1
|
Rodríguez-Ayala M, Vizcarra P, Díaz-Pollán B, Lázaro-Perona F, Cendejas-Bueno E. Invasive Streptococcus pseudopneumoniae infection in an adult patient with acute community-acquired meningitis: a case report. Eur J Clin Microbiol Infect Dis 2025; 44:187-192. [PMID: 39520620 DOI: 10.1007/s10096-024-04979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Rapid identification of pathogens in acute meningitis is critical for timely treatment. However, traditional methods often face limitations in differentiating closely related species such as Streptococcus pneumoniae and Streptococcus pseudopneumoniae. We report a case of community-acquired meningitis caused by S. pseudopneumoniae secondary to a cerebrospinal fluid fistula, highlighting the microbiological diagnostic challenges.
Collapse
Affiliation(s)
- Montserrat Rodríguez-Ayala
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz. P.º de la Castellana, 261, Fuencarral-El Pardo, Madrid, 28046, Spain
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Vizcarra
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz. P.º de la Castellana, 261, Fuencarral-El Pardo, Madrid, 28046, Spain
| | - Beatriz Díaz-Pollán
- Infectious Diseases Unit, Internal Medicine Department, Hospital La Paz. Institute for Health Research - IdiPAZ, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Lázaro-Perona
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz. P.º de la Castellana, 261, Fuencarral-El Pardo, Madrid, 28046, Spain
| | - Emilio Cendejas-Bueno
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz. P.º de la Castellana, 261, Fuencarral-El Pardo, Madrid, 28046, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Kalinich CC, Gonzalez FL, Osmaston A, Breban MI, Distefano I, Leon C, Sheen P, Zimic M, Coronel J, Tan G, Crudu V, Ciobanu N, Codreanu A, Solano W, Ráez J, Allicock OM, Chaguza C, Wyllie AL, Brandt M, Weinberger DM, Sobkowiak B, Cohen T, Grandjean L, Grubaugh ND, Redmond SN. Tiled Amplicon Sequencing Enables Culture-free Whole-Genome Sequencing of Pathogenic Bacteria From Clinical Specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629550. [PMID: 39763738 PMCID: PMC11702625 DOI: 10.1101/2024.12.19.629550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing. The speed, reliability, and cost-effectiveness of this method led to its implementation in academic and public health laboratories across the world and adaptation to a broad range of viral pathogens. However, similar methods are not available for larger bacterial genomes, for which whole-genome sequencing typically requires in vitro culture. This increases costs, error rates and turnaround times. The need to culture poses particular problems for medically important bacteria such as Mycobacterium tuberculosis, which are slow to grow and challenging to culture. As a proof of concept, we developed two novel whole-genome amplicon panels for M. tuberculosis and Streptococcus pneumoniae. Applying our amplicon panels to clinical samples, we show the ability to classify pathogen subgroups and to reliably identify markers of drug resistance without culturing. Development of this work in clinical settings has the potential to dramatically reduce the time of diagnosis of drug resistance for multiple drugs in parallel, enabling earlier intervention for high priority pathogens.
Collapse
Affiliation(s)
- Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Freddy L Gonzalez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Alice Osmaston
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isabel Distefano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Candy Leon
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Mirko Zimic
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Grace Tan
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
| | | | | | | | | | - Jimena Ráez
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Benjamin Sobkowiak
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Louis Grandjean
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Seth N Redmond
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Steenwyk JL, Balamurugan C, Raja HA, Gonçalves C, Li N, Martin F, Berman J, Oberlies NH, Gibbons JG, Goldman GH, Geiser DM, Houbraken J, Hibbett DS, Rokas A. Phylogenomics reveals extensive misidentification of fungal strains from the genus Aspergillus. Microbiol Spectr 2024; 12:e0398023. [PMID: 38445873 PMCID: PMC10986620 DOI: 10.1128/spectrum.03980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Ningxiao Li
- Department of Plant Pathology, University of California, Davis, California, USA
- USDA-ARS, Salinas, California, USA
| | | | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, Pennsylvania, USA
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| |
Collapse
|
4
|
Mostacci N, Wüthrich TM, Siegwald L, Kieser S, Steinberg R, Sakwinska O, Latzin P, Korten I, Hilty M. Informed interpretation of metagenomic data by StrainPhlAn enables strain retention analyses of the upper airway microbiome. mSystems 2023; 8:e0072423. [PMID: 37916972 PMCID: PMC10734448 DOI: 10.1128/msystems.00724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The usage of 16S rRNA gene sequencing has become the state-of-the-art method for the characterization of the microbiota in health and respiratory disease. The method is reliable for low biomass samples due to prior amplification of the 16S rRNA gene but has limitations as species and certainly strain identification is not possible. However, the usage of metagenomic tools for the analyses of microbiome data from low biomass samples is not straight forward, and careful optimization is needed. In this work, we show that by validating StrainPhlAn 3 results with the data from bacterial cultures, the strain-level tracking of the respiratory microbiome is feasible despite the high content of host DNA being present when parameters are carefully optimized to fit low biomass microbiomes. This work further proposes that strain retention analyses are feasible, at least for more abundant species. This will help to better understand the longitudinal dynamics of the upper respiratory microbiome during health and disease.
Collapse
Affiliation(s)
- Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Tsering Monika Wüthrich
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Léa Siegwald
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Silas Kieser
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Ruth Steinberg
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Olga Sakwinska
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Colomba C, Garbo V, Boncori G, Albano C, Bagarello S, Condemi A, Giordano S, Canduscio LA, Gallo C, Parrinello G, Cascio A. Streptococcus mitis as a New Emerging Pathogen in Pediatric Age: Case Report and Systematic Review. Antibiotics (Basel) 2023; 12:1222. [PMID: 37508318 PMCID: PMC10376791 DOI: 10.3390/antibiotics12071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus mitis, a normal inhabitant of the oral cavity, is a member of Viridans Group Streptococci (VGS). Generally recognized as a causative agent of invasive diseases in immunocompromised patients, S. mitis is considered to have low pathogenic potential in immunocompetent individuals. We present a rare case of sinusitis complicated by meningitis and cerebral sino-venous thrombosis (CSVT) caused by S. mitis in a previously healthy 12-year-old boy with poor oral health status. With the aim of understanding the real pathogenic role of this microorganism, an extensive review of the literature about invasive diseases due to S. mitis in pediatric patients was performed. Our data define the critical role of this microorganism in invasive infections, especially in immunocompetent children and in the presence of apparently harmful conditions such as sinusitis and caries. Attention should be paid to the choice of therapy because of VGS's emerging antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Claudia Colomba
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Valeria Garbo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Giovanni Boncori
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Chiara Albano
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Sara Bagarello
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Anna Condemi
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Salvatore Giordano
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Laura A Canduscio
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Cristina Gallo
- Division of Radiology, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Gaspare Parrinello
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
- Infectious and Tropical Diseases Unit, AOU Policlinico "P. Giaccone", 90100 Palermo, Italy
| |
Collapse
|
6
|
Streptococcus bouchesdurhonensis sp. nov. isolated from a bronchoalveolar lavage of a patient with pneumonia. Arch Microbiol 2022; 205:3. [PMID: 36436132 DOI: 10.1007/s00203-022-03348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/28/2022]
Abstract
Strain Marseille-Q6994 was isolated from a 72-year-old patient with pneumonia from Bouches-du-Rhône department, in France. Cells were Gram positive, non-motile, catalase and oxidase-negative cocci. The major fatty acids were hexadecanoic (47.4%) and tetradecanoic acids (28.3%). 16S rRNA gene sequence comparison suggested that strain Marseille-Q6994 was affiliated to the Streptococcus genus. GroEL phylogenetic analysis separated strain Marseille-Q6994 in a distinct branch from the closely related Streptococcus-type strains with standing in nomenclature. Whole genome sequencing-based methods (OrthoAverage Nucleotide Identity, digital DNA-DNA hybridization and pangenome analysis) supported the classification of the strain into a novel species. Therefore, based on the phenotypic, genomic, and phylogenetic analyses, we propose the name Streptococcus bouchesdurhonensis sp. nov for which strain Marseille-Q6994T (CSUR Marseille-Q6994 = DSMZ 113892) is the type strain.
Collapse
|
7
|
Sadowy E, Hryniewicz W. Identification of Streptococcus pneumoniae and other Mitis streptococci: importance of molecular methods. Eur J Clin Microbiol Infect Dis 2020; 39:2247-2256. [PMID: 32710352 PMCID: PMC7669753 DOI: 10.1007/s10096-020-03991-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The Mitis group of streptococci includes an important human pathogen, Streptococcus pneumoniae (pneumococcus) and about 20 other related species with much lower pathogenicity. In clinical practice, some representatives of these species, especially Streptococcus pseudopneumoniae and Streptococcus mitis, are sometimes mistaken for S. pneumoniae based on the results of classical microbiological methods, such as optochin susceptibility and bile solubility. Several various molecular approaches that address the issue of correct identification of pneumococci and other Mitis streptococci have been proposed and are discussed in this review, including PCR- and gene sequencing-based tests as well as new developments in the genomic field that represents an important advance in our understanding of relationships within the Mitis group.
Collapse
Affiliation(s)
- Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|