1
|
Fadel MG, Zonoobi E, Rodríguez-Luna MR, Mishima K, Ris F, Diana M, Vahrmeijer AL, Perretta S, Ashrafian H, Fehervari M. Efficacy and Safety of Fluorescence-Guided Surgery Compared to Conventional Surgery in the Management of Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3377. [PMID: 39409997 PMCID: PMC11476237 DOI: 10.3390/cancers16193377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The use of fluorescence agents and imaging systems is a promising adjunct in the surgical management of colorectal cancer. This systematic review and meta-analysis aimed to assess the safety and efficacy of fluorescence-guided surgery in the management of colorectal cancer, with a comparison to conventional (non-fluorescence-guided) surgery. METHODS A literature search of MEDLINE, Embase, Emcare, and CINAHL databases was performed for studies that reported data on the outcomes of fluorescence-guided surgery, with or without a comparison group undergoing conventional surgery, for colorectal cancer between January 2000 and January 2024. A meta-analysis was performed using random-effect models, and between-study heterogeneity was assessed. RESULTS 35 studies of 3217 patients with colorectal cancer were included: 26 studies (964 patients) reported on fluorescence-guided surgery and 9 studies (2253 patients) reported on fluorescence versus conventional surgery. The weighted mean of the cancer detection rate of fluorescence-guided surgery was 71% (95% CI 0.55-0.85), with no significant difference in lymph node yield ratio (WMD -0.04; 95% CI -0.10-0.02; p = 0.201) between fluorescence and conventional surgery groups. There was a significantly lower blood loss (WMD -4.38; 95% CI -7.05--1.70; p = 0.001) and complication rate (WMD -0.04; 95% CI -0.07-0.00; p = 0.027) in the fluorescence-guided surgery group, with a potentially lower anastomotic leak rate (WMD -0.05; 95% CI -0.10-0.01; p = 0.092). CONCLUSIONS Fluorescence-guided surgery is a safe and effective approach in the management of colorectal cancer, potentially reducing blood loss and complications. Further randomised controlled trials are required comparing fluorescence-guided surgery with conventional surgery to determine its prognostic benefit and where it should precisely fit within the management pathway of colorectal cancer.
Collapse
Affiliation(s)
- Michael G. Fadel
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Department of General Surgery, Chelsea and Westminster Hospital, London SW10 9NH, UK
| | - Elham Zonoobi
- Edinburgh Molecular Imaging Limited, Nine Edinburgh Bioquarter, Edinburgh EH16 4UX, UK
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Kohei Mishima
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Frédéric Ris
- Department of Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Michele Diana
- Department of Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- ICube Laboratory, Photonics Instrumentation for Health, 67034 Strasbourg, France
| | | | - Silvana Perretta
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
- Department of Digestive and Endocrine Surgery, University of Strasbourg, 67081 Strasbourg, France
| | - Hutan Ashrafian
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Matyas Fehervari
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Department of Gastrointestinal Surgery, Maidstone and Tunbridge Wells NHS Trust, Tunbridge Wells TN2 4QJ, UK
| |
Collapse
|
2
|
Mansutti G, Villiger M, Bouma BE, Uribe-Patarroyo N. Full-field amplitude speckle decorrelation angiography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5756-5772. [PMID: 39421771 PMCID: PMC11482163 DOI: 10.1364/boe.530993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 10/19/2024]
Abstract
We propose a new simple and cost-effective optical imaging technique, full-field amplitude speckle decorrelation angiography (FASDA), capable of visualizing skin microvasculature with high resolution, and sensitive to small, superficial vessels with slow blood flow and larger, deeper vessels with faster blood flow. FASDA makes use of a laser source with limited temporal coherence, can be implemented with cameras with conventional frame rates, and does not require raster scanning. The proposed imaging technique is based on the simultaneous evaluation of two metrics: the blood flow index, a contrast-based metric used in laser speckle contrast imaging, and the adaptive speckle decorrelation index (ASDI), a new metric that we defined based on the second-order autocorrelation function that considers the limited speckle modulation that occurs in partially-coherent imaging. We demonstrate excellent delineation of small, superficial vessels with slow blood flow in skin nevi using ASDI and larger, deeper vessels with faster blood flow using BFI, providing a powerful new tool for the imaging of microvasculature with significantly lower hardware complexity and cost than other optical imaging techniques.
Collapse
Affiliation(s)
- Giulia Mansutti
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
3
|
Pieczywek PM, Nosalewicz A, Zdunek A. A novel application of laser speckle imaging technique for prediction of hypoxic stress of apples. PLANT METHODS 2024; 20:147. [PMID: 39342339 PMCID: PMC11437772 DOI: 10.1186/s13007-024-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Fruit storage methods such as dynamic controlled atmosphere (DCA) technology enable adjusting the level of oxygen in the storage room, according to the physiological state of the product to slow down the ripening process. However, the successful application of DCA requires precise and reliable sensors of the oxidative stress of the fruit. In this study, respiration rate and chlorophyll fluorescence (CF) signals were evaluated after introducing a novel predictors of apples' hypoxic stress based on laser speckle imaging technique (LSI). RESULTS Both chlorophyll fluorescence and LSI signals were equally good for stress detection in principle. However, in an application with automatic detection based on machine learning models, the LSI signal proved to be superior, due to its stability and measurement repeatability. Moreover, the shortcomings of the CF signal appear to be its inability to indicate oxygen stress in tissues with low chlorophyll content but this does not apply to LSI. A comparison of different LSI signal processing methods showed that method based on the dynamics of changes in image content was better indicators of stress than methods based on measurements of changes in pixel brightness (inertia moment or laser speckle contrast analysis). Data obtained using the near-infrared laser provided better prediction capabilities, compared to the laser with red light. CONCLUSIONS The study showed that the signal from the scattered laser light phenomenon is a good predictor for the oxidative stress of apples. Results showed that effective prediction using LSI was possible and did not require additional signals. The proposed method has great potential as an alternative indicator of fruit oxidative stress, which can be applied in modern storage systems with a dynamically controlled atmosphere.
Collapse
Affiliation(s)
- Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
4
|
Hoffman JT, Heuvelings DJI, van Zutphen T, Stassen LPS, Kruijff S, Boerma EC, Bouvy ND, Heeman WT, Al-Taher M. Real-time quantification of laser speckle contrast imaging during intestinal laparoscopic surgery: successful demonstration in a porcine intestinal ischemia model. Surg Endosc 2024; 38:5292-5303. [PMID: 39020119 PMCID: PMC11362390 DOI: 10.1007/s00464-024-11076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Anastomotic leakage (AL) is a dreaded complication following colorectal cancer surgery, impacting patient outcome and leads to increasing healthcare consumption as well as economic burden. Bowel perfusion is a significant modifiable factor for anastomotic healing and thus crucial for reducing AL. AIMS The study aimed to calculate a cut-off value for quantified laser speckle perfusion units (LSPUs) in order to differentiate between ischemic and well-perfused tissue and to assess inter-observer reliability. METHODS LSCI was performed using a porcine ischemic small bowel loop model with the PerfusiX-Imaging® system. An ischemic area, a well-perfused area, and watershed areas, were selected based on the LSCI colormap. Subsequently, local capillary lactate (LCL) levels were measured. A logarithmic curve estimation tested the correlation between LSPU and LCL levels. A cut-off value for LSPU and lactate was calculated, based on anatomically ischemic and well-perfused tissue. Inter-observer variability analysis was performed with 10 observers. RESULTS Directly after ligation of the mesenteric arteries, differences in LSPU values between ischemic and well-perfused tissue were significant (p < 0.001) and increased significantly throughout all following measurements. LCL levels were significantly different (p < 0.001) at both 60 and 120 min. Logarithmic curve estimation showed an R2 value of 0.56 between LSPU and LCL values. A LSPU cut-off value was determined at 69, with a sensitivity of 0.94 and specificity of 0.87. A LCL cut-off value of 3.8 mmol/L was found, with a sensitivity and specificity of 0.97 and 1.0, respectively. There was no difference in assessment between experienced and unexperienced observers. Cohen's Kappa values were moderate to good (0.52-0.66). CONCLUSION Real-time quantification of LSPUs may be a feasible intraoperative method to assess tissue perfusion and a cut-off value could be determined with high sensitivity and specificity. Inter-observer variability was moderate to good, irrespective of prior experience with the technique.
Collapse
Affiliation(s)
- J Tim Hoffman
- Faculty Campus Fryslân, University of Groningen, Wirdumerdijk 34, 8911 CE, Leeuwarden, The Netherlands.
- University Medical Centre Groningen, Optical Molecular Imaging Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Surgery, Medical Centre Leeuwarden, Henri Dunantweg 2, 8934 AD, Leeuwarden, The Netherlands.
- LIMIS Development, Henri Dunantweg 2, 8934 AD, Leeuwarden, The Netherlands.
| | - Danique J I Heuvelings
- NUTRIM, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Tim van Zutphen
- Faculty Campus Fryslân, University of Groningen, Wirdumerdijk 34, 8911 CE, Leeuwarden, The Netherlands
| | - Laurents P S Stassen
- NUTRIM, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solnavägen 1, Solna, 171 77, Stockholm, Sweden
| | - E Christiaan Boerma
- Faculty Campus Fryslân, University of Groningen, Wirdumerdijk 34, 8911 CE, Leeuwarden, The Netherlands
| | - Nicole D Bouvy
- Department of Surgery, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Wido T Heeman
- University Medical Centre Groningen, Optical Molecular Imaging Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Surgery, Medical Centre Leeuwarden, Henri Dunantweg 2, 8934 AD, Leeuwarden, The Netherlands
- LIMIS Development, Henri Dunantweg 2, 8934 AD, Leeuwarden, The Netherlands
| | - Mahdi Al-Taher
- Department of Surgery, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| |
Collapse
|
5
|
Hren R, Brezar SK, Marhl U, Sersa G. Laser speckle contrast imaging of perfusion in oncological clinical applications: a literature review. Radiol Oncol 2024; 58:326-334. [PMID: 39287164 PMCID: PMC11406933 DOI: 10.2478/raon-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Laser speckle coherence imaging (LSCI) is an emerging imaging modality that enables noninvasive visualization and assessment of tissue perfusion and microcirculation. In this article, we evaluated LSCI in imaging perfusion in clinical oncology through a systematic review of the literature. METHODS The inclusion criterion for the literature search in PubMed, Web of Science and Scopus electronic databases was the use of LSCI in clinical oncology, meaning that all animal, phantom, ex vivo, experimental, research and development, and purely methodological studies were excluded. RESULTS Thirty-six articles met the inclusion criteria. The anatomic locations of the neoplasms in the selected articles were brain (5 articles), breasts (2 articles), endocrine glands (4 articles), skin (12 articles), and the gastrointestinal tract (13 articles). CONCLUSIONS While LSCI is emerging as an appealing imaging modality, it is crucial for more clinical sites to initiate clinical trials. A lack of standardized protocols and interpretation guidelines are posing the most significant challenge.
Collapse
Affiliation(s)
- Rok Hren
- Faculty of Mathematics and Physics, Ljubljana, Slovenia
- Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
- Syreon Research Institute, Budapest, Hungary
| | | | - Urban Marhl
- Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Readhead C, Mahler S, Dong Z, Sato Y, Yang C, Bronner ME. Automated non-invasive laser speckle imaging of the chick heart rate and extraembryonic blood vessels and their response to nifedipine and amlodipine drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609812. [PMID: 39253508 PMCID: PMC11383000 DOI: 10.1101/2024.08.26.609812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow, here we test the utility of the chick embryo for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos. Our results show a significant reduction in the chick heart rate, blood flow, and vascular size within 5-20 minutes after Nifedipine or Amlodipine injection. For moderate Nifedipine concentrations, these parameters returned to initial values within 2-3 hours. In contrast, Amlodipine showed a rapid reduction in heart rate and blood flow dynamics at a more than ten times higher concentration than Nifedipine. These findings show that our LSCI system can monitor and distinguish the chick heart's response to injected drugs from the same family. This serves as proof-of-concept, paving the way for a rapid, cost effective, and quantitative test system for screening drugs that affect the cardiovascular system of live chick embryos. Live noninvasive imaging may also provide insights into the development and functioning of the vertebrate heart. Highlights Non-invasive Laser Speckle Contrast Imaging (LSCI) of the chick chorioallantoic membrane (CAM) in whole incubated eggsSimultaneous recording images of the CAM, dynamics of blood flow, and heart rateLive view mode to identify size, heart position, and location of the embryo in the eggAutomated system for data acquisition and analysisLongitudinal quantification of the impact of a calcium channel antagonists, nifedipidine and amlodipine on the embryonic heart rate, CAM's blood flow, size and number of vessels.
