indigenous two-tube Pf/Pv malaria detection can reliably be used for mass screening in resource-limited areas endemic for both P. falciparum and P. vivax malaria.
Collapse
Affiliation(s)
- Mudsser Azam
- Molecular Biology Laboratory, ICMR- National Institute of Pathology, New Delhi 110029, India; (M.A.); (K.U.); (K.S.S.)
| | - Kirti Upmanyu
- Molecular Biology Laboratory, ICMR- National Institute of Pathology, New Delhi 110029, India; (M.A.); (K.U.); (K.S.S.)
| | - Ratan Gupta
- Department of Paediatrics, VMMC and Safdarjung Hospital, New Delhi 110029, India;
| | - Karugatharayil Sasi Sruthy
- Molecular Biology Laboratory, ICMR- National Institute of Pathology, New Delhi 110029, India; (M.A.); (K.U.); (K.S.S.)
| | - Monika Matlani
- Department of Microbiology, VMMC and Safdarjung Hospital, New Delhi 110029, India;
| | | | - Ruchi Singh
- Molecular Biology Laboratory, ICMR- National Institute of Pathology, New Delhi 110029, India; (M.A.); (K.U.); (K.S.S.)
- Correspondence: or ; Tel.:+91-11-2616-61-24; Fax: 91-11-26198401
| |
Collapse
|
7
|
Danwang C, Noubiap JJ, Souopgui J, Gaudart J, Yombi JC, Robert A. Accuracy of malaria diagnostic tests performed on non-invasively collected samples: a systematic review and meta-analysis. BMJ Glob Health 2021; 6:bmjgh-2021-005634. [PMID: 34078631 PMCID: PMC8173286 DOI: 10.1136/bmjgh-2021-005634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background During the last decade, many studies have assessed the performance of malaria tests on non-invasively collected specimens, but no systematic review has hitherto estimated the overall performance of these tests. We report here the first meta-analysis estimating the diagnostic performance of malaria diagnostic tests performed on saliva, urine, faeces, skin odour (‘sniff and tell’) and hair, using either microscopy or PCR on blood sample as reference test. Methods We searched on PubMed, EMBASE, African Journals Online and Cochrane Infectious Diseases from inception until 19 January 2021 for relevant primary studies. A random effects model was used to estimate the overall performance of various diagnostic methods on different types of specimen. Results Eighteen studies providing 30 data sets were included in the meta-analysis. The overall sensitivity, specificity and diagnostic OR (DOR) of PCR were 84.5% (95% CI 79.3% to 88.6%), 97.3% (95% CI 95.3% to 98.5%) and 184.9 (95% CI 95.8 to 356.9) in saliva, respectively; 57.4% (95% CI 41.4% to 72.1%), 98.6% (95% CI 97.3% to 99.3%) and 47.2 (95% CI 22.1 to 101.1) in urine, respectively. The overall sensitivity, specificity and DOR of rapid diagnostic test for malaria in urine was 59.8% (95% CI 40.0% to 76.9%), 96.9% (95% CI 91.0% to 99.0%) and 30.8 (95% CI:23.5 to 40.4). Conclusion In settings where PCR is available, saliva and urine samples should be considered for PCR-based malaria diagnosis only if blood samples cannot be collected. The performance of rapid diagnostic testing in the urine is limited, especially its sensitivity. Malaria testing on non-invasively collected specimen still needs substantial improvement.
