1
|
Surface and Structural Studies of Age-Related Changes in Dental Enamel: An Animal Model. MATERIALS 2022; 15:ma15113993. [PMID: 35683290 PMCID: PMC9182525 DOI: 10.3390/ma15113993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In the animal kingdom, continuously erupting incisors provided an attractive model for studying the enamel matrix and mineral composition of teeth during development. Enamel, the hardest mineral tissue in the vertebrates, is a tissue sensitive to external conditions, reflecting various disturbances in its structure. The developing dental enamel was monitored in a series of incisor samples extending the first four weeks of postnatal life in the spiny mouse. The age-dependent changes in enamel surface morphology in the micrometre and nanometre-scale and a qualitative assessment of its mechanical features were examined by applying scanning electron microscopy (SEM) and atomic force microscopy (AFM). At the same time, structural studies using XRD and vibrational spectroscopy made it possible to assess crystallinity and carbonate content in enamel mineral composition. Finally, a model for predicting the maturation based on chemical composition and structural factors was constructed using artificial neural networks (ANNs). The research presented here can extend the existing knowledge by proposing a pattern of enamel development that could be used as a comparative material in environmental, nutritional, and pharmaceutical research.
Collapse
|
2
|
Dias-Moraes MC, Castro PAA, Pereira DL, Ana PA, Freitas AZ, Zezell DM. Assessment of the preventive effects of Nd:YAG laser associated with fluoride on enamel caries using optical coherence tomography and FTIR spectroscopy. PLoS One 2021; 16:e0254217. [PMID: 34234361 PMCID: PMC8263272 DOI: 10.1371/journal.pone.0254217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Objective This in vitro study characterized and monitored, by Optical Coherence Tomography (OCT) and Fourier Transformed Infrared Spectroscopy (FTIR), the effects of the association of acidulated phosphate fluoride gel (APF-gel) and Nd:YAG (neodymiun:yttrium-aluminum-garnet) laser, as sequencial treatments, in the prevention of incipient enamel caries lesions. Methods 120 human enamel samples were randomized into 3 groups (n = 40): APF-gel (1.23% F-, 4 min.); Laser+APF (Nd:YAG laser irradiation—0.6W, 84.9J/cm2, 10Hz, followed by APF-gel); and APF+Laser (APF-gel followed by laser irradiation). The samples were subjected to a 15-day pH-cycling, evaluated by OCT (quantification of optical attenuation coefficient–OAC) and FTIR (analysis of carbonate and phosphate content) before treatments, after treatments, and on the 5th, 10th and 15th days of pH-cycling. The statistical analysis was performed (α = 5%). Results The Optical Attenuation Coefficient (OAC) assessed by OCT increases with the progression of demineralization, and the Laser+APF presented the highest values of OAC in 10th and 15th days of pH-cycling. Nd:YAG decreased the carbonate content after treatment regardless of the application order of the APF-gel, while APF-gel did not interfere in the composition of enamel. The carbonate content was also changed in the first 5 days of the pH-cycling in all groups. Conclusion Nd:YAG laser irradiation before or after the application of APF-gel did not influence the appearance of incipient caries lesions, showing no synergistic effect. Regardless of the application order of the APF-gel, laser irradiation reduces the carbonate content of the enamel, which also changes during the demineralization process. However, irradiation before the application of APF-gel increased the speed of progression of the lesions, which positively impacts public health as it can prevent caries disease, even in high risk individuals. OCT and FTIR are suitable for assessing this effect.