Collapse
|
7
|
Dong Z, Mahler S, Readhead C, Chen X, Dickson M, Bronner M, Yang C. Non-invasive laser speckle contrast imaging (LSCI) of extra-embryonic blood vessels in intact avian eggs at early developmental stages. BIOMEDICAL OPTICS EXPRESS 2024; 15:4605-4624. [PMID: 39346990 PMCID: PMC11427191 DOI: 10.1364/boe.530366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
Imaging blood vessels in early-stage avian embryos has a wide range of practical applications for developmental biology studies, drug and vaccine testing, and early sex determination. Optical imaging, such as brightfield transmission imaging, offers a compelling solution due to its safe non-ionizing radiation, and operational benefits. However, it comes with challenges, such as eggshell opacity and light scattering. To address these, we have revisited an approach based on laser speckle contrast imaging (LSCI) and demonstrated a high-quality, comprehensive, and non-invasive visualization of blood vessels in few-days-old chicken eggs, with blood vessels as small as 100 µm in diameter (with LSCI profile full-width-at-half-maximum of 275 µm). We present its non-invasive use for monitoring blood flow, measuring the embryo's heartbeat, and determining the embryo's developmental stages using machine learning with 85% accuracy from stage HH15 to HH22. This method can potentially be used for non-invasive longitudinal studies of cardiovascular development and angiogenesis, as well as egg screening for the poultry industry.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Carol Readhead
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Xi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Maya Dickson
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Lingam G, Shakir T, Kader R, Chand M. Role of artificial intelligence in colorectal cancer. Artif Intell Gastrointest Endosc 2024; 5:90723. [DOI: 10.37126/aige.v5.i2.90723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/11/2024] Open
Abstract
The sphere of artificial intelligence (AI) is ever expanding. Applications for clinical practice have been emerging over recent years. Although its uptake has been most prominent in endoscopy, this represents only one aspect of holistic patient care. There are a multitude of other potential avenues in which gastrointestinal care may be involved. We aim to review the role of AI in colorectal cancer as a whole. We performed broad scoping and focused searches of the applications of AI in the field of colorectal cancer. All trials including qualitative research were included from the year 2000 onwards. Studies were grouped into pre-operative, intra-operative and post-operative aspects. Pre-operatively, the major use is with endoscopic recognition. Colonoscopy has embraced the use for human derived classifications such as Narrow-band Imaging International Colorectal Endoscopic, Japan Narrow-band Imaging Expert Team, Paris and Kudo. However, novel detection and diagnostic methods have arisen from advances in AI classification. Intra-operatively, adjuncts such as image enhanced identification of structures and assessment of perfusion have led to improvements in clinical outcomes. Post-operatively, monitoring and surveillance have taken strides with potential socioeconomic and environmental savings. The uses of AI within the umbrella of colorectal surgery are multiple. We have identified existing technologies which are already augmenting cancer care. The future applications are exciting and could at least match, if not surpass human standards.
Collapse
Affiliation(s)
- Gita Lingam
- Department of General Surgery, Princess Alexandra Hospital, Harlow CM20 1QX, United Kingdom
| | - Taner Shakir
- Department of Colorectal Surgery, University College London, London W1W 7TY, United Kingdom
| | - Rawen Kader
- Department of Gastroenterology, University College London, University College London Hospitals Nhs Foundation Trust, London W1B, United Kingdom
| | - Manish Chand
- Gastroenterological Intervention Centre, University College London, London W1W 7TS, United Kingdom
| |
Collapse
|
9
|
Skinner GC, Liu YZ, Harzman AE, Husain SG, Gasior AC, Cunningham LA, Traugott AL, McCulloh CJ, Kalady MF, Kim PC, Huang ES. Clinical Utility of Laser Speckle Contrast Imaging and Real-Time Quantification of Bowel Perfusion in Minimally Invasive Left-Sided Colorectal Resections. Dis Colon Rectum 2024; 67:850-859. [PMID: 38408871 DOI: 10.1097/dcr.0000000000003098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Left-sided colorectal surgery demonstrates high anastomotic leak rates, with tissue ischemia thought to influence outcomes. Indocyanine green is commonly used for perfusion assessment, but evidence remains mixed for whether it reduces colorectal anastomotic leaks. Laser speckle contrast imaging provides dye-free perfusion assessment in real-time through perfusion heat maps and quantification. OBJECTIVE This study investigates the efficacy of advanced visualization (indocyanine green versus laser speckle contrast imaging), perfusion assessment, and utility of laser speckle perfusion quantification in determining ischemic margins. DESIGN Prospective intervention group using advanced visualization with case-matched, retrospective control group. SETTINGS Single academic medical center. PATIENTS Forty adult patients undergoing elective, minimally invasive, left-sided colorectal surgery. INTERVENTIONS Intraoperative perfusion assessment using white light imaging and advanced visualization at 3 time points: T1-proximal colon after devascularization, before transection, T2-proximal/distal colon before anastomosis, and T3-completed anastomosis. MAIN OUTCOME MEASURES Intraoperative indication of ischemic line of demarcation before resection under each visualization method, surgical decision change using advanced visualization, post hoc laser speckle perfusion quantification of colorectal tissue, and 30-day postoperative outcomes. RESULTS Advanced visualization changed surgical decision-making in 17.5% of cases. For cases in which surgeons changed a decision, the average discordance between the line of demarcation in white light imaging and advanced visualization was 3.7 cm, compared to 0.41 cm ( p = 0.01) for cases without decision changes. There was no statistical difference between the line of ischemic demarcation using laser speckle versus indocyanine green ( p = 0.16). Laser speckle quantified lower perfusion values for tissues beyond the line of ischemic demarcation while suggesting an additional 1 cm of perfused tissue beyond this line. One (2.5%) anastomotic leak occurred in the intervention group. LIMITATIONS This study was not powered to detect differences in anastomotic leak rates. CONCLUSIONS Advanced visualization using laser speckle and indocyanine green provides valuable perfusion information that impacts surgical decision-making in minimally invasive left-sided colorectal surgeries. See Video Abstract . UTILIDAD CLNICA DE LAS IMGENES DE CONTRASTE MOTEADO CON LSER Y LA CUANTIFICACIN EN TIEMPO REAL DE LA PERFUSIN INTESTINAL EN RESECCIONES COLORRECTALES DEL LADO IZQUIERDO MNIMAMENTE INVASIVAS ANTECEDENTES:La cirugía colorrectal del lado izquierdo demuestra altas tasas de fuga anastomótica, y se cree que la isquemia tisular influye en los resultados. El verde de indocianina se utiliza habitualmente para evaluar la perfusión, pero la evidencia sobre si reduce las fugas anastomóticas colorrectales sigue siendo contradictoria. Las imágenes de contraste moteado con láser proporcionan una evaluación de la perfusión sin colorantes en tiempo real a través de mapas de calor de perfusión y cuantificación.OBJETIVO:Este estudio investiga la eficacia de la evaluación de la perfusión mediante visualización avanzada (verde de indocianina versus imágenes de contraste moteado con láser) y la utilidad de la cuantificación de la perfusión con moteado láser para determinar los márgenes isquémicos.DISEÑO:Grupo de intervención prospectivo que utiliza visualización avanzada con un grupo de control retrospectivo de casos emparejados.LUGARES:Centro médico académico único.PACIENTES:Cuarenta pacientes adultos sometidos a cirugía colorrectal electiva, mínimamente invasiva, del lado izquierdo.INTERVENCIONES:Evaluación de la perfusión intraoperatoria mediante imágenes con luz blanca y visualización avanzada en tres puntos temporales: T1-colon proximal después de la devascularización, antes de la transección; T2-colon proximal/distal antes de la anastomosis; y T3-anastomosis completa.PRINCIPALES MEDIDAS DE VALORACIÓN:Indicación intraoperatoria de la línea de demarcación isquémica antes de la resección bajo cada método de visualización, cambio de decisión quirúrgica mediante visualización avanzada, cuantificación post-hoc de la perfusión con láser moteado del tejido colorrectal y resultados posoperatorios a los 30 días.RESULTADOS:La visualización avanzada cambió la toma de decisiones quirúrgicas en el 17,5% de los casos. Para los casos en los que los cirujanos cambiaron una decisión, la discordancia promedio entre la línea de demarcación en las imágenes con luz blanca y la visualización avanzada fue de 3,7 cm, en comparación con 0,41 cm (p = 0,01) para los casos sin cambios de decisión. No hubo diferencias estadísticas entre la línea de demarcación isquémica utilizando láser moteado versus verde de indocianina (p = 0,16). El moteado con láser cuantificó valores de perfusión más bajos para los tejidos más allá de la línea de demarcación isquémica y al mismo tiempo sugirió 1 cm adicional de tejido perfundido más allá de esta línea. Se produjo una fuga anastomótica (2,5%) en el grupo de intervención.LIMITACIONES:Este estudio no tuvo el poder estadístico suficiente para detectar diferencias en las tasas de fuga anastomótica.CONCLUSIONES:La visualización avanzada utilizando moteado láser y verde de indocianina proporciona información valiosa sobre la perfusión que impacta la toma de decisiones quirúrgicas en cirugías colorrectales mínimamente invasivas del lado izquierdo. (Traducción-Dr. Ingrid Melo).
Collapse
Affiliation(s)
- Garrett C Skinner
- Department of Surgery, Jacobs School of Medicine and Biochemical Sciences, University at Buffalo, Buffalo, New York
- Activ Surgical, Boston, Massachusetts
| | - Yao Z Liu
- Activ Surgical, Boston, Massachusetts
- Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Alan E Harzman
- Division of Colorectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio
| | - Syed G Husain
- Division of Colorectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio
| | - Alessandra C Gasior
- Division of Colorectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio
| | - Lisa A Cunningham
- Division of Colorectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio
| | - Amber L Traugott
- Division of Colorectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio
| | | | - Matthew F Kalady
- Division of Colorectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio
| | - Peter C Kim
- Activ Surgical, Boston, Massachusetts
- Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Emily S Huang
- Division of Colorectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
10
|
Markwalder L, Gush R, Khan F, Murdoch CE, Krstajić N. In vivo laser speckle contrast imaging of microvascular blood perfusion using a chip-on-tip camera. iScience 2024; 27:109077. [PMID: 38375226 PMCID: PMC10875563 DOI: 10.1016/j.isci.2024.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/28/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Laser speckle contrast imaging (LSCI) is an important non-invasive capability for real-time imaging for tissue-perfusion assessment. Yet, the size and weight of current clinical standard LSCI instrumentation restricts usage to mainly peripheral skin perfusion. Miniaturization of LSCI could enable hand-held instrumentation to image internal organ/tissue to produce accurate speckle-perfusion maps. We characterized a 1mm2 chip-on-tip camera for LSCI of blood perfusion in vivo and with a flow model. A dedicated optical setup was built to compare chip-on-tip camera to a high specification reference camera (GS3) for LSCI. We compared LSCI performance using a calibration standard and a flow phantom. Subsequently the camera assessed placenta perfusion in a small animal model. Lastly, a human study was conducted on the perfusion in fingertips of 13-volunteers. We demonstrate that the chip-on-tip camera can perform wide-field, in vivo, LSCI of tissue perfusion with the ability to measure physiological blood flow changes comparable with a standard reference camera.
Collapse
Affiliation(s)
- Lukas Markwalder
- Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital & Medical School, DD1 9SY Dundee, UK
| | - Rodney Gush
- Moor Instruments, Millwey Rise Industrial Estate, Weycroft Avenue, EX13 5HU Axminster, UK
| | - Faisel Khan
- Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital & Medical School, DD1 9SY Dundee, UK
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital & Medical School, DD1 9SY Dundee, UK
| | - Nikola Krstajić
- School of Science and Engineering, Fulton Building, University of Dundee, DD1 4HN Dundee, UK
| |
Collapse
|
11
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
12
|
Antonelli R, Fokkink R, Sprakel J, Kodger TE. Dynamics of individual inkjet printed picoliter droplet elucidated by high speed laser speckle imaging. SOFT MATTER 2024; 20:2141-2150. [PMID: 38351843 DOI: 10.1039/d3sm01701j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Inkjet printing is a ubiquitous consumer and industrial process that involves concomitant processes of droplet impact, wetting, evaporation, and imbibement into a substrate as well as consequential substrate rearrangements and remodeling. In this work, we perform a study on the interaction between ink dispersions of different composition on substrates of increasing complexity to disentangle the motion of the liquid from the dynamic response of the substrate. We print three variations of pigmented inks and follow the ensuing dynamics at millisecond and micron time and length scales until complete drying using a multiple scattering technique, laser speckle imaging (LSI). Measurements of the photon transport mean free path, l*, for the printed inks and substrates show that the spatial region of information capture is the entire droplet volume and a depth within the substrate of a few μm beneath the droplet. Within this spatial confinement, LSI is an ideal approach for studying the solid-liquid transition at these small length and time scales by obtaining valid g2 and d2 autocorrelation functions and interpreting these dynamic changes under through kymographs. Our in situ LSI results show that droplets undergo delamination and cracking processes arising during droplet drying, which are confirmed by post mortem SEM imaging.
Collapse
Affiliation(s)
- Riccardo Antonelli
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| | - Remco Fokkink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, The Netherlands
| | - Thomas E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Park HS, Shim MJ, Kim Y, Ko TY, Choi JH, Ahn YC. Multimodal real-time imaging with laser speckle contrast and fluorescent contrast. Photodiagnosis Photodyn Ther 2024; 45:103912. [PMID: 38043762 DOI: 10.1016/j.pdpdt.2023.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Laser speckle contrast imaging (LSCI) can achieve real-time 2D perfusion maps non-invasively. However, LSCI is still difficult to use in general clinical applications because of movement sensitivity and limitations in blood flow analysis. To overcome this, fluorescence imaging (FI) is combined with LSCI using a light source with a wavelength of 785 nm in near-infrared (NIR) region and validates to visualize real-time blood perfusion. MATERIALS AND METHODS The system was performed using Intralipid and indocyanine green (ICG) in a flow phantom that has three tubes and controlled the flow rate in 0-150 μl/min range. First, real-time LSCI was monitored and measured the change in speckle contrast by reperfusion. Then, we visualized blood perfusion of a rabbit ear under the non-invasive condition by intravenous injection using a total of five different ICG concentration solutions from 128 μM to 3.22 mM. RESULTS The combined system achieved the performance of processing laser speckle images at about 37-38 fps, and we simultaneously confirmed the fluorescence of ICG and changes in speckle contrast due to intralipid as a light scatterer. In addition, we obtained real-time contrast variation and fluorescent images occurring in rabbit's blood perfusion. CONCLUSIONS The aim of this study is to provide a real-time diagnostic imaging system that can be used in general clinical applications. LSCI and FI are combined complementary for observing tissue perfusion using a single NIR light source. The combined system could achieve real-time visualization of blood perfusion non-invasively.
Collapse
Affiliation(s)
- Hyun-Seo Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Min-Jae Shim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Yikeun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Taek-Yong Ko
- Kosin University Gospel Hospital, Busan 49267, South Korea
| | - Jin-Hyuk Choi
- Kosin University Gospel Hospital, Busan 49267, South Korea
| | - Yeh-Chan Ahn
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
14
|
Takahashi N, Sato K, Kiyota N, Yamazaki M, Kunikane E, Nakazawa T. The effect of a brinzolamide/brimonidine fixed combination on optic nerve head blood flow in rabbits. PLoS One 2023; 18:e0295122. [PMID: 38051718 DOI: 10.1371/journal.pone.0295122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the effect of a 1% brinzolamide and 0.1% brimonidine fixed combination (BBFC) on ONH blood flow (BF) in rabbits. METHODS A crossover study was conducted on pigmented rabbits; a physiological saline solution, brinzolamide, or BBFC was administered for eight days. ONH BF, intraocular pressure (IOP) and systemic parameters were measured before the eighth day's first dose and at 6, 9, 12, and 14 hours after the dose. ONH BF was assessed using laser speckle flowgraphy, and mean blur rate (MBR) values were calculated. The percentage against baseline of each parameter was calculated, and intergroup comparisons were performed at each time point. RESULTS There were no significant differences in the percentage change in systemic parameters. At 6 hours after administration, the BBFC group showed a significantly higher percentage change in large vessel area-MBR (%MV) compared to the control group (98.6±16.8%MV vs. 81.3±7.9%MV, P = 0.03). On the other hand, the brinzolamide group did not show a significant difference. Both the brinzolamide and BBFC groups had significantly lower percentage change in IOP (%IOP) compared to the control group (90.6±5.0%IOP, 93.3±2.9%IOP, and 99.2±1.7%IOP, respectively, P < 0.01). CONCLUSION BBFC effectively reduces IOP and mitigates diurnal fluctuation-induced decreases in ONH BF.
Collapse
Affiliation(s)
- Nana Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Naoki Kiyota
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mai Yamazaki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Seiryo Eye Clinic, Miyagi, Japan
| | - Eriko Kunikane
- Department of Research and Development Division, Senju Pharmaceutical Co., Ltd., Osaka, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
15
|
Nwaiwu CA, McCulloh CJ, Skinner G, Shah SK, Kim PCW, Schwaitzberg SD, Wilson EB. Real-time First-In-Human Comparison of Laser Speckle Contrast Imaging and ICG in Minimally Invasive Colorectal & Bariatric Surgery. J Gastrointest Surg 2023; 27:3083-3085. [PMID: 37848691 DOI: 10.1007/s11605-023-05855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023]
Affiliation(s)
- Chibueze A Nwaiwu
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | | | - Garrett Skinner
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
- Department of Surgery, The State University of New York, Buffalo, NY, USA
- Buffalo General Hospital, Buffalo, NY, USA
| | - Shinil K Shah
- Division of Minimally Invasive and Elective General Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Texas A&M University, College Station, TX, USA
| | - Peter C W Kim
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA.
| | - Steven D Schwaitzberg
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
- Department of Surgery, The State University of New York, Buffalo, NY, USA
- Buffalo General Hospital, Buffalo, NY, USA
| | - Erik B Wilson
- Division of Minimally Invasive and Elective General Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
16
|
Juarez-Ramirez JC, Coyotl-Ocelotl B, Choi B, Ramos-Garcia R, Spezzia-Mazzocco T, Ramirez-San-Juan JC. Improved spatial speckle contrast model for tissue blood flow imaging: effects of spatial correlation among neighboring camera pixels. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:125002. [PMID: 38074216 PMCID: PMC10704254 DOI: 10.1117/1.jbo.28.12.125002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
Significance Speckle contrast analysis is the basis of laser speckle imaging (LSI), a simple, inexpensive, noninvasive technique used in various fields of medicine and engineering. A common application of LSI is the measurement of tissue blood flow. Accurate measurement of speckle contrast is essential to correctly measure blood flow. Variables, such as speckle grain size and camera pixel size, affect the speckle pattern and thus the speckle contrast. Aim We studied the effects of spatial correlation among adjacent camera pixels on the resulting speckle contrast values. Approach We derived a model that accounts for the potential correlation of intensity values in the common experimental situation where the speckle grain size is larger than the camera pixel size. In vitro phantom experiments were performed to test the model. Results Our spatial correlation model predicts that speckle contrast first increases, then decreases as the speckle grain size increases relative to the pixel size. This decreasing trend opposes what is observed with a standard speckle contrast model that does not consider spatial correlation. Experimental data are in good agreement with the predictions of our spatial correlation model. Conclusions We present a spatial correlation model that provides a more accurate measurement of speckle contrast, which should lead to improved accuracy in tissue blood flow measurements. The associated correlation factors only need to be calculated once, and open-source software is provided to assist with the calculation.
Collapse
Affiliation(s)
| | - Beatriz Coyotl-Ocelotl
- Instituto Nacional de Astrofisica, Optica y Electronica, Departamento de Optica, Tonantzintla, Mexico
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Department of Surgery, Irvine, California, United States
| | - Ruben Ramos-Garcia
- Instituto Nacional de Astrofisica, Optica y Electronica, Departamento de Optica, Tonantzintla, Mexico
| | - Teresita Spezzia-Mazzocco
- Instituto Nacional de Astrofisica, Optica y Electronica, Departamento de Optica, Tonantzintla, Mexico
| | - Julio C. Ramirez-San-Juan
- Instituto Nacional de Astrofisica, Optica y Electronica, Departamento de Optica, Tonantzintla, Mexico
| |
Collapse
|
17
|
Ergin B, van Rooij T, Lima A, Ince Y, Specht PA, Mik B, Aksu U, Yavuz-Aksu B, Kooiman K, de Jong N, Ince C. Intra-renal microcirculatory alterations on non-traumatic hemorrhagic shock induced acute kidney injury in pigs. J Clin Monit Comput 2023; 37:1193-1205. [PMID: 36745316 PMCID: PMC10520149 DOI: 10.1007/s10877-023-00978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is frequently seen in patients with hemorrhagic shock due to hypotension, tissue hypoxia, and inflammation despite adequate resuscitation. There is a lack of information concerning the alteration of renal microcirculation and perfusion during shock and resuscitation. The aim of this study was to investigate the possible role of renal microcirculatory alterations on development of renal dysfunction in a pig model of non-traumatic hemorrhagic shock (HS) induced AKI.Fully instrumented female pigs were divided into the two groups as Control (n = 6) and HS (n = 11). HS was achieved by withdrawing blood until mean arterial pressure (MAP) reached around 50 mmHg. After an hour cessation period, fluid resuscitation with balanced crystalloid was started for the duration of 1 h. The systemic and renal hemodynamics, renal microcirculatory perfusion (contrast-enhanced ultrasound (CEUS)) and the sublingual microcirculation were measured.CEUS peak enhancement was significantly increased in HS during shock, early-, and late resuscitation indicating perfusion defects in the renal cortex (p < 0.05 vs. baseline, BL) despite a stable renal blood flow (RBF) and urine output. Following normalization of systemic hemodynamics, we observed persistent hypoxia (high lactate) and high red blood cell (RBC) velocity just after initiation of resuscitation resulting in further endothelial and renal damage as shown by increased plasma sialic acid (p < 0.05 vs. BL) and NGAL levels. We also showed that total vessel density (TVD) and functional capillary density (FCD) were depleted during resuscitation (p < 0.05).In this study, we showed that the correction of systemic hemodynamic variables may not be accompanied with the improvement of renal cortical perfusion, intra-renal blood volume and renal damage following fluid resuscitation. We suggest that the measurement of renal injury biomarkers, systemic and renal microcirculation can be used for guiding to the optimization of fluid therapies.
Collapse
Affiliation(s)
- Bülent Ergin
- Department of Adult Intensive Care, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Tom van Rooij
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Lima
- Department of Adult Intensive Care, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Yasin Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Patricia Ac Specht
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bert Mik
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ugur Aksu
- Department of Biology, Zoology Division, University of Istanbul, Istanbul, Turkey
| | | | - Klazina Kooiman
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Laboratory of Acoustical Wavefield Imaging, Department of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Can Ince
- Department of Adult Intensive Care, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zötterman J, Tesselaar E, Elawa S, Farnebo S. Correlation between Indocyanine Green Fluorescence Angiography and Laser Speckle Contrast Imaging in a Flap Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5187. [PMID: 38152716 PMCID: PMC10752484 DOI: 10.1097/gox.0000000000005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 12/29/2023]
Abstract
Background Indocyanine green fluorescence angiography (ICG-FA) is used to assess tissue intraoperatively in reconstructive surgery. This requires an intra-venous dye injection for each assessment. This is not necessary in laser speckle contrast imaging (LSCI); therefore, this method may be better suited for tissue evaluation. To determine this, we compared the two methods in a porcine flap model. Methods One random and one pedicled flap were raised on each buttock of six animals. They were assessed with LSCI at baseline, when raised (T0), at 30 minutes (T30) and with ICG-FA at T0 and T30. Regions of interest (ROI) were chosen along the flap axis. Perfusion, measured as perfusion units (PU) in the LSCI assessment and pixel-intensity for the ICG-FA video uptake, was calculated in the ROI. Correlation was calculated between PU and pixel-intensity measured as time to peak (TTP) and area under curve for 60 seconds (AUC60). Results Correlation between LSCI and AUC60 for the ICG-FA in corresponding ROI could be seen in all flaps at all time points. The correlation was higher for T0 (r=0.7 for random flap and r=0.6 for pedicled flap) than for T30 (r=0.57 for random flap and r=0.59 for pedicled flap). Even higher correlation could be seen PU and TTP (T0: random flap r=-0.8 and pedicled flap r=0.76. T30: random flap r=-0.8 and pedicled flap r=0.71). Conclusion There is a correlation between PU from LSCI and TTP and AUC60 for ICG-FA, indicating that LSCI could be considered for intraoperative tissue assessment.
