1
|
Duarte VMS, Bonazza DSS, Lino-Dos-Santos-Franco A, Fontes CJF, Damazo AS. Application of a physiotherapeutic protocol associated with photobiomodulation for the treatment of leprosy patients. Lasers Med Sci 2023; 39:12. [PMID: 38133695 DOI: 10.1007/s10103-023-03957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Leprosy is a chronic infectious disease characterized by acute inflammatory episodes that affect the skin and peripheral nerves and can develop progressive and irreversible disabilities and deformities. In addition, drug therapy and physiotherapy offer resources and techniques capable of mitigating the consequences of neural lesions, but neural lesions can occur before, during, and even after drug treatment. Thus, new treatments are needed. Photobiomodulation (PBM) might be a promissor therapy since it aims to reduce the inflammatory process and restore motor and sensory functions in the affected area. This study aims to compare the evolution of neural status, pain, and functionality in patients with leprosy and neuritis after a physiotherapeutic protocol and PBM treatment. This was a randomized controlled clinical trial that analyzed a group of patients receiving a physiotherapeutic protocol (PPG) and another receiving physiotherapeutic protocol associated with PBM (PLG) (wavelength 904 nm, potency 70 mW, time per point 9 s). Our results showed when evaluating functional capacity limitations with the SALSA scale, the PLG patients improved from moderate to mild limitations. On the other hand, the PPG remained as moderate limitations. Also, the PLG showed a significant reduction in pain on the VAS scale. The neurological assessment showed that PLG improved palpation of the median, radial, and peroneal nerves. In the strength test, PLG patients improved in the 5th finger abduction and ankle dorsiflexion. Assessing sensitivity, it was identified an improvement in PLG for the ulnar nerve and tibial nerve. All those changes were statistically significant when compared to the PPG patients. Finally, the PLG patients improved disabilities, identified by the neurological assessment of the eyes, hands, and feet. In conclusion, this study demonstrated that combining a physiotherapeutic protocol with PBM treatment effectively improved functional status and reduced pain in leprosy patients.
Collapse
Affiliation(s)
| | | | | | | | - Amílcar Sabino Damazo
- Post Graduate Program in Health Science, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil.
- Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil.
| |
Collapse
|
2
|
Dias FJ, Cury DP, Dias PE, Borie E, Alarcón-Apablaza J, Lezcano MF, Martínez-Rodríguez P, Vargas D, Gutiérrez B, Fazan VPS. Effects of Low-Level Laser Therapy and Purified Natural Latex ( Hevea brasiliensis) Protein on Injured Sciatic Nerve in Rodents: Morpho-Functional Analysis. Int J Mol Sci 2023; 24:14031. [PMID: 37762333 PMCID: PMC10530799 DOI: 10.3390/ijms241814031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The present study analyzed the effects of low-level laser therapy (LLLT) and the purified natural latex protein (Hevea brasiliensis, F1 protein) on the morpho-function of sciatic nerve crush injuries in rats. One-hundred and eight male Wistar rats were randomly allocated to six groups (n = 18): 1. Control; 2. Exposed (nerve exposed); 3. Injury (injured nerve without treatment); 4. LLLT (injured nerve irradiated with LLLT (15 J/cm2, 780 nm)); 5. F1 (injured nerve treated with F1 protein (0.1%)); and 6. LLLT + F1 (injured nerve treated with LLLT and F1). On the 1st, 7th, 14th, and 56th days after injury, a functional sensory analysis of mechanical allodynia and mechanical hyperalgesia and a motor analysis of grip strength and gait were performed. After 3, 15, and 57 days, the animals were euthanized for morphometric/ultrastructural analyses. The treatments applied revealed improvements in morphometric/ultrastructural parameters compared to the injured group. Sensory analyses suggested that the improvements observed were associated with time progression and not influenced by the treatments. Motor analyses revealed significant improvements in grip strength from the 7th day in the LLLT group and in gait from the 56th day in all treated groups. We concluded that even though the morphological analyses showed improvements with the treatments, they did not influence sensory recovery, and LLLT improved motor recovery.