Collapse
Affiliation(s)
- Marcia Cristina Dias-Moraes
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN—CNEN/SP, Sao Paulo, SP, Brazil
| | - Pedro Arthur Augusto Castro
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN—CNEN/SP, Sao Paulo, SP, Brazil
| | - Daísa Lima Pereira
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN—CNEN/SP, Sao Paulo, SP, Brazil
| | - Patrícia Aparecida Ana
- Center for Engineering, Modelling and Applied Social Sciences, Universidade Federal do ABC, Sao Bernardo do Campo, SP, Brazil
| | - Anderson Zanardi Freitas
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN—CNEN/SP, Sao Paulo, SP, Brazil
| | - Denise Maria Zezell
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN—CNEN/SP, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
3
|
Abstract
OBJECTIVE To assess the effectiveness of lasers (at sub-ablative parameters) in reducing caries incidence compared with traditional prophylactic interventions (TPIs) when used alone or together with other TPIs such as pits and fissures sealant or fluoride gels or varnishes. DESIGN A systematic review. Data sources include Medline (via PubMed), Embase, Web of Science and the Cochrane Library (December 2019). ELIGIBILITY CRITERIA Only randomised trials (RCTs) and controlled clinical trials (CCTs) dealing with prophylactic lasers use (vs TPI or untreated teeth) were considered as eligible. We excluded in vitro and ex vivo studies. DATA EXTRACTION Eligible studies were selected and data extracted independently by two reviewers. Risk of bias was assessed adopting the Cochrane Risk of Bias tool. Data on caries incidence, sealant retention, fluoride uptake, adverse events, treatment duration, patients' discomfort and cost-effectiveness ratio was extracted. DATA ANALYSIS Extracted data were presented narratively due to the heterogeneity of included studies. RESULTS Seven RCTs and two CCTs, all with an evident risk of bias, met inclusion criteria, pooling together 269 individuals and 1628 teeth. CO2, neodymium-doped yttrium aluminium garnet, erbium-doped yttrium aluminum garnet (Er:YAG), erbium, chromium: yttrium scandium gallium garnet (Er,Cr:YSGG) and Argon lasers were used. In the permanent dentition, lasers only when used in combination with TPIs were effective in reducing caries when compared with untreated teeth (risk ratio (RR)=0.44 (0.20-0.97); Er:YAG laser) or with TPIs used alone (RR=0.39 (0.22-0.71); CO2 laser). Moreover, Argon laser significantly improved the fluoride uptake into the enamel surfaces (ANalysis Of VAriance (ANOVA) tests: 95%, p<0.0001). Likewise, sealant retention improved when acid etching was performed on previously irradiated enamel fissures by CO2 laser (RR=0.63 (0.38-1.04)) or Er:YAG laser (RR=0.54 (95% CI: 0.34 to 0.87)). In addition, laser resulted safe and well tolerated by patients. CONCLUSION Despite some positive indications, an inadequate level of evidence was found in the included studies concerning the lasers' effectiveness in preventing caries. Further studies with a higher methodological quality level are required.
Collapse
Affiliation(s)
- Stefano Pagano
- Department of Surgical and Biomedical Sciences, Unit of Paediatric Dentistry, University of Perugia, Perugia, Italy
| | - Guido Lombardo
- Department of Surgical and Biomedical Sciences, Unit of Paediatric Dentistry, University of Perugia, Perugia, Italy
| | - Massimiliano Orso
- Health Planning Service, Regional Health Authority of Umbria, Perugia, Italy
| | - Iosief Abraha
- Servizio Immunotrasfusionale, Azienda Unità Sanitaria Locale Umbria 2, Foligno (PG), Italy
| | - Benito Capobianco
- Department of Surgical and Biomedical Sciences, Unit of Paediatric Dentistry, University of Perugia, Perugia, Italy
| | - Stefano Cianetti
- Department of Surgical and Biomedical Sciences, Unit of Paediatric Dentistry, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Al-Maliky MA, Frentzen M, Meister J. Laser-assisted prevention of enamel caries: a 10-year review of the literature. Lasers Med Sci 2019; 35:13-30. [PMID: 31399861 DOI: 10.1007/s10103-019-02859-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/01/2019] [Indexed: 01/13/2023]
Abstract
Since the invention of lasers in dentistry, investigations in caries prevention by the use of laser radiation have been proposed. There are several mechanisms stated for this purpose such as photothermal and/or photochemical interaction processes with the enamel. Alone or in conjugation with topical fluoride application, this treatment modality may improve enamel acid resistance in high-caries-risk populations. Data collection was done by searching the keywords caries, prevention, and laser in PubMed, Embase, Web of Science, Cochrane Library, and Google Scholar. Lasing protocols of the collected literature and their effectiveness as well as examination methods used to verify treatment outcomes have been evaluated. One hundred eighteen publications were found for the last 10 years. The wavelengths investigated for caries prevention are mainly located in the near and the mid-infrared spectral range. In the evaluated period of time, investigations using CO2; Er:YAG; Er,Cr:YSGG; Er:YLF; fundamental, second, and third harmonic generations of Nd:YAG; diodes; and argon ion lasers were found in the databases. Accounting for 39% of the literature, CO2 laser was the most examined system for this purpose. Reviewing the literature in this narrative review showed that all laser systems presented a positive effect in varying degrees. Laser irradiation could be an alternative or synergistic to topical fluoridation for enamel caries prevention with longer lasting effect. Further research should be focused on selecting proper laser settings to avoid damage to enamel and developing effective evidence-based clinical protocols.