Collapse
Affiliation(s)
- Johan Zötterman
- From the Department of Hand and Plastic Surgery and Burns and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Medical Radiation Physics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Sherif Elawa
- From the Department of Hand and Plastic Surgery and Burns and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Simon Farnebo
- From the Department of Hand and Plastic Surgery and Burns and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Linkous C, Pagan AD, Shope C, Andrews L, Snyder A, Ye T, Valdebran M. Applications of Laser Speckle Contrast Imaging Technology in Dermatology. JID INNOVATIONS 2023; 3:100187. [PMID: 37564105 PMCID: PMC10410171 DOI: 10.1016/j.xjidi.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
Laser speckle contrast imaging or laser speckle imaging (LSI) is a noninvasive imaging technology that can detect areas of dynamic perfusion or vascular flow. Thus, LSI has shown increasing diagnostic utility in various pathologies and has been employed for intraoperative, postoperative, and long-term monitoring in many medical specialties. Recently, LSI has gained traction in clinical dermatology because it can be effective in the assessment of pathologies that are associated with increased perfusion and hypervascularity compared with that of normal tissue. To date, LSI has been found to be highly accurate in monitoring skin graft reperfusion, determining the severity of burns, evaluating neurosurgical revascularization, assessing persistent perfusion in capillary malformations after laser therapy, and differentiating malignant and benign skin lesions. LSI affords the advantage of noninvasively assessing lesions before more invasive methods of diagnosis, such as tissue biopsy, while remaining inexpensive and exhibiting no adverse events to date. However, potential obstacles to its clinical use include tissue movement artifact, primarily qualitative data, and unclear impact on clinical practice given the lack of superiority data compared with the current standard-of-care diagnostic methods. In this review, we discuss the clinical applications of LSI in dermatology for use in the diagnosis and monitoring of vascular, neoplastic, and inflammatory skin conditions.
Collapse
Affiliation(s)
- Courtney Linkous
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Angel D. Pagan
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| | - Chelsea Shope
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Laura Andrews
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Snyder
- Department of Dermatology & Dermatologic Surgery, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tong Ye
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Department of Regenerative Medicine & Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Manuel Valdebran
- Department of Dermatology & Dermatologic Surgery, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
20
|
Liu YZ, Mehrotra S, Buharin VE, Marois M, Nwaiwu CA, Wilson EB, Kim PCW. Dye-Less Perfusion Quantification of Porcine Gastric Conduit with Laser Speckle Contrast Imaging and Laser Doppler Imaging. J Gastrointest Surg 2023; 27:1947-1949. [PMID: 37227609 DOI: 10.1007/s11605-023-05708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Affiliation(s)
- Yao Z Liu
- Department of Surgery, Brown University, Providence, RI, USA
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, MA, 02210, Boston, USA
| | - Saloni Mehrotra
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, MA, 02210, Boston, USA
- Department of Surgery, University at Buffalo, NY, Buffalo, USA
| | - Vasiliy E Buharin
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, MA, 02210, Boston, USA
| | - Mikael Marois
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, MA, 02210, Boston, USA
| | - Chibueze A Nwaiwu
- Department of Surgery, Brown University, Providence, RI, USA
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, MA, 02210, Boston, USA
| | - Erik B Wilson
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter C W Kim
- Department of Surgery, Brown University, Providence, RI, USA.
- Activ Surgical Inc., 30 Thomson Place, 2nd Floor, MA, 02210, Boston, USA.
| |
Collapse
|
21
|
Takahashi N, Kiyota N, Kunikata H, Yamazaki M, Nishimura T, Shiga Y, Aoyagi H, Shidomi M, Tsuda T, Ohtsuka T, Tomida T, Nakazawa T. Vasoreactivity of the optic nerve head, nailfold, and facial skin in response to cold provocation in normal-tension glaucoma patients. BMC Ophthalmol 2023; 23:316. [PMID: 37438715 DOI: 10.1186/s12886-023-03059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The dysfunction of optic nerve head (ONH) hemodynamics has been suggested to be involved in the pathogenesis of normal-tension glaucoma (NTG). The aim of this study was to compare vasoreactivity in the ONH, nailfold, and facial skin in response to cold-water provocation in NTG patients and healthy controls. METHODS We performed cold-water provocation in 14 eyes of 14 NTG patients and 15 eyes of 15 age-matched control subjects. Laser speckle flowgraphy-derived tissue-area mean blur rate (MT), skin blood flowmetry-derived pulse wave amplitude (PA), nailfold capillaroscopy-derived nailfold capillary diameter, and other clinical parameters were recorded at baseline and 4 and 6 min after the cold stimulus. We compared changes (as percentages) in these variables in the NTG and control subjects with a linear mixed-effects model and evaluated correlations between these changes with Spearman's rank correlation coefficient. RESULTS The interaction term between the NTG group (reference, control group) and the 4-min protocol step (reference, baseline) significantly affected the changes in MT, nailfold capillary diameter and PA (β = -9.51%, P = 0.017, β = -20.32%, P = 0.002; β = + 18.06%, P = 0.017, respectively). The change in MT was positively correlated with the change in nailfold capillary diameter, and negatively correlated with the change in PA (r = 0.39, P = 0.036; r = -0.40, P = 0.031, respectively). CONCLUSION NTG patients showed abnormal vasoconstriction in the ONH and nailfold and vasodilation in the facial skin in response to cold-water provocation.
Collapse
Affiliation(s)
- Nana Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Naoki Kiyota
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mai Yamazaki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Seiryo Eye Clinic, Miyagi, Japan
| | - Takayuki Nishimura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hisae Aoyagi
- Department of Health Science Research Planning Division, Rohto Pharmaceutical Co., Ltd, Osaka, Japan
| | - Miwako Shidomi
- Department of Health Science Research Planning Division, Rohto Pharmaceutical Co., Ltd, Osaka, Japan
| | - Tomohiro Tsuda
- Department of Internal Medicine and Food Development Division, Rohto Pharmaceutical Co., Ltd, Osaka, Japan
| | - Toshihiko Ohtsuka
- Department of Advanced Development, Casio Computer Co., Ltd, Tokyo, Japan
| | - Takahiro Tomida
- Department of Advanced Development, Casio Computer Co., Ltd, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
22
|
Dolgyras P, Lazaridis A, Anyfanti P, Gavriilaki E, Koletsos N, Triantafyllou A, Nikolaidou B, Galanapoulou V, Douma S, Gkaliagkousi E. Microcirculation dynamics in systemic vasculitis: evidence of impaired microvascular response regardless of cardiovascular risk factors. Rheumatology (Oxford) 2023; 62:2510-2516. [PMID: 36394222 DOI: 10.1093/rheumatology/keac652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/03/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES Systemic vasculitides (SVs) are a highly inflammatory group of diseases characterized by significant cardiovascular (CV) mortality. Microvascular damage closely linked with accelerated atherosclerosis and thrombosis represents a core pathophysiological mechanism contributing to the excess CV risk of patients with SVs. Skin represents an easily accessible tissue facilitating non-invasive microvascular study. In this study we aimed to investigate microcirculation dynamics and associate them with disease-related factors in patients with SVs. METHODS We assessed skin microcirculation using laser speckle contrast imaging (LSCI) and vascular reactivity by the post-occlusive reactive hyperaemia (PORH) protocol in a meticulously selected group of patients with SVs without CV disease and compared them to controls, matched for age, sex, BMI and smoking status. RESULTS Sixty individuals were included in the study, 30 patients and 30 controls. Patients with SVs presented a lower peak magnitude during reperfusion phase (median [interquartile range] 207 [60.1] vs 143.7 [41.0] laser speckle perfusion units, P < 0.001) and lower percentage cutaneous vascular conductance increase (mean (s.d.) 190.0 [49.6]% vs 149.6 [48.9]%, P = 0.002) as compared with controls. Importantly, microvascular damage was correlated with disease duration (P < 0.001, r = -0.563 and P < 0.001, r = 0.442, respectively). CONCLUSION For the first time we have shown that patients with SVs exhibit impaired microvascular function and blunted reactivity after occlusion, as this was demonstrated by the LSCI technique. Therefore, skin microcirculation may be a useful, non-invasive method in patients with SVs for the early detection of microvascular dysfunction, which is closely related to the high CV risk that these patients bear.
Collapse
Affiliation(s)
- Panagiotis Dolgyras
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Anyfanti
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Gavriilaki
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Koletsos
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Barbara Nikolaidou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Noël J, Mascarenhas A, Nwaiwu CA, Liu Y, Moschovas M, Buharin VE, Oberlin J, Mehrotra S, Dechert AF, Kim PCW, Patel V. Laser speckle contrast imaging compared with indocyanine green in renal perfusion of a porcine model. Curr Urol 2023; 17:141-145. [PMID: 37691993 PMCID: PMC10489255 DOI: 10.1097/cu9.0000000000000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background When viewed under near-infrared light, indocyanine green (ICG) signal for kidney perfusion can be utilized in partial nephrectomy. Laser speckle contrast imaging (LSCI) uses coherent light to detect perfusion during real-time laparoscopic surgery. Materials and methods Laser speckle contrast imaging or ActivSight, an imaging sensor adapter, was used during laparoscopy of an anesthetized porcine kidney model. ActivSight's "perfusion mode" and "quantification mode" displayed the blood flow as a heatmap and numerical signal intensity, respectively. Results After the upper segmental renal artery was clamped, ICG was seen in the lower pole, and LSCI showed low unit (dark color) quantification and perfusion in the upper pole. Indocyanine green was retained in the lower pole after the upper segmental artery was unclamped, and LSCI perfusion was demonstrated in the entire kidney. Conclusions Laser speckle contrast imaging is a dye-free, repeatable, real-time adjunct for renal parenchymal perfusion assessment applicable to minimally invasive renal surgery to complement the technology of ICG near-infrared fluorescence and advance digital surgery.
Collapse
Affiliation(s)
- Jonathan Noël
- Department of Urology, AdventHealth Global Robotics Institute, Celebration, FL, USA
| | | | - Chibueze A. Nwaiwu
- Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
- Department of Research, Activ Surgical Inc., Boston, MA, USA
| | - Yao Liu
- Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
- Department of Research, Activ Surgical Inc., Boston, MA, USA
| | - Marcio Moschovas
- Department of Urology, AdventHealth Global Robotics Institute, Celebration, FL, USA
| | | | - John Oberlin
- Department of Research, Activ Surgical Inc., Boston, MA, USA
| | - Saloni Mehrotra
- Department of Research, Activ Surgical Inc., Boston, MA, USA
- Department of Surgery, University of Buffalo, Buffalo, NY, USA
| | | | - Peter C. W. Kim
- Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
- Department of Research, Activ Surgical Inc., Boston, MA, USA
| | - Vipul Patel
- Department of Urology, AdventHealth Global Robotics Institute, Celebration, FL, USA
| |
Collapse
|
24
|
Okonkwo ON, Agweye CT, Akanbi T. Neuroprotection for Nonarteritic Central Retinal Artery Occlusion: Lessons from Acute Ischemic Stroke. Clin Ophthalmol 2023; 17:1531-1543. [PMID: 37284058 PMCID: PMC10239763 DOI: 10.2147/opth.s403433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Nonarteritic central retinal artery occlusion (NA-CRAO) is a variant of acute ischemic stroke (AIS) and is a cause of sudden severe loss of vision. There are guidelines by the American Heart Association and the American Stroke Association for the care of CRAO patients. This review explores the basis of retinal neuroprotection for CRAO and its potential for improving the outcome of NA-CRAO. Recently, there have been significant advances in research into the use of neuroprotection to treat retinal diseases, including retinal detachment, age-related macular degeneration, and inherited retinal diseases. Also, neuroprotective research in AIS has been extensive, and newer drugs tested, including Uric acid, Nerinetide, and Otaplimastat, with promising results. Progress in cerebral neuroprotection after AIS offers hope for retinal neuroprotection after CRAO; and a possibility of extrapolating research findings from AIS into CRAO. Combining neuroprotection and thrombolysis can extend the therapeutic window for NA-CRAO treatment and potentially improve outcomes. Experimented neuroprotection for CRAO includes Angiopoietin (Comp Ang1), KUS 121, Gene therapy (XIAP), and hypothermia. Efforts in the field of neuroprotection for NA-CRAO should focus on better imaging to delineate the penumbra after an acute episode of NA-CRAO (using a combination of high-definition optical coherence angiography and electrophysiology). Also, research should explore details of pathophysiologic mechanisms involved in NA-CRAO, allowing for further neuroprotective intervention, and closing the gap between preclinical and clinical neuroprotection.