Collapse
Affiliation(s)
- Fernando José Dias
- Oral Biology Research Centre (CIBO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Diego Pulzatto Cury
- Department of Anatomy and Department of Cellular Biology and the Development—Institute of Biomedical Sciences, Universidade de São Paulo (ICB-USP), São Paulo 05508-000, Brazil;
| | - Paula Elisa Dias
- School of Pharmaceutical Sciences of Ribeirao Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto 14040-903, Brazil;
| | - Eduardo Borie
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Morphological Sciences, Medical School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Florencia Lezcano
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Paulina Martínez-Rodríguez
- Oral Biology Research Centre (CIBO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Daniel Vargas
- Doctoral Program in Morphological Sciences, Medical School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Brandon Gutiérrez
- Master Program in Dental Sciences, Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, Universidade de São Paulo (FMRP-USP), 14049-900 Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Unay S, Bilgin MD. Investigation of effects of quercetin and low-level laser therapy in cisplatin-induced in vitro peripheral neuropathy model. Lasers Med Sci 2023; 38:49. [PMID: 36689023 DOI: 10.1007/s10103-023-03718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the dose-dependent side effects of cisplatin. The loss of sensory neurons is observed in CIPN. There are many methods to minimalize CIPN symptoms such as pharmacological agents and photobiostimulation but the mechanisms of these methods are unclear. Our study is aimed at determining the effects of quercetin and low-level laser therapy (LLLT) in undifferentiated and nerve growth factor-differentiated PC12 cells in cisplatin-induced peripheral neuropathy. PC12 cells with cisplatin were co-treated with quercetin and LLLT (diode pumped all-solid-state laser, 670 nm, output 500 mW, and the laser beam surface area was 1.96 cm2). The effects of quercetin and LLLT on GAP-43 and Synapsin I expressions were analyzed by real-time PCR, cell viability was assessed by MTT assay, Annexin and dead assay measured the induction of apoptosis, the alterations in mitopotential were assessed by mitopotential assay, and lactate dehydrogenase activity in cells was analyzed. All experiment data were analyzed by the Tukey test and applied as a post hoc test, and statistical evaluation was made. Our results indicated that cisplatin increased apoptosis (24,210 ± 2189, 46,504 ± 8246) cells, mitochondrial dysfunction (44,312 ± 0.751, 68,788 ± 1271), and LDH activity (62,821 ± 8245, 87,838 ± 8116). Furthermore, it decreased cell viability (42,447 ± 1780, 36,140 ± 3682) and inhibited GAP-43 and Synapsin I genes in undifferentiated and differentiated PC12 cells. However, apoptosis, the alterations in mitopotential, and lactate dehydrogenase activity decreased by applications of quercetin and LLLT. It has been recommended that quercetin and low-level laser therapy roles on cisplatin-induced peripheral neuropathy should be investigated in vivo, and the relationship between quercetin and low-level laser therapy should be molecular.
Collapse
Affiliation(s)
- Simge Unay
- Department of Biophysics, Healthy Science Institute, Aydin Adnan Menderes University, TR-09100, Aydin, Turkey
- Present address: Department of Biophysics, School of Medicine, Lokman Hekim University, TR-06510, Ankara, Turkey
| | - Mehmet Dincer Bilgin
- Department of Biophysics, School of Medicine, Aydin Adnan Menderes University, 09010, Aydin, Turkey.
| |
Collapse
|
4
|
Martinelli A, Andreo L, Dos Santos Malavazzi TC, Terena SML, da Cruz Tobelem D, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Vascular photobiomodulation increases muscle fiber diameter and improves the gait during compensatory hypertrophy of plantar muscle in rats. JOURNAL OF BIOPHOTONICS 2022; 15:e202200192. [PMID: 36054438 DOI: 10.1002/jbio.202200192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The local photobiomodulation (LPBM) has demonstrated positive effects during compensatory hypertrophy (CH) in skeletal muscle as a response to an overload. The aim was to compare the effects of the transcutaneous vascular photobiomodulation (VPBM) and the LPBM on muscle fiber size, gait functionality, and on mechanical sensitivity during the CH model in rats. VPBM was administered over the rat's main tail vein and LPBM was applied over the plantar muscle region. VPBM induced an increase in muscle fiber diameter and cross-sectional area (CSA) after 7 days. At 14 days, an increase in the fiber diameter was found in both irradiated groups. The VPBM and LPBM promoted the reestablishment of normal gait evaluated by the sciatic functional index after 14 days. No changes were found in the mechanical (nociceptive) sensitivity in VPBM and LPBM groups in comparison to the CH group but there was an increase in the nociceptive sensitivity in the CH groups in comparison to the control after 7 and 14 days. In conclusion, both PBM, vascular and local, were able to improve the muscle size and gait during the CH process with more pronounced effects when irradiation was performed systemically (VPBM).