Collapse
Affiliation(s)
- Celestin Danwang
- Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Jean Jacques Noubiap
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia's, Australia
| | - Jacob Souopgui
- Department of Molecular Biology, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Jean Gaudart
- Aix Marseille Univ, IRD, INSERM, SESSTIM, ISSPAM, Marseille, France.,APHM, Hop Timone, BioSTIC, Biostatistics & ICT, Marseille, France
| | - Jean Cyr Yombi
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Annie Robert
- Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Kolluri N, Kamath S, Lally P, Zanna M, Galagan J, Gitaka J, Kamita M, Cabodi M, Lolabattu SR, Klapperich CM. Development and Clinical Validation of Iso-IMRS: A Novel Diagnostic Assay for P. falciparum Malaria. Anal Chem 2021; 93:2097-2105. [PMID: 33464825 PMCID: PMC7859932 DOI: 10.1021/acs.analchem.0c03847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
In many countries
targeting malaria elimination, persistent malaria
infections can have parasite loads significantly below the lower limit
of detection (LLOD) of standard diagnostic techniques, making them
difficult to identify and treat. The most sensitive diagnostic methods
involve amplification and detection of Plasmodium DNA by polymerase chain reaction (PCR), which requires expensive
thermal cycling equipment and is difficult to deploy in resource-limited
settings. Isothermal DNA amplification assays have been developed,
but they require
complex primer design, resulting in high nonspecific amplification,
and show a decrease in sensitivity than PCR methods. Here, we have
used a computational approach to design a novel isothermal amplification
assay with a simple primer design to amplify P. falciparum DNA with analytical sensitivity comparable to PCR. We have identified
short DNA sequences repeated throughout the parasite genome to be
used as primers for DNA amplification and demonstrated that these
primers can be used, without modification, to isothermally amplify P. falciparum parasite DNA via strand displacement
amplification. Our novel assay shows a LLOD of ∼1 parasite/μL
within a 30 min amplification time. The assay was demonstrated with
clinical samples using patient blood and saliva. We further characterized
the assay using direct amplicon next-generation sequencing and modified
the assay to work with a visual readout. The technique developed here
achieves similar analytical sensitivity to current gold standard PCR
assays requiring a fraction of time and resources for PCR. This highly
sensitive isothermal assay can be more easily adapted to field settings,
making it a potentially useful tool for malaria elimination.
Collapse
Affiliation(s)
- Nikunja Kolluri
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Shwetha Kamath
- Division of Research and Development, Jigsaw Bio Solutions Private Limited, No. 87, 4th Floor, Mundhra Chambers, 22nd Main, Banashankari 2nd Stage, Bangalore 560070, Karnataka, India
| | - Patrick Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Mina Zanna
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - James Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, General Kago Road, P.O. Box 342, Thika 01000, Kenya
| | - Moses Kamita
- Directorate of Research and Innovation, Mount Kenya University, General Kago Road, P.O. Box 342, Thika 01000, Kenya
| | - Mario Cabodi
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Srinivasa Raju Lolabattu
- Division of Research and Development, Jigsaw Bio Solutions Private Limited, No. 87, 4th Floor, Mundhra Chambers, 22nd Main, Banashankari 2nd Stage, Bangalore 560070, Karnataka, India
| | - Catherine M Klapperich
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Mbanefo A, Kumar N. Evaluation of Malaria Diagnostic Methods as a Key for Successful Control and Elimination Programs. Trop Med Infect Dis 2020; 5:E102. [PMID: 32575405 PMCID: PMC7344938 DOI: 10.3390/tropicalmed5020102] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Malaria is one of the leading causes of death worldwide. According to the World Health Organization's (WHO's) world malaria report for 2018, there were 228 million cases and 405,000 deaths worldwide. This paper reviews and highlights the importance of accurate, sensitive and affordable diagnostic methods in the fight against malaria. The PubMed online database was used to search for publications that examined the different diagnostic tests for malaria. Currently used diagnostic methods include microscopy, rapid diagnostic tests (RDT), and polymerase chain reaction (PCR). Upcoming methods were identified as loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), isothermal thermophilic helicase-dependent amplification (tHDA), saliva-based test for nucleic-acid amplification, saliva-based test for Plasmodium protein detection, urine malaria test (UMT), and transdermal hemozoin detection. RDT, despite its increasing false negative, is still the most feasible diagnostic test because it is easy to use, fast, and does not need expensive equipment. Noninvasive tests that do not require a blood sample, but use saliva or urine, are some of the recent tests under development that have the potential to aid malaria control and elimination. Emerging resistance to anti-malaria drugs and to insecticides used against vectors continues to thwart progress in controlling malaria. Therefore, future innovation will be required to enable the application of more sensitive and affordable methods in resource-limited settings.
Collapse
Affiliation(s)
- Afoma Mbanefo
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Genome Mining-Based Identification of Identical Multirepeat Sequences in Plasmodium falciparum Genome for Highly Sensitive Real-Time Quantitative PCR Assay and Its Application in Malaria Diagnosis. J Mol Diagn 2019; 21:824-838. [PMID: 31158524 DOI: 10.1016/j.jmoldx.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
Developing ultrasensitive methods capable of detecting submicroscopic parasitemia-a challenge that persists in low transmission areas, asymptomatic carriers, and patients showing recrudescence-is vital to achieving malaria eradication. Nucleic acid amplification techniques offer improved analytical sensitivity but are limited by the number of copies of the amplification targets. Herein, we perform a novel genome mining approach to identify a pair of identical multirepeat sequences (IMRSs) that constitute 170 and 123 copies in the Plasmodium falciparum genome and explore their potential as primers for PCR. Real-time quantitative PCR analyses have shown the ability of P. falciparum IMRSs to amplify as low as 2.54 fg of P. falciparum genomic DNA (approximately 0.1 parasite), with a striking 100-fold increase in detection limit when compared with P. falciparum 18S rRNA (251.4 fg; approximately 10 parasites). Validation with clinical samples from malaria-endemic regions has shown 6.70 ± 1.66 cycle better detection threshold in terms of Ct value for P. falciparum IMRSs, with approximately 100% sensitivity and specificity. Plasmodium falciparum IMRS assays are also capable of detecting submicroscopic infections in asymptomatic samples. To summarize, this approach of initiating amplification at multiple loci across the genome and generating more products with increased analytical sensitivity is different from classic approaches amplifying multicopy genes or tandem repeats. This can serve as a platform technology to develop advanced diagnostics for various pathogens.
Collapse
|
11
|
Hede MS, Fjelstrup S, Lötsch F, Zoleko RM, Klicpera A, Groger M, Mischlinger J, Endame L, Veletzky L, Neher R, Simonsen AKW, Petersen E, Mombo-Ngoma G, Stougaard M, Ho YP, Labouriau R, Ramharter M, Knudsen BR. Detection of the Malaria causing Plasmodium Parasite in Saliva from Infected Patients using Topoisomerase I Activity as a Biomarker. Sci Rep 2018. [PMID: 29515150 PMCID: PMC5841400 DOI: 10.1038/s41598-018-22378-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Malaria is among the major threats to global health with the main burden of disease being in rural areas of developing countries where accurate diagnosis based on non-invasive samples is in high demand. We here present a novel molecular assay for detection of malaria parasites based on technology that may be adapted for low-resource settings. Moreover, we demonstrate the exploitation of this assay for detection of malaria in saliva. The setup relies on pump-free microfluidics enabled extraction combined with a DNA sensor substrate that is converted to a single-stranded DNA circle specifically by topoisomerase I expressed by the malaria causing Plasmodium parasite. Subsequent rolling circle amplification of the generated DNA circle in the presence of biotin conjugated deoxynucleotides resulted in long tandem repeat products that was visualized colorimetrically upon binding of horse radish peroxidase (HRP) and addition of 3,3′,5,5′-Tetramethylbenzidine that was converted to a blue colored product by HRP. The assay was directly quantitative, specific for Plasmodium parasites, and allowed detection of Plasmodium infection in a single drop of saliva from 35 out of 35 infected individuals tested. The results could be determined directly by the naked eye and documented by quantifying the color intensity using a standard paper scanner.
Collapse
Affiliation(s)
| | - Søren Fjelstrup
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Felix Lötsch
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medicine, I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Anna Klicpera
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Mirjam Groger
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Johannes Mischlinger
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medicine, I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Lilian Endame
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Ronja Neher
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | | | - Eskild Petersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Infectious Diseases, The Royal Hospital, Muscat, Oman
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Magnus Stougaard
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Yi-Ping Ho
- Division of Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medicine, I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Birgitta Ruth Knudsen
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark.
| |
Collapse
|
12
|
Abstract
Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.