Collapse
Affiliation(s)
- Mohammed Abbood Al-Maliky
- Department of Periodontology, Operative and Preventive Dentistry, Dental Faculty, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany. .,Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO), University of Bonn, Bonn, Germany. .,Department of Biomedical Applications, Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq.
| | - Matthias Frentzen
- Department of Periodontology, Operative and Preventive Dentistry, Dental Faculty, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Jörg Meister
- Department of Periodontology, Operative and Preventive Dentistry, Dental Faculty, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany.,Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO), University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Chokhachi Zadeh Moghadam N, Seraj B, Chiniforush N, Ghadimi S. Effects of Laser and Fluoride on the Prevention of Enamel Demineralization: An In Vitro Study. J Lasers Med Sci 2019; 9:177-182. [PMID: 30809328 DOI: 10.15171/jlms.2018.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Investigations have demonstrated that fluoride is an essential element in preventive dentistry. However, there are still controversies about the preventive effects of various kinds of laser. The aim of this study was to examine the effect of diode laser irradiation (810 nm) with or without fluoride therapy in the prevention of deciduous enamel demineralization. Methods: Sixty deciduous molar crowns were randomly assigned to 6 groups: C: received no treatment; F: fluoride varnish application; 2L: 2 times diode laser irradiation; 4L: 4 times diode laser irradiation; F2L: 2 times laser irradiation over fluoride varnish; F4L: 4 times laser irradiation over fluoride varnish. Teeth in all groups were subjected to a pH-cycling process to produce artificial caries-like lesions. Results: The analysis of variance (ANOVA) of microhardness values indicated a significant great effect for laser, fluoride, and the interaction of laser- fluoride on reducing the final microhardness value (P<0.001). However, the 2L group was an exception. Despite the 4L group, it did not show a significant prevention of enamel microhardness loss (P=0.125). These 2 groups exhibited different effects in the absence of fluoride (P 2L-4L=0.05) while in the presence of the fluoride varnish, no statistically significant difference was observed between them (P F2L-F4L=0.257). Moreover, no statistically significant difference was observed between the laser-fluoride combination group and the fluoride group (P F2L-F=0.133, P F4L-F=0.926). Conclusion: Our results suggest that fluoride varnish, diode laser, and their combination decrease the loss of the enamel microhardness value and potentially prevent deciduous enamel demineralization. However, the combination of laser and fluoride was not more effective than fluoride.
Collapse
Affiliation(s)
| | - Bahman Seraj
- Dental Research Center, Dentistry Research Institute and Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghadimi
- Laser Research Center of Dentistry, Dentistry Research Institute and Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Khamverdi Z, Kordestani M, Panahandeh N, Naderi F, Kasraei S. Influence of CO2 Laser Irradiation and CPPACP Paste Application on Demineralized Enamel Microhardness. J Lasers Med Sci 2018; 9:144-148. [PMID: 30026901 DOI: 10.15171/jlms.2018.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: It has been suggested that the application of casein phosphopeptide-amorphous calcium phosphate paste (CPP-ACP) and CO2 laser irradiation on enamel could increase the resistance of enamel to caries and acid attacks. The aim of the current study was to compare the influence of CPP-ACP paste application and irradiation of CO2 laser on microhardness of demineralized enamel. Methods: Thirty sound maxillary extracted premolars were selected. The crowns were cut at the cervical line and were split into facial and palatal halves. Specimens were mounted in selfcure acrylic blocks in such way that the enamel surface was exposed to 4×4 mm. After a pH cycling of the specimens, they were randomly divided into 4 groups (n=15), as follows: CG: Control group, LAS: CO2 laser, CP: CPP-ACP and LASCP: laser combined CPP-ACP treatment. The Vickers microhardness of the specimens was measured (500 g load, 5 seconds, 3 points). Data were analyzed using one-way ANOVA and post hoc Tukey tests (α =0.05). Results: The lowest mean Vickers microhardness value was observed in CG group (192.57±50.87 kg/mm2 ) and the highest in LASCP group (361.86±22.22 kg/mm2 ). There were significant differences between groups (P<0.001). The pairwise comparison of the groups revealed that there were significant differences between these groups: CG versus LAS, CP, LASCP (P<0.05) and LASCP versus LAS and CP (P<0.05). No significant difference between LAS group versus CP group (P>0.05) was observed. Conclusion: The results of the current study revealed that CO2 laser and CCP-ACP were effective for improvement of enamel hardness value after demineralization. Incorporation of CO2 laser irradiation and CCP-ACP paste application provides additional remineralizing potential for demineralized enamel.
Collapse
Affiliation(s)
- Zahra Khamverdi
- Dental Research Center, Department of Restorative Dentistry, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Matin Kordestani
- Department of Restorative Dentistry, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Narges Panahandeh
- Department of Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Naderi
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahin Kasraei
- Department of Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Benetti C, Ana PA, Bachmann L, Zezell DM. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components. APPLIED SPECTROSCOPY 2015; 69:1496-1504. [PMID: 26555304 DOI: 10.1366/14-07726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.
Collapse
Affiliation(s)
- Carolina Benetti
- Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), Centro de Lasers e Aplicacões, Av. Prof. Lineu Prestes, 2242, Cidade Universitária, CEP 05508-000, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
8
|
Influence of the Nd:YAG laser pulse duration on the temperature of primary enamel. ScientificWorldJournal 2015; 2015:396962. [PMID: 25874244 PMCID: PMC4385661 DOI: 10.1155/2015/396962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/23/2014] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to evaluate the temperature change on specimens of primary enamel irradiated with different pulse duration of Nd:YAG laser. Fifteen sound primary molars were sectioned mesiodistally, resulting in 30 specimens (3.5 × 3.5 × 2.0 mm). Two small holes were made on the dentin surface in which K-type thermocouples were installed to evaluate thermal changes. Specimens were randomly assigned in 3 groups (n = 10): A = EL (extra long pulse, 10.000 μs), B = LP (long pulse, 700 μs), and C = SP (short pulse, 350 μs). Nd:YAG laser (λ = 1.064 μm) was applied at contact mode (10 Hz, 0.8 W, 80 mJ) and energy density of 0.637 mJ/mm(2). Analysis of variance (ANOVA) was performed for the statistical analysis (P = 0.46). Nd:YAG laser pulse duration provided no difference on the temperature changes on primary enamel, in which the following means were observed: A = EL (23.15°C ± 7.75), B = LP (27.33°C ± 11.32), and C = SP (26.91°C ± 12.85). It can be concluded that the duration of the laser pulse Nd:YAG increased the temperature of the primary enamel but was not influenced by different pulse durations used in the irradiation.
Collapse
|