Collapse
Affiliation(s)
- Andréia Martinelli
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Lucas Andreo
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Stella Maris Lins Terena
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Daysi da Cruz Tobelem
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| |
Collapse
|
5
|
Retameiro AC, Neves M, Tavares AL, Boaro CD, Rodriguez DF, Stein T, Costa RM, Bertolini GR, Ribeiro LF. Physical Exercise and Low-Level Laser Therapy Systemic Effects on the Ankle Joint in an Experimental Rheumatoid Arthritis Model. J Manipulative Physiol Ther 2022; 45:248-260. [DOI: 10.1016/j.jmpt.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|
6
|
Proteomics reveals the key molecules involved in curcumin-induced protection against sciatic nerve injury in rats. Neuroscience 2022; 501:11-24. [PMID: 35870565 DOI: 10.1016/j.neuroscience.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
We generated a rat model of sciatic nerve crush injury and characterized the effects of curcumin on sciatic nerve recovery by using behavioral experiments, hematoxylin-eosin staining, toluidine blue staining, and immunohistochemical. Proteomic analysis using tandem mass tagging was performed to determine differentially expressed proteins (DEPs), and GO and KEGG pathway analyses of overlapping DEPs was conducted, following which, qPCR, western blotting, and immunofluorescence were further performed to validate the proteins of interest. Finally, a Schwann cell injury model was used to verify the effect of curcumin on potential targets. The rat model was successful established and curcumin improved the sciatic nerve function index of rats with sciatic nerve injury (SNI) and increased the number and diameter of myelinated axons in the sciatic nerve. In the Sham group versus the Injured group and in the Injured group versus the Curcumin group, we identified a total of 4,175 proteins, of which 953 were DEPs, and 218 were known overlapping DEPs. Ten associated pathways, such as calcium signaling pathway, biosynthesis of antibiotics, and long-term potentiation, were identified. The 218 overlapping DEPs were primarily involved in negative regulation of apoptotic process, biological processes, cytoplasm cellular component, and protein binding molecular function based on GO annotation. Curcumin promoted increased expression of ApoD and inhibited the expression of Cyba in vivo and in vitro. These results indicated that curcumin promoted sciatic nerve repair through regulation of various proteins, targets, and pathways. Cyba and ApoD may be potential targets of curcumin in the treatment of SNI.
Collapse
|
7
|
Raman spectroscopy and sciatic functional index (SFI) after low-level laser therapy (LLLT) in a rat sciatic nerve crush injury model. Lasers Med Sci 2022; 37:2957-2971. [PMID: 35503388 DOI: 10.1007/s10103-022-03565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Axonotmesis causes sensorimotor and neurofunctional deficits, and its regeneration can occur slowly or not occur if not treated appropriately. Low-level laser therapy (LLLT) promotes nerve regeneration with the proliferation of myelinating Schwann cells to recover the myelin sheath and the production of glycoproteins for endoneurium reconstruction. This study aimed to evaluate the effects of LLLT on sciatic nerve regeneration after compression injury by means of the sciatic functional index (SFI) and Raman spectroscopy (RS). For this, 64 Wistar rats were divided into two groups according to the length of treatment: 14 days (n = 32) and 21 days (n = 32). These two groups were subdivided into four sub-groups of eight animals each (control 1; control 2; laser 660 nm; laser 808 nm). All animals had surgical exposure to the sciatic nerve, and only control 1 did not suffer nerve damage. To cause the lesion in the sciatic nerve, compression was applied with a Kelly clamp for 6 s. The evaluation of sensory deficit was performed by the painful exteroceptive sensitivity (PES) and neuromotor tests by the SFI. Laser 660 nm and laser 808 nm sub-groups were irradiated daily (100 mW, 40 s, energy density of 133 J/cm2). The sciatic nerve segment was removed for RS analysis. The animals showed accentuated sensory and neurofunctional deficit after injury and their rehabilitation occurred more effectively in the sub-groups treated with 660 nm laser. Control 2 sub-group did not obtain functional recovery of gait. The RS identified sphingolipids (718, 1065, and 1440 cm-1) and collagen (700, 852, 1004, 1270, and 1660 cm-1) as biomolecular characteristics of sciatic nerves. Principal component analysis revealed important differences among sub-groups and a directly proportional correlation with SFI, mainly in the sub-group laser 660 nm treated for 21 days. In the axonotmesis-type lesion model presented herein, the 660 nm laser was more efficient in neurofunctional recovery, and the Raman spectra of lipid and protein properties were attributed to the basic biochemical composition of the sciatic nerve.