Collapse
Affiliation(s)
- Ogugua Ndubuisi Okonkwo
- Department of Ophthalmology, Eye Foundation Hospital and Eye Foundation Retina Institute, Ikeja, Lagos, Nigeria
| | - Chineze Thelma Agweye
- Department of Ophthalmology, University of Calabar and University of Calabar Teaching Hospital, Cross River, Nigeria
| | - Toyin Akanbi
- Department of Ophthalmology, Eye Foundation Hospital and Eye Foundation Retina Institute, Ikeja, Lagos, Nigeria
| |
Collapse
|
25
|
Garrett A, Kim B, Sie EJ, Gurel NZ, Marsili F, Boas DA, Roblyer D. Simultaneous photoplethysmography and blood flow measurements towards the estimation of blood pressure using speckle contrast optical spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1594-1607. [PMID: 37078049 PMCID: PMC10110303 DOI: 10.1364/boe.482740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Non-invasive continuous blood pressure monitoring remains elusive. There has been extensive research using the photoplethysmographic (PPG) waveform for blood pressure estimation, but improvements in accuracy are still needed before clinical use. Here we explored the use of an emerging technique, speckle contrast optical spectroscopy (SCOS), for blood pressure estimation. SCOS provides measurements of both blood volume changes (PPG) and blood flow index (BFi) changes during the cardiac cycle, and thus provides a richer set of parameters compared to traditional PPG. SCOS measurements were taken on the finger and wrists of 13 subjects. We investigated the correlations between features extracted from both the PPG and BFi waveforms with blood pressure. Features from the BFi waveforms were more significantly correlated with blood pressure than PPG features ( R = - 0.55, p = 1.1 × 10-4 for the top BFi feature versus R = - 0.53, p = 8.4 × 10-4 for the top PPG feature). Importantly, we also found that features combining BFi and PPG data were highly correlated with changes in blood pressure ( R = - 0.59, p = 1.7 × 10-4 ). These results suggest that the incorporation of BFi measurements should be further explored as a means to improve blood pressure estimation using non-invasive optical techniques.
Collapse
Affiliation(s)
- Ariane Garrett
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Edbert J. Sie
- Reality Labs, Meta Platforms Inc., Menlo Park, CA 94025, USA
| | - Nil Z. Gurel
- Reality Labs, Meta Platforms Inc., Menlo Park, CA 94025, USA
| | | | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
26
|
Liu YZ, Mehrotra S, Nwaiwu CA, Buharin VE, Oberlin J, Stolyarov R, Schwaitzberg SD, Kim PCW. Real-time quantification of intestinal perfusion and arterial versus venous occlusion using laser speckle contrast imaging in porcine model. Langenbecks Arch Surg 2023; 408:114. [PMID: 36859714 DOI: 10.1007/s00423-023-02845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Real-time intraoperative perfusion assessment may reduce anastomotic leaks. Laser speckle contrast imaging (LSCI) provides dye-free visualization of perfusion by capturing coherent laser light scatter from red blood cells and displays perfusion as a colormap. Herein, we report a novel method to precisely quantify intestinal perfusion using LSCI. METHODS ActivSight™ is an FDA-cleared multi-modal visualization system that can detect and display perfusion via both indocyanine green imaging (ICG) and LSCI in minimally invasive surgery. An experimental prototype LSCI perfusion quantification algorithm was evaluated in porcine models. Porcine small bowel was selectively devascularized to create regions of perfused/watershed/ischemic bowel, and progressive aortic inflow/portal vein outflow clamping was performed to study arterial vs. venous ischemia. Continuous arterial pressure was monitored via femoral line. RESULTS LSCI perfusion colormaps and quantification distinguished between perfused, watershed, and ischemic bowel in all vascular control settings: no vascular occlusion (p < 0.001), aortic occlusion (p < 0.001), and portal venous occlusion (p < 0.001). LSCI quantification demonstrated similar levels of ischemia induced both by states of arterial inflow and venous outflow occlusion. LSCI-quantified perfusion values correlated positively with higher mean arterial pressure and with increasing distance from ischemic bowel. CONCLUSION LSCI relative perfusion quantification may provide more objective real-time assessment of intestinal perfusion compared to conventional naked eye assessment by quantifying currently subjective gradients of bowel ischemia and identifying both arterial/venous etiologies of ischemia.
Collapse
Affiliation(s)
- Yao Z Liu
- Department of Surgery, Brown University, Providence, RI, USA
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | - Saloni Mehrotra
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
- Department of Surgery, University of Buffalo, Buffalo, NY, USA
| | - Chibueze A Nwaiwu
- Department of Surgery, Brown University, Providence, RI, USA
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | | | - John Oberlin
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | - Roman Stolyarov
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | | | - Peter C W Kim
- Department of Surgery, Brown University, Providence, RI, USA.
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA.
| |
Collapse
|
27
|
Hultman M, Larsson M, Strömberg T, Fredriksson I. Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036007. [PMID: 36950019 PMCID: PMC10027009 DOI: 10.1117/1.jbo.28.3.036007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 05/19/2023]
Abstract
SIGNIFICANCE Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate for skin tissue due to complex effects from e.g. static and dynamic scatterers, multiple Doppler shifts, and the speed-distribution of blood. It has been demonstrated how to account for these effects in laser Doppler flowmetry (LDF) using inverse Monte Carlo (MC) algorithms. This allows for a speed-resolved perfusion measure in absolute units %RBC × mm/s, improving the physiological interpretation of the data. Until now, this has been limited to a single-point LDF technique but recent advances in multi-exposure LSCI (MELSCI) enable the analysis in an imaging modality. AIM To present a method for speed-resolved perfusion imaging in absolute units %RBC × mm/s, computed from multi-exposure speckle contrast images. APPROACH An artificial neural network (ANN) was trained on a large simulated dataset of multi-exposure contrast values and corresponding speed-resolved perfusion. The dataset was generated using MC simulations of photon transport in randomized skin models covering a wide range of physiologically relevant geometrical and optical tissue properties. The ANN was evaluated on in vivo data sets captured during an occlusion provocation. RESULTS Speed-resolved perfusion was estimated in the three speed intervals 0 to 1 mm / s , 1 to 10 mm / s , and > 10 mm / s , with relative errors 9.8%, 12%, and 19%, respectively. The perfusion had a linear response to changes in both blood tissue fraction and blood flow speed and was less affected by tissue properties compared with single-exposure LSCI. The image quality was subjectively higher compared with LSCI, revealing previously unseen macro- and microvascular structures. CONCLUSIONS The ANN, trained on modeled data, calculates speed-resolved perfusion in absolute units from multi-exposure speckle contrast. This method facilitates the physiological interpretation of measurements using MELSCI and may increase the clinical impact of the technique.
Collapse
Affiliation(s)
- Martin Hultman
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
- Address all correspondence to Martin Hultman,
| | - Marcus Larsson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Tomas Strömberg
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Ingemar Fredriksson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
| |
Collapse
|
28
|
Nwaiwu CA, Buharin VE, Mach A, Grandl R, King ML, Dechert AF, O'Shea L, Schwaitzberg SD, Kim PCW. Feasibility and comparison of laparoscopic laser speckle contrast imaging to near-infrared display of indocyanine green in intraoperative tissue blood flow/tissue perfusion in preclinical porcine models. Surg Endosc 2023; 37:1086-1095. [PMID: 36114346 DOI: 10.1007/s00464-022-09583-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine if laser speckle contrast imaging (LSCI) mitigates variations and subjectivity in the use and interpretation of indocyanine green (ICG) fluorescence in the current visualization paradigm of real-time intraoperative tissue blood flow/perfusion in clinically relevant scenarios. METHODS De novo laparoscopic imaging form-factor detecting real-time blood flow using LSCI and blood volume by near-infrared fluorescence (NIRF) of ICG was compared to ICG NIRF alone, for dye-less real-time visualization of tissue blood flow/perfusion. Experienced surgeons examined LSCI and ICG in segmentally devascularized intestine, partial gastrectomy, and the renal hilum across six porcine models. Precision and accuracy of identifying demarcating lines of ischemia/perfusion in tissues were determined in blinded subjects with varying levels of surgical experience. RESULTS Unlike ICG, LSCI perfusion detection was real time (latency < 150 ms: p < 0.01), repeatable and on-demand without fluorophore injection. Operating surgeons (n = 6) precisely and accurately identified concordant demarcating lines in white light, LSCI, and ICG modes immediately. Blinded subjects (n = 21) demonstrated similar spatial-temporal precision and accuracy with all three modes ≤ 2 min after ICG injection, and discordance in ICG mode at ≥ 5 min in devascularized small intestine (p < 0.0001) and in partial gastrectomy (p < 0.0001). CONCLUSIONS Combining LSCI for near real-time blood flow detection with ICG fluorescence for blood volume detection significantly improves precision and accuracy of perfusion detection in tissue locations over time, in real time, and repeatably on-demand than ICG alone.
Collapse
Affiliation(s)
- Chibueze A Nwaiwu
- Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | - Vasiliy E Buharin
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | - Anderson Mach
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | - Robin Grandl
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | - Matthew L King
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | - Alyson F Dechert
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | - Liam O'Shea
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA
| | | | - Peter C W Kim
- Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA.
- Activ Surgical Inc, 30 Thomson Place, 2nd Floor, Boston, MA, 02127, USA.
| |
Collapse
|
29
|
Van Den Hoven P, Osterkamp J, Nerup N, Svendsen MBS, Vahrmeijer A, Van Der Vorst JR, Achiam MP. Quantitative perfusion assessment using indocyanine green during surgery - current applications and recommendations for future use. Langenbecks Arch Surg 2023; 408:67. [PMID: 36700999 PMCID: PMC9879827 DOI: 10.1007/s00423-023-02780-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Incorrect assessment of tissue perfusion carries a significant risk of complications in surgery. The use of near-infrared (NIR) fluorescence imaging with Indocyanine Green (ICG) presents a possible solution. However, only through quantification of the fluorescence signal can an objective and reproducible evaluation of tissue perfusion be obtained. This narrative review aims to provide an overview of the available quantification methods for perfusion assessment using ICG NIR fluorescence imaging and to present an overview of current clinically utilized software implementations. METHODS PubMed was searched for clinical studies on the quantification of ICG NIR fluorescence imaging to assess tissue perfusion. Data on the utilized camera systems and performed methods of quantification were collected. RESULTS Eleven software programs for quantifying tissue perfusion using ICG NIR fluorescence imaging were identified. Five of the 11 programs have been described in three or more clinical studies, including Flow® 800, ROIs Software, IC Calc, SPY-Q™, and the Quest Research Framework®. In addition, applying normalization to fluorescence intensity analysis was described for two software programs. CONCLUSION Several systems or software solutions provide a quantification of ICG fluorescence; however, intraoperative applications are scarce and quantification methods vary abundantly. In the widespread search for reliable quantification of perfusion with ICG NIR fluorescence imaging, standardization of quantification methods and data acquisition is essential.
Collapse
Affiliation(s)
- P Van Den Hoven
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - J Osterkamp
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, The Capital Region of Denmark, Copenhagen, Denmark
| | - N Nerup
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, The Capital Region of Denmark, Copenhagen, Denmark
| | - M B S Svendsen
- CAMES Engineering, Copenhagen Academy for Medical Education and Simulation, Centre for Human Resources and Education, The Capital Region of Denmark, Copenhagen, Denmark
| | - Alexander Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J R Van Der Vorst
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - M P Achiam
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, The Capital Region of Denmark, Copenhagen, Denmark
| |
Collapse
|
30
|
Bottino DA, Bouskela E. Non-invasive techniques to access in vivo the skin microcirculation in patients. Front Med (Lausanne) 2023; 9:1099107. [PMID: 36687444 PMCID: PMC9849756 DOI: 10.3389/fmed.2022.1099107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
The microcirculation is composed of blood vessels with mean internal diameter smaller than 100 μm. This structure is responsible for survival of cells and in the last 50 years its study has become increasingly interesting because it often participates in the pathophysiology of several diseases or can determine better or worse prognosis for them. Due to the growing importance of knowing more about the microcirculation, several techniques have been developed and now it is possible to study its structure or function. In the last 25 years, the cutaneous microcirculation has emerged as an accessible and representative portion of generalized vascular bed allowing the examination of mechanisms of microcirculatory function and dysfunction. This mini review presents several techniques used for non-invasive access to skin microcirculation, such as Nailfold Videocapillaroscopy, Orthogonal Polarization Spectral Imaging, Sidestream Dark Field Imaging, Incident Dark field Illumination, Laser Doppler Flowmetry, and Laser Speckle Contrast Imaging applied. The techniques presented will describe which types of variables (structural or functional) can be evaluated, their limitations and potential uses.
Collapse
|
31
|
Light-sheet laser speckle imaging for cilia motility assessment. Comput Struct Biotechnol J 2023; 21:1661-1669. [PMID: 36874161 PMCID: PMC9978471 DOI: 10.1016/j.csbj.2023.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mucociliary clearance is an important innate defense mechanism predominantly mediated by ciliated cells in the upper respiratory tract. Ciliary motility on the respiratory epithelium surface and mucus pathogen trapping assist in maintaining healthy airways. Optical imaging methods have been used to obtain several indicators for assessing ciliary movement. Light-sheet laser speckle imaging (LSH-LSI) is a label-free and non-invasive optical technique for three-dimensional and quantitative mapping of velocities of microscopic scatterers. Here, we propose to use an inverted LSH-LSI platform to study cilia motility. We have experimentally confirmed that LSH-LSI can reliably measure the ciliary beating frequency and has the potential to provide many additional quantitative indicators for characterizing the ciliary beating pattern without labeling. For example, the asymmetry between the power stroke and the recovery stroke is apparent in the local velocity waveform. PIV (particle imaging velocimetry) analysis of laser speckle data could determine the cilia motion directions in different phases.
Collapse
|
32
|
Guven G, Dijkstra A, Kuijper TM, Trommel N, van Baar ME, Topeli A, Ince C, van der Vlies CH. Comparison of laser speckle contrast imaging with laser Doppler perfusion imaging for tissue perfusion measurement. Microcirculation 2023; 30:e12795. [PMID: 36524297 PMCID: PMC10078364 DOI: 10.1111/micc.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Laser-based tissue perfusion monitoring techniques have been increasingly used in animal and human research to assess blood flow. However, these techniques use arbitrary units, and knowledge about their comparability is scarce. This study aimed to model the relationship between laser speckle contrast imaging (LSCI) and laser Doppler perfusion imaging (LDPI), for measuring tissue perfusion over a wide range of blood flux values. METHODS Fifteen healthy volunteers (53% female, median age 29 [IQR 22-40] years) were enrolled in this study. We performed iontophoresis with sodium nitroprusside on the forearm to induce regional vasodilation to increase skin blood flux. Besides, a stepwise vascular occlusion was applied on the contralateral upper arm to reduce blood flux. Both techniques were compared using a linear mixed model analysis. RESULTS Baseline blood flux values measured by LSCI were 33 ± 6.5 arbitrary unit (AU) (Coefficient of variation [CV] = 20%) and by LDPI 60 ± 11.5 AU (CV = 19%). At the end of the iontophoresis protocol, the regional blood flux increased to 724 ± 412% and 259 ± 87% of baseline measured by LDPI and LSCI, respectively. On the other hand, during the stepwise vascular occlusion test, the blood flux reduced to 212 ± 40% and 412 ± 177% of its baseline at LDPI and LSCI, respectively. A strong correlation was found between the LSCI and LDPI instruments at increased blood flux with respect to baseline skin blood flux; however, the correlation was weak at reduced blood flux with respect to baseline. DISCUSSION LSCI and LDPI instruments are highly linear for blood flux higher than baseline skin blood flux; however, the correlation decreased for blood flux lower than baseline. This study's findings could be a basis for using LSCI in specific patient populations, such as burn care.
Collapse
Affiliation(s)
- Goksel Guven
- Department of Intensive Care, Erasmus MC, Rotterdam, The Netherlands.,Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Intensive Care, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Annemieke Dijkstra
- Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands
| | | | - Nicole Trommel
- Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands
| | | | - Arzu Topeli
- Department of Internal Medicine, Division of Intensive Care, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Ince
- Department of Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| | - Cornelis Hendrik van der Vlies
- Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Heeman W, Maassen H, Dijkstra K, Calon J, van Goor H, Leuvenink H, van Dam GM, Boerma EC. Real-time, multi-spectral motion artefact correction and compensation for laser speckle contrast imaging. Sci Rep 2022; 12:21718. [PMID: 36522524 PMCID: PMC9755276 DOI: 10.1038/s41598-022-26154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Laser speckle contrast imaging (LSCI) is so sensitive to motion that it can measure the movement of red blood cells. However, this extreme sensitivity to motion is also its pitfall as the clinical translation of LSCI is slowed down due to the inability to deal with motion artefacts. In this paper we study the effectiveness of a real-time, multi-spectral motion artefact correction and compensation by subduing an in vitro flow phantom and ex vivo porcine kidney to computer-controlled motion artefacts. On the in vitro flow phantom, the optical flow showed a good correlation with the total movement. This model results in a better signal-to-noise ratios for multiple imaging distances and the overestimation of perfusion was reduced. In the ex vivo kidney model, the perfusion overestimation was also reduced and we were still able to distinguish between ischemia and non-ischemia in the stabilized data whereas this was not possible in the non-stabilized data. This leads to a notably better perfusion estimation that could open the door to a multitude of new clinical applications for LSCI.
Collapse
Affiliation(s)
- Wido Heeman
- grid.4830.f0000 0004 0407 1981Faculty Campus Fryslân, University of Groningen, Wirdumerdijk 34, Leeuwarden, 8911 CE The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands ,LIMIS Development BV, Henri Dunantweg 2, Leeuwarden, 8934 AD The Netherlands
| | - Hanno Maassen
- grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Klaas Dijkstra
- grid.461051.7Centre of Expertise in Computer Vision and Data Science, NHL Stenden University of Applied Sciences, Rengerslaan 8-10, Leeuwarden, 8917 DD The Netherlands
| | - Joost Calon
- ZiuZ Visual Intelligence, Stationsweg 3, Gorredijk, 8401 DK The Netherlands
| | - Harry van Goor
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Henri Leuvenink
- grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Gooitzen. M. van Dam
- grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - E. Christiaan Boerma
- grid.4830.f0000 0004 0407 1981Faculty Campus Fryslân, University of Groningen, Wirdumerdijk 34, Leeuwarden, 8911 CE The Netherlands ,grid.414846.b0000 0004 0419 3743Department of Intensive Care, Medical Centre Leeuwarden, Henri Dunantweg 2, Leeuwarden, 8934 AD The Netherlands
| |
Collapse
|
34
|
Feng JH, Li L, Lv XY, Xiong F, Hu XL, Wang H. Protective Effects of 4-Trifluoromethyl-( E)-cinnamoyl]- L-4- F-phenylalanine Acid against Chronic Cerebral Hypoperfusion Injury through Promoting Brain-Derived Neurotrophic Factor-Mediated Neurogenesis. ACS Chem Neurosci 2022; 13:3057-3067. [PMID: 36245095 DOI: 10.1021/acschemneuro.2c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vascular dementia (VaD), one of the major consequences after stroke, is the second reason for the cognitive decline in aged people. Chronic cerebral hypoperfusion (CCH) is considered as the main cause for cognitive impairment in VaD patients. In our previous study, a synthetic compound, 4-trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine acid (AE-18), has been proven to decrease infarct volume and to recover the insufficient blood supply after ischemia-reperfusion in rats, which was reminded that AE-18 may possess the ameliorative effect in CCH. In this study, the bilateral common carotid artery occlusion was performed to establish the CCH model in rats to evaluate the effect and mechanisms of AE-18 in CCH. Results showed that AE-18 (5 and 10 mg/kg, i.g.) could recover the learning and memory and increase the number of neurons in the hippocampus, which may be attributed to its neurogenesis effects and its recovery of cerebral blood flow in CCH rats. In addition, the in vitro studies showed that AE-18 promoted neuronal proliferation, induced differentiation of Neuro-2a cells into a neuron-like morphology, and accelerated the establishment of axon-dendrite polarization of primary hippocampal neurons through upregulating brain-derived neurotrophic factor via the PI3K/Akt/CREB pathway. In conclusion, AE-18 is a promising candidate for the treatment of cognitive decline after CCH injury by restoring blood supply to the brain and promoting neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lun Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
35
|
Analysis of Muscular Electrical Activity and Blood Perfusion of Upper Extremity in Patients with Hemiplegic Shoulder Pain: A Pilot Study. Neural Plast 2022; 2022:5253527. [PMID: 36203950 PMCID: PMC9532142 DOI: 10.1155/2022/5253527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background Hemiplegic shoulder pain (HSP) is a common symptom for post-stroke patients, which has a severely adverse impact on their rehabilitation outcomes. However, the cause of HSP has not been clearly identified due to its complicated multifactorial etiologies. As possible causes of HSP, the abnormality of both muscular electrical activity and blood perfusion remains lack of investigations. Objective This study aimed to analyze the alteration of muscular electrical activity and blood perfusion of upper extremity in patients with HSP by using surface electromyography (sEMG) and laser speckle contrast imaging (LSCI) measurement techniques, which may provide some insight into the etiology of HSP. Methods In this observational and cross-sectional study, three groups of participants were recruited. They were hemiplegic patients with shoulder pain (HSP group), hemiplegic patients without shoulder pain (HNSP group), and healthy participants (Healthy group). The sEMG data and blood perfusion data were collected from all the subjects and used to compute three different physiological measures, the root-mean-square (RMS) and median-frequency (MDF) parameters of sEMG recordings, and the perfusion unit (PU) parameter of blood perfusion imaging. Results The RMS parameter of sEMG showed significant difference (p < 0.05) in the affected side between HSP, HNSP, and Healthy groups. The MDF parameter of sEMG and PU parameter of blood perfusion showed no significant difference in both sides among the three groups (p > 0.05). The RMS parameter of sEMG showed a statistically significant correlation with the pain intensity (r = -0.691, p =0.012). Conclusion This study indicated that the muscular electrical activity of upper extremity had a correlation with the presence of HSP, and the blood perfusion seemed to be no such correlation. The findings of the study suggested an alternative way to explore the mechanism and treatment of HSP.
Collapse
|
36
|
Utility and usability of laser speckle contrast imaging (LSCI) for displaying real-time tissue perfusion/blood flow in robot-assisted surgery (RAS): comparison to indocyanine green (ICG) and use in laparoscopic surgery. Surg Endosc 2022:10.1007/s00464-022-09590-3. [PMID: 36109357 PMCID: PMC9483347 DOI: 10.1007/s00464-022-09590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022]
Abstract
Background Utility and usability of laser speckle contrast imaging (LSCI) in detecting real-time tissue perfusion in robot-assisted surgery (RAS) and laparoscopic surgery are not known. LSCI displays a color heatmap of real-time tissue blood flow by capturing the interference of coherent laser light on red blood cells. LSCI has advantages in perfusion visualization over indocyanine green imaging (ICG) including repeat use on demand, no need for dye, and no latency between injection and display. Herein, we report the first-in-human clinical comparison of a novel device combining proprietary LSCI processing and ICG for real-time perfusion assessment during RAS and laparoscopic surgeries. Methods ActivSight™ imaging module is integrated between a standard laparoscopic camera and scope, capable of detecting tissue blood flow via LSCI and ICG in laparoscopic surgery. From November 2020 to July 2021, we studied its use during elective robotic-assisted and laparoscopic cholecystectomies, colorectal, and bariatric surgeries (NCT# 04633512). For RAS, an ancillary laparoscope with ActivSight imaging module was used for LSCI/ICG visualization. We determined safety, usability, and utility of LSCI in RAS vs. laparoscopic surgery using end-user/surgeon human factor testing (Likert scale 1–5) and compared results with two-tailed t tests. Results 67 patients were included in the study—40 (60%) RAS vs. 27 (40%) laparoscopic surgeries. Patient demographics were similar in both groups. No adverse events to patients and surgeons were observed in both laparoscopic and RAS groups. Use of an ancillary laparoscopic system for LSCI/ICG visualization had minimal impact on usability in RAS as evidenced by surgeon ratings of device usability (set-up 4.2/5 and form-factor 3.8/5). LSCI ability to detect perfusion (97.5% in RAS vs 100% in laparoscopic cases) was comparable in both RAS and laparoscopic cases. Conclusions LSCI demonstrates comparable utility and usability in detecting real-time tissue perfusion/blood flow in RAS and laparoscopic surgery. Graphical abstract ![]()
Collapse
|
37
|
Zhang S, Peuser J, Zhang C, Cardinaux F, Zakharov P, Skipetrov SE, Cerbino R, Scheffold F. Echo speckle imaging of dynamic processes in soft materials. OPTICS EXPRESS 2022; 30:30991-31001. [PMID: 36242192 DOI: 10.1364/oe.459708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/05/2022] [Indexed: 06/16/2023]
Abstract
We present a laser-speckle imaging technique, termed Echo speckle imaging (ESI), that quantifies the local dynamics in biological tissue and soft materials with a noise level around or below 10% of the measured signal without affecting the spatial resolution. We achieve this through an unconventional speckle beam illumination that creates changing, statistically independent illumination conditions and substantially increases the measurement accuracy. Control experiments for dynamically homogeneous and heterogeneous soft materials and tissue phantoms illustrate the performance of the method. We show that this approach enables us to precision-monitor purely dynamic heterogeneities in turbid soft media with a lateral resolution of 100 µm and better.
Collapse
|
38
|
Hu Z, Li D, Zhong X, Li Y, Xuan A, Yu T, Zhu J, Zhu D. In vivo tissue optical clearing assisted through-skull targeted photothrombotic ischemic stroke model in mice. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:065001. [PMID: 35676747 PMCID: PMC9174889 DOI: 10.1117/1.jbo.27.6.065001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Photothrombotic stroke is an important and widely used model for ischemic stroke research. However, the significant scattering of the skull during the procedure limits the light's ability to penetrate and focus on its target. Targeted photothrombosis uses surgery-based skull windows to obtain optical access to the brain, but it renders the brain's environment unnatural even before a stroke is established. AIM To establish a targeted, controllable ischemic stroke model in mice through an intact skull. APPROACH The in vivo skull optical clearing technique provides a craniotomy-free "optical window" that allows light to penetrate. Alongside the local photodynamic effect, we have established targeted photothrombosis without skull removal, effectively controlling the degree of thrombotic occlusion by changing the light dose. RESULTS Ex vivo and in vivo results demonstrated that skull optical clearing treatment significantly enhanced light's ability to penetrate the skull and focus on its target, contributing to thrombotic occlusion. The skull optical clearing window was also used for continuous blood flow mapping, and the relationship between light dose and injury degree was evaluated over 14 days of monitoring. Per our findings, increasing the light dose was accompanied by more severe infarction, indicating that the model was easily controllable. CONCLUSIONS Herein, a targeted, controllable ischemic stroke model was established by combinedly running an in vivo skull optical clearing technique and a photothrombotic procedure, avoiding unnecessary damage or environmental changes to the brain caused by surgery on the skull. Our established model should offer significant value to research on ischemic stroke.
Collapse
Affiliation(s)
- Zhengwu Hu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Xiang Zhong
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Yusha Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Ang Xuan
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| |
Collapse
|
39
|
Li D, Deng L, Hu Z, Li Y, Yu T, Zhong X, Zhu J, Zhu D. Optical clearing imaging assisted evaluation of urokinase thrombolytic therapy on cerebral vessels with different sizes. BIOMEDICAL OPTICS EXPRESS 2022; 13:3243-3258. [PMID: 35781944 PMCID: PMC9208601 DOI: 10.1364/boe.457912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke is caused by occlusion of the blood vessels in the brain, where intravenous thrombolytic therapy is the most effective treatment. Urokinase is a commonly used drug for intravenous thrombolytic therapy, while the effect of vessel size has not been thoroughly studied on urokinase. In this work, using the thrombin-combined photothrombosis model and craniotomy-free skull optical clearing window, we studied the recanalization of different cortical vessels after urokinase treatment. The results demonstrated that, compared to small vessels in distal middle cerebral artery (MCA) and large MCA, urokinase has the best therapeutic effect on secondary branches of MCA. This study holds potential to provide references for the clinical applications of urokinase.
Collapse
Affiliation(s)
- Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Lu Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
40
|
Skin microvascular function, as assessed with laser speckle contrast imaging, is impaired in untreated essential and masked hypertension. Hypertens Res 2022; 45:445-454. [PMID: 34916663 DOI: 10.1038/s41440-021-00816-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022]
Abstract
Skin microcirculation has been proposed as a model of generalized microvascular function. Laser speckle contrast imaging (LSCI) is a novel, noninvasive method to assess skin microvascular function (SMF). To date, SMF data in hypertension are conflicting, and no study with LSCI exists. In addition, the application of LSCI in masked hypertension is scarce. We assessed SMF with LSCI coupled with postocclusive reactive hyperemia (PORH) in patients with newly diagnosed untreated essential hypertension (UHT) and masked hypertension (MH) compared to healthy normotensive (NT) individuals. We enrolled consecutive UHT and MH patients and NT individuals matched for age, sex, body mass index, and smoking status. All participants underwent SMF assessment by LSCI coupled with PORH (PeriCam PSI system, Perimed, Sweden). Correlation analyses were performed between SMF and common cardiovascular risk factors and BP parameters. In total, 70 UHT patients, 20 MH patients and 40 NT individuals were enrolled. UHT and MH patients exhibited significantly impaired SMF compared to NT individuals (UHT patients: base-to-peak flux (p < 0.001)), PORH amplitude (p < 0.001); MH patients: base-to-peak flux (p = 0.013), PORH amplitude (p = 0.022). MH patients did not differ compared to UHT patients. SMF was negatively associated with office, ambulatory and central BP. SMF was negatively associated with blood lipids and smoking. Hypertensive status was the single most important predictor of SMF. UHT and MH patients exhibit impaired SMF compared to NT individuals. MH patients did not differ compared to UHT patients. SMF is negatively associated with BP and cardiovascular risk factors. LSCI could be implemented as a useful tool to investigate SMF in hypertension.
Collapse
|
41
|
Ergin B, van Rooij T, Lima A, Ince Y, Specht PAC, Mik EG, Kooiman K, de Jong N, Ince C. Hydroxyl Ethyl Starch (HES) Preserves Intrarenal Microcirculatory Perfusion Shown by Contrast-Enhanced Ultrasound (Ceus), and Renal Function in a Severe Hemodilution Model in Pigs. Shock 2022; 57:457-466. [PMID: 34559745 DOI: 10.1097/shk.0000000000001862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Acute normovolemic hemodilution (ANH) is associated with low oxygen carrying capacity of blood and purposed to cause renal injury in perioperative setting. It is best accomplished in a perioperative setting by a colloid such as hydroxyl ethyl starch (HES) due its capacity to fill the vascular compartment and maintain colloidal pressure. However, alterations of intra renal microvascular perfusion, flow and its effects on renal function and damage during ANH has not been sufficiently clarified. Based on the extensive use of HES in the perioperative setting we tested the hypothesis that the use of HES during ANH is able to perfuse the kidney microcirculation adequately without causing renal dysfunction and injury in pigs. Hemodilution (n = 8) was performed by stepwise replacing blood with HES to hematocrit (Hct) levels of 20% (T1), 15% (T2), and 10% (T3). Seven control animals were investigated. Systemic and renal hemodynamics were monitored. Renal microcirculatory perfusion was visualized and quantified using contrast-enhanced ultrasound (CEUS) and laser speckle imaging (LSI). In addition, sublingual microcirculation was measured by handheld vital microscopy (HVM). Intrarenal mean transit time of ultrasound contrast agent (IRMTT-CEUS) was reduced in the renal cortex at Hct 10% in comparison to control at T3 (1.4 ± 0.6 vs. 2.2 ± 0.7 seconds, respectively, P < 0.05). Although renal function was preserved, the serum neutrophil gelatinase-associated lipocalin (NGAL) levels was higher at Hct 10% (0.033 ± 0.004 pg/μg protein) in comparison to control at T3 (0.021 ± 0.002 pg/μg protein. A mild correlation between CO and IRMTT (renal RBC velocity) (r -0.53; P = 0.001) and CO and NGAL levels (r 0.66; P = 0.001) was also found. Our results show that HES induced ANH is associated with a preserved intra renal blood volume, perfusion, and function in the clinical range of Hct (<15%). However, at severely low Hct (10%) ANH was associated with renal injury as indicated by increased NGAL levels. Changes in renal microcirculatory flow (CEUS and LSI) followed those seen in the sublingual microcirculation measured with HVM.
Collapse
Affiliation(s)
- Bülent Ergin
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tom van Rooij
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Alexandre Lima
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yasin Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patricia A C Specht
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Egbert G Mik
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Laboratory of Acoustical Wavefield Imaging, Department of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Schott C, Bley T, Walter T, Brusius J, Steingroewer J. Monitoring the apical growth characteristics of hairy roots using non-invasive laser speckle contrast imaging. Eng Life Sci 2022; 22:288-298. [PMID: 35382543 PMCID: PMC8961043 DOI: 10.1002/elsc.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Hairy roots are used to produce plant agents and additives. Due to their heterogeneous structure and growth characteristics, it is difficult to determine growth-related parameters continuously and in real time. Laser speckle contrast analysis is widely used as a non-destructive measurement technique in material testing or in medical technology. This type of analysis is based on the principle that moving objects or particles cause fluctuations in stochastic interference patterns known as speckle patterns. They are formed by the random backscattering of coherent laser light on an optically rough surface. A Laser Speckle Imager, which is well established for speckle studies of hemodynamics, was used for the first time for non-invasive speckle measurements on hairy roots to study dynamic behavior in plant tissue. Based on speckle contrast, a specific flux value was defined to map the dynamic changes in the investigated tissue. Using this method, we were able to predict the formation of lateral strands and to identify the growth zone in the apical root region, as well as dividing it into functional regions. This makes it possible to monitor physiological processes in the apical growth zone in vivo and in real time without labeling the target structures.
Collapse
Affiliation(s)
- Carolin Schott
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | - Thomas Bley
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | - Thomas Walter
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | | | - Juliane Steingroewer
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| |
Collapse
|
43
|
Couturier A, Bouvet R, Cracowski JL, Roustit M. Reproducibility of high-resolution laser speckle contrast imaging approaches to assess cutaneous microcirculation for wound healing monitoring in mice. Microvasc Res 2022; 141:104319. [DOI: 10.1016/j.mvr.2022.104319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
44
|
Awopetu AI, Gohel MS, Sadat U, Hayes PD. Clinical feasibility of diffuse speckle contrast analysis for real-time tissue perfusion monitoring. INT ANGIOL 2021; 41:82-89. [PMID: 34825799 DOI: 10.23736/s0392-9590.21.04740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Adequate tissue perfusion is an important prognostic and diagnostic factor during the management of lower limb peripheral arterial disease. Convenient and real-time tissue perfusion monitoring remains an elusive challenge. METHODS Tissue perfusion on the dorsal and plantar surfaces of both feet of 20 participants was measured during and after cuff-induced ischemia using a novel 4-channel, laser-based perfusion monitoring device based on diffuse speckle contrast analysis technology (Pedra sensors). Participants were free of significant peripheral arterial disease. Transcutaneous partial pressure of oxygen (TcPO2) measurements were recorded concurrently for comparison. RESULTS Pedra sensors detected perfusion changes significantly more quickly than TcPO2 sensors. One minute after induced ischemia, the mean percent changes from baseline values (before ischemia) were -22.7±32.0% and -3.1±8.8% (P<.001) for Pedra and TcPO2 sensors, respectively. One minute into induced ischemia, Pedra sensors had reached 50.5% of the 5-minute ischemia reading whereas TcPO2 sensors had reached only 18.6% of the 5-minute reading (P=.046). Pedra sensors reported hyperemia immediately after cuff release with a mean percent change from baseline of 143.8±122.3%/173.4±121.8% on the dorsal/plantar surfaces while TcPO2 measurements were still recording negative changes at that time (-26.7±19.4%/-18.6±24.4% dorsal/plantar). Pedra sensors exhibited markedly lower interobserver and intraobserver variability than TcPO2 sensors. CONCLUSIONS A device based on diffuse speckle contrast analysis reported tissue perfusion in real time. Cuff-induced ischemia and hyperemia following cuff release were rapidly and consistently detected on both the dorsal and plantar surfaces of the foot. Diffuse speckle contrast analysis may have value for real-time perfusion monitoring during angiography procedures.
Collapse
Affiliation(s)
- Ayoola I Awopetu
- Department of Vascular Surgery, Cambridge University Hospitals, Cambridge, UK
| | - Manjit S Gohel
- Department of Vascular Surgery, Cambridge University Hospitals, Cambridge, UK
| | - Umar Sadat
- Department of Vascular Surgery, Cambridge University Hospitals, Cambridge, UK
| | | |
Collapse
|
45
|
Morales-Vargas E, Peregrina-Barreto H, Ramirez-San-Juan JC. Adaptive processing for noise attenuation in laser speckle contrast imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 212:106486. [PMID: 34736164 DOI: 10.1016/j.cmpb.2021.106486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Blood vessel visualization is an essential task to treat and evaluate diseases such as port-wine stain. Laser Speckle Contrast Imaging (LSCI) have applications in the analysis of the microvasculature. However, it is often limited to superficial depths because the tissue among skin and microvasculature introduces noise in the image. To analyze microvasculature, traditional LSCI methods compute a Contrast Image (CI) by using a shifting window of fixed size and shape, which is inadequate in images with structures different types of morphologies in it, as happens in LSCI. This work aims to reduce the noise in the CIs to improve the visualization of blood vessels at high depths (> 300 μ m). METHODS The proposed method processes the CIs with analysis windows that change their size and shape for each pixel to compute the contrast representation with pixels more representatives to the region. RESULTS We performed experiments varying the depth of the blood vessels, the number of frames required to compute the representation, and the blood flow in the blood vessel. We looked for an improvement in the Contrast to Noise Ratio (CNR) in the periphery of the blood vessels using an analysis of variance. Finding that the adaptive processing of the contrast images allows a significant noise attenuation, translated into a better visualization of blood vessels. An average CNR of 2.62 ± 1 and 5.26 ± 1.7 was reached for in-vitro and in-vivo tests respectively, which is higher in comparison with traditional LSCI approaches. CONCLUSIONS The results, backed by the measured CNR, obtained a noise reduction in the CIs, this means a better temporal and spatial resolution. The proposed awK method can obtain an image with better quality than the state-of-the-art methods using fewer frames.
Collapse
Affiliation(s)
- E Morales-Vargas
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Santa Maria Tonantzintla, 72840 Puebla, México
| | - H Peregrina-Barreto
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Santa Maria Tonantzintla, 72840 Puebla, México.
| | - J C Ramirez-San-Juan
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Santa Maria Tonantzintla, 72840 Puebla, México
| |
Collapse
|
46
|
Carvalho Brinca AM, de Castro Pinho A, Costa Vieira RJD. Blood Perfusion of Random Skin Flaps in Humans-In Vivo Assessment by Laser Speckle Contrast Imaging. Dermatol Surg 2021; 47:1421-1426. [PMID: 34313635 DOI: 10.1097/dss.0000000000003164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The viability of random skin flaps (RSFs) depends on an adequate perfusion pressure to avoid necrosis. Laser speckle contrast imaging is a new method to monitor skin flap microcirculation. OBJECTIVE The authors aimed to use laser speckle contrast imaging in evaluating the correlation between the perfusion pressure and the length-to-width ratio (LTWR) of RSFs. MATERIALS AND METHODS Sixty patients submitted to flaps were included: 20 advancement, 20 rotation, and 20 transposition flaps. Laser speckle contrast imaging measurements of perfusion were obtained-after the flaps were planned, dissected, and sutured-from the base to the tip of the flaps, allowing the creation of plot charts and calculation of linear regression equations. RESULTS Perfusion consistently and significantly decreased with the dissection of all flaps. A significant correlation between LTWR and perfusion was observed in undermined and sutured stages; a mathematical model was then delineated, explaining objectively the drop of perfusion along LTWR, with statistical significance, in all flaps. CONCLUSION Laser speckle contrast imaging allows accurate, rapid, reproducible, and noncontact measurements of skin blood perfusion over RSF, ultimately leading to an optimization of skin flap planning. This study proves that variation of perfusion pressure along the flap is dependent on the LTWR in a linear decreasing function.
Collapse
Affiliation(s)
- Ana M Carvalho Brinca
- All authors are affiliated with the Dermatological Surgery Unit, Department of Dermatology, Coimbra University Hospital Centre, Coimbra, Portugal
| | | | | |
Collapse
|
47
|
Wermelink B, Ma KF, Haalboom M, El Moumni M, de Vries JPPM, Geelkerken RH. A Systematic Review and Critical Appraisal of Peri-Procedural Tissue Perfusion Techniques and their Clinical Value in Patients with Peripheral Arterial Disease. Eur J Vasc Endovasc Surg 2021; 62:896-908. [PMID: 34674935 DOI: 10.1016/j.ejvs.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Many techniques have been introduced to enable quantification of tissue perfusion in patients with peripheral arterial disease (PAD). Currently, none of these techniques is widely used to analyse real time tissue perfusion changes during endovascular or surgical revascularisation procedures. The aim of this systematic review was to provide an up to date overview of the peri-procedural applicability of currently available techniques, diagnostic accuracy of assessing tissue perfusion and the relationship with clinical outcomes. DATA SOURCES MEDLINE, Embase, CINAHL, and the Cochrane Central Register of Controlled Trials. REVIEW METHODS This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) guidelines. Four electronic databases were searched up to 31 12 2020 for eligible articles: MEDLINE, Embase, CINAHL and the Cochrane Central Register of Controlled Trials. Eligible articles describing a perfusion measurement technique, used in a peri-procedural setting before and within 24 hours after the revascularisation procedure, with the aim of determining the effect of intervention in patients with PAD, were assessed for inclusion. The QUADAS-2 tool was used to assess the risk of bias and applicability of the studies. RESULTS An overview of 10 techniques found in 26 eligible articles focused on study protocols, research goals, and clinical outcomes is provided. Non-invasive techniques included laser speckle contrast imaging, micro-lightguide spectrophotometry, magnetic resonance imaging perfusion, near infrared spectroscopy, skin perfusion pressure, and plantar thermography. Invasive techniques included two dimensional perfusion angiography, contrast enhanced ultrasound, computed tomography perfusion imaging, and indocyanine green angiography. The results of the 26 eligible studies, which were mostly of poor quality according to QUADAS-2, were without exception, not sufficient to substantiate implementation in daily clinical practice. CONCLUSION This systematic review provides an overview of 10 tissue perfusion assessment techniques for patients with PAD. It seems too early to appoint one of them as a reference standard. The scope of future research in this domain should therefore focus on clinical accuracy, reliability, and validation of the techniques.
Collapse
Affiliation(s)
- Bryan Wermelink
- University of Twente, Multi-Modality Medical Imaging Group, TechMed Centre, Enschede, The Netherlands; Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, The Netherlands.
| | - Kirsten F Ma
- Department of Surgery, Division of Vascular Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marieke Haalboom
- Medical School Twente, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Mostafa El Moumni
- Department of Surgery, Division of Trauma Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jean-Paul P M de Vries
- Department of Surgery, Division of Vascular Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Geelkerken
- University of Twente, Multi-Modality Medical Imaging Group, TechMed Centre, Enschede, The Netherlands; Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
48
|
Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, Du Y, Guan J, Wang X, Fu J. NAD + improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation 2021; 18:207. [PMID: 34530866 PMCID: PMC8444613 DOI: 10.1186/s12974-021-02250-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microglial-mediated neuroinflammation plays an important role in vascular dementia, and modulating neuroinflammation has emerged as a promising treatment target. Nicotinamide adenine dinucleotide (NAD+) shows anti-inflammatory and anti-oxidant effects in many neurodegenerative disease models, but its role in the chronic cerebral hypoperfusion (CCH) is still unclear. METHODS The bilateral common carotid artery occlusion (BCCAO) was performed to establish CCH models in Sprague-Dawley rats. The rats were given daily intraperitoneal injection of NAD+ for 8 weeks. The behavioral test and markers for neuronal death and neuroinflammation were analyzed. Mitochondrial damage and ROS production in microglia were also assessed. RNA-seq was performed to investigate the mechanistic pathway changes. For in vitro studies, Sirt1 was overexpressed in BV2 microglial cells to compare with NAD+ treatment effects on mitochondrial injury and neuroinflammation. RESULTS NAD+ administration rescued cognitive deficits and inhibited neuroinflammation by protecting mitochondria and decreasing ROS production in CCH rats. Results of mechanistic pathway analysis indicated that the detrimental effects of CCH might be associated with decreased gene expression of PPAR-γ co-activator1α (PGC-1α) and its upstream transcription factor Sirt1, while NAD+ treatment markedly reversed their decrease. In vitro study confirmed that NAD+ administration had protective effects on hypoxia-induced neuroinflammation and mitochondrial damage, as well as ROS production in BV2 microglia via Sirt1/PGC-1α pathway. Sirt1 overexpression mimicked the protective effects of NAD+ treatment in BV2 microglia. CONCLUSIONS NAD+ ameliorated cognitive impairment and dampened neuroinflammation in CCH models in vivo and in vitro, and these beneficial effects were associated with mitochondrial protection and ROS inhibition via activating Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiao Jie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yu Du
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
49
|
Lee AL, Chen YF, Yao WT, Liu YC, Yu CM, Yu CM, Tu CP, Huang WC, Tung KY, Tsai MF. Laser Doppler Imaging for Treating Vascular Complications from Procedures Involving Dermal Fillers: Case Series and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11091640. [PMID: 34573980 PMCID: PMC8468831 DOI: 10.3390/diagnostics11091640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
Vascular occlusion is a rare but severe complication of dermal filler injections. Early treatment of this complication produces better outcomes. Current diagnostic methods for vascular occlusion in the skin are subjective and imprecise; these include capillary refill time, skin color, and reports of pain. This study aimed to assess the use of laser Doppler imaging (LDI) in the evaluation and treatment of vascular complications caused by dermal filler injections. This retrospective study used laser Doppler imaging (LDI) in 13 patients who developed vascular occlusion after facial dermal filler injections, with subsequent follow-up. The precise areas of perfusion observed on LDI were compared with the findings of clinical and photographic evaluation. The results showed that LDI accurately identified areas of vascular occlusion and improved treatment precision among these thirteen patients. The procedure was more precise than visual inspection or photographic evidence. Satisfactory outcomes were achieved for all patients, and no procedure-related complications were reported. Collectively, LDI provides fast, noninvasive, and accurate delineation of areas of vascular occlusion caused by complications of dermal filler injections and avoids several subjective shortcomings of visual and photographic evaluations. Thus, LDI effectively tracks treatment outcomes. However, large-scale studies are required to confirm the present findings.
Collapse
Affiliation(s)
- An-Li Lee
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Burn Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Yu-Fan Chen
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Wen-Teng Yao
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Burn Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Ying-Chun Liu
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Burn Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Chia-Meng Yu
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Burn Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Chieh-Ming Yu
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Chih-Peng Tu
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Wen-Chen Huang
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Kwang-Yi Tung
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Medical Cosmetic Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Ming-Feng Tsai
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan; (A.-L.L.); (Y.-F.C.); (W.-T.Y.); (Y.-C.L.); (C.-M.Y.); (C.-M.Y.); (C.-P.T.); (W.-C.H.); (K.-Y.T.)
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Correspondence: ; Tel.: +886-2-2543-3535; Fax: +886-2-2543-3642
| |
Collapse
|
50
|
Chizari A, Schaap MJ, Knop T, Boink YE, Seyger MMB, Steenbergen W. Handheld versus mounted laser speckle contrast perfusion imaging demonstrated in psoriasis lesions. Sci Rep 2021; 11:16646. [PMID: 34404886 PMCID: PMC8371022 DOI: 10.1038/s41598-021-96218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Enabling handheld perfusion imaging would drastically improve the feasibility of perfusion imaging in clinical practice. Therefore, we examine the performance of handheld laser speckle contrast imaging (LSCI) measurements compared to mounted measurements, demonstrated in psoriatic skin. A pipeline is introduced to process, analyze and compare data of 11 measurement pairs (mounted-handheld LSCI modes) operated on 5 patients and various skin locations. The on-surface speeds (i.e. speed of light beam movements on the surface) are quantified employing mean separation (MS) segmentation and enhanced correlation coefficient maximization (ECC). The average on-surface speeds are found to be 8.5 times greater in handheld mode compared to mounted mode. Frame alignment sharpens temporally averaged perfusion maps, especially in the handheld case. The results show that after proper post-processing, the handheld measurements are in agreement with the corresponding mounted measurements on a visual basis. The absolute movement-induced difference between mounted-handheld pairs after the background correction is [Formula: see text] (mean ± std, [Formula: see text]), with an absolute median difference of [Formula: see text]. Realization of handheld LSCI facilitates measurements on a wide range of skin areas bringing more convenience for both patients and medical staff.
Collapse
Affiliation(s)
- Ata Chizari
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mirjam J Schaap
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Yoeri E Boink
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Multi-Modality Medical Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Marieke M B Seyger
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|