Collapse
|
13
|
Singh US, Siwal N, Pande V, Das A. Can Mixed Parasite Infections Thwart Targeted Malaria Elimination Program in India? BIOMED RESEARCH INTERNATIONAL 2017; 2017:2847548. [PMID: 28900620 PMCID: PMC5576395 DOI: 10.1155/2017/2847548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
India is highly endemic to malaria with prevalence of all five species of human malaria parasites of Plasmodium genus. India is set for malaria elimination by 2030. Since cases of mixed Plasmodium species infections remain usually undetected but cause huge disease burden, in order to understand the distributional prevalence of both monospecies infections and mixed species infections in India, we collated published data on the differential infection incidences of the five different malaria parasites based on PCR diagnostic assay. About 11% of total cases were due to mixed species infection. Among several interesting observations on both single and mixed parasitic infections, incidences of Plasmodium falciparum monoinfection were found to be significantly higher than P. vivax monoinfection. Also, P. malariae seems to be emerging as a potential malaria threat in India. Putting all the facts together, it appears that the dream of achieving malaria elimination in India will not be completely successful without dealing with mixed species infection.
Collapse
Affiliation(s)
- Upasana Shyamsunder Singh
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| | - Nisha Siwal
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 263001, India
| | - Aparup Das
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| |
Collapse
|
14
|
Abstract
Malaria is caused in humans by five species of single-celled eukaryotic Plasmodium parasites (mainly Plasmodium falciparum and Plasmodium vivax) that are transmitted by the bite of Anopheles spp. mosquitoes. Malaria remains one of the most serious infectious diseases; it threatens nearly half of the world's population and led to hundreds of thousands of deaths in 2015, predominantly among children in Africa. Malaria is managed through a combination of vector control approaches (such as insecticide spraying and the use of insecticide-treated bed nets) and drugs for both treatment and prevention. The widespread use of artemisinin-based combination therapies has contributed to substantial declines in the number of malaria-related deaths; however, the emergence of drug resistance threatens to reverse this progress. Advances in our understanding of the underlying molecular basis of pathogenesis have fuelled the development of new diagnostics, drugs and insecticides. Several new combination therapies are in clinical development that have efficacy against drug-resistant parasites and the potential to be used in single-dose regimens to improve compliance. This ambitious programme to eliminate malaria also includes new approaches that could yield malaria vaccines or novel vector control strategies. However, despite these achievements, a well-coordinated global effort on multiple fronts is needed if malaria elimination is to be achieved.
Collapse
Affiliation(s)
- Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | | | | | | | - Wesley C Van Voorhis
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Seattle, Washington, USA
| | | |
Collapse
|
15
|
Weerakoon KG, McManus DP. Cell-Free DNA as a Diagnostic Tool for Human Parasitic Infections. Trends Parasitol 2016; 32:378-391. [PMID: 26847654 DOI: 10.1016/j.pt.2016.01.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/28/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022]
Abstract
Parasites often cause devastating diseases and represent a significant public health and economic burden. More accurate and convenient diagnostic tools are needed in support of parasite control programmes in endemic regions, and for rapid point-of-care diagnosis in nonendemic areas. The detection of cell-free DNA (cfDNA) is a relatively new concept that is being applied in the current armamentarium of diagnostics. Here, we review the application of cfDNA detection with nucleic acid amplification tests for the diagnosis and evaluation of different human parasitic infections and highlight the significant benefits of the approach using non-invasive clinical samples.
Collapse
Affiliation(s)
- Kosala G Weerakoon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Public Health, University of Queensland, Brisbane, QLD, Australia; Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Bosqui LR, Gonçalves ALR, Gonçalves-Pires MDRF, Custodio LA, de Menezes MCND, Murad VA, de Paula FM, Pavanelli WR, Conchon-Costa I, Costa-Cruz JM, Costa IN. Detection of parasite-specific IgG and IgA in paired serum and saliva samples for diagnosis of human strongyloidiasis in northern Paraná state, Brazil. Acta Trop 2015; 150:190-5. [PMID: 26238982 DOI: 10.1016/j.actatropica.2015.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/04/2023]
Abstract
Human strongyloidiasis is an infection caused by the helminth Strongyloides stercoralis that can be fatal, especially in immunosuppressed patients. The aim of this study is to evaluate parasite-specific IgG and IgA levels using S. venezuelensis third-stage (L3) infective larvae alkaline extract as a heterologous antigen by ELISA in paired serum and saliva samples with improved sensitivity and specificity. Individuals from northern Paraná state, Brazil were divided into three groups: 30 patients copropositive for S. stercoralis (Group I); 30 clinically healthy individuals (Group II); and 30 patients copropositive for other parasites (Group III). The area under ROC curve (AUC), an overall index of diagnostic accuracy, and Kappa index were calculated. Data were analyzed using analysis of variance (ANOVA) followed by a Kruskal-Wallis test. Probability (p) values of <0.05 were regarded as significant. In Group I, IgG was detected in 96.7% serum and in 6.7% saliva samples. IgG was not detected in Group II. In Group III, cross-reactivity was observed for serum IgG in 26.7% and in 6.7% for saliva samples. In Group I, IgA was detected in 76.7% serum and 56.7% saliva samples. In Group II, 3.3% were positive for IgA in serum, whereas IgA was not detected in any saliva samples. Group III showed 6.7% serum and 26.7% saliva-positive samples. The sensitivity values for detection of IgG and IgA in serum samples were 96.7% and 76.7%, respectively. In saliva samples, the sensitivity values for detection of IgG and IgA were 6.7% and 56.7%, respectively. The specificity value was 100% for the detection of IgG in serum and for detection of IgG and IgA in saliva, and 96.7% for detection of IgA in serum samples. The proper choice of immunological diagnosis to supplement parasitological methods is essential to estimate the true prevalence of the parasite, and will permit analysis of population immune response profiles, particularly in northern Paraná state, where there are no previous reports.
Collapse
Affiliation(s)
- Larissa R Bosqui
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, PR, Brazil
| | - Ana Lúcia R Gonçalves
- Departamento de Imunologia, Microbiologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brazil
| | - Maria do Rosário F Gonçalves-Pires
- Departamento de Imunologia, Microbiologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brazil
| | | | - Maria Cláudia N D de Menezes
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, PR, Brazil
| | - Valter A Murad
- Ambulatório de Especialidades do Hospital Universitário de Londrina, PR, Brazil
| | - Fabiana M de Paula
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, PR, Brazil
| | - Julia Maria Costa-Cruz
- Departamento de Imunologia, Microbiologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brazil
| | - Idessania N Costa
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, PR, Brazil.
| |
Collapse
|
17
|
Yin JH, Yan H, Huang F, Li M, Xiao HH, Zhou SS, Xia ZG. Establishing a China malaria diagnosis reference laboratory network for malaria elimination. Malar J 2015; 14:40. [PMID: 25628071 PMCID: PMC4320439 DOI: 10.1186/s12936-015-0556-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In China, the prevalence of malaria has reduced dramatically due to the elimination programme. The continued success of the programme will depend upon the accurate diagnosis of the disease in the laboratory. The basic requirements for this are a reliable malaria diagnosis laboratory network and quality management system to support case verification and source tracking. METHODS The baseline information of provincial malaria laboratories in the China malaria diagnosis reference laboratory network was collected and analysed, and a quality-assurance activity was carried out to assess their accuracies in malaria diagnosis by microscopy using WHO standards and PCR. RESULTS By the end of 2013, nineteen of 24 provincial laboratories have been included in the network. In the study, a total of 168 staff were registered and there was no bias in their age, gender, education level, and position. Generally Plasmodium species were identified with great accuracy by microscopy and PCR. However, Plasmodium ovale was likely to be misdiagnosed as Plasmodium vivax by microscopy. CONCLUSIONS China has established a laboratory network for primary malaria diagnosis which will cover a larger area. Currently, Plasmodium species can be identified fairly accurately by microscopy and PCR. However, laboratory staff need additional trainings on accurate identification of P. ovale microscopically and good performance of PCR operations.
Collapse
Affiliation(s)
- Jian-hai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, Shanghai, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, Shanghai, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, Shanghai, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, Shanghai, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - Hui-hui Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, Shanghai, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - Shui-sen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, Shanghai, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - Zhi-gui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, Shanghai, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| |
Collapse
|