Collapse
|
8
|
de Souza LG, Hendler KG, Marcolino AM, Kuriki HU, Cardoso RB, de Cássia Registro Fonseca M, Barbosa RI. Photobiomodulation promotes neural regeneration when compared to simvastatin treatment in a sciatic nerve crush model. Lasers Med Sci 2021; 36:1591-1597. [PMID: 33210186 DOI: 10.1007/s10103-020-03176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
To determine whether the effects of photobiomodulation (PBM) were associated with the use of Simvastatin in the functional recovery from sciatic nerve in mice submitted to crush injury. Fifty Swiss mice (approximately 3 months old; average weight 40 g) were randomly divided into six groups: naive, sham, control, PBM (660 nm, 10 J/cm2; 30 mW; 0.6 J per day for 28 days; 0.06 cm2; 16.8 J total and 20 s), Simvastatin (20 mg/kg), and PBM/Simv (association of the two protocols). The sciatic functional index (SFI), thermal heat hyperalgesia, mechanical hyperalgesia, and thermographic evaluation were used as analyses. The evaluations were performed preoperatively and 7, 14, 21, and 28 days after the initial injury analyzed by two-way analysis of variance (ANOVA) for mixed models followed by the Bonferroni post-test. All groups except sham and naive presented an SFI compatible with severe peripheral nerve injury on the 7th day of evaluation. The PBM group presented better results in the SFI analysis (p < 0.001) on the 21st postoperative day compared to the control group. This benefit was maintained when compared to the Simvastatin (p < 0.001) and PBM/Simv groups (p < 0.01). The results of the thermal and mechanical hyperalgesia and thermography analyses were not significant (p > 0.05). The obtained results showed that PBM alone was more effective compared to Simvastatin alone or PBM combined with Simvastatin for sciatic nerve injury in mice.
Collapse
Affiliation(s)
- Luana Gabriel de Souza
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina/UFSC, Araranguá, Brazil
| | - Ketlyn Germann Hendler
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina/UFSC, Araranguá, Brazil
| | - Alexandre Márcio Marcolino
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina/UFSC, Araranguá, Brazil
| | - Heloyse Uliam Kuriki
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina/UFSC, Araranguá, Brazil
| | - Ramon Bauer Cardoso
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina/UFSC, Araranguá, Brazil
| | | | - Rafael Inácio Barbosa
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina/UFSC, Araranguá, Brazil.
- Laboratory of Assessment and Rehabilitation of Locomotor System, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, 88905-120, Brazil.
| |
Collapse
|
9
|
Lee JH, Carpena NT, Kim S, Lee MY, Jung JY, Choi JE. Photobiomodulation at a wavelength of 633 nm leads to faster functional recovery than 804 nm after facial nerve injury. JOURNAL OF BIOPHOTONICS 2021; 14:e202100159. [PMID: 34251083 DOI: 10.1002/jbio.202100159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
We analyzed the effects of photobiomodulation (PBM) of various wavelengths on regeneration of the facial nerve using in vitro and in vivo experimental models. We assessed the antioxidative effect of PBM in geniculate ganglion neurons irradiated with a diode laser at 633 nm, 780 nm and 804 nm. Wavelengths of 633 and 780 nm but not 804 nm inhibited cell death by oxidative stress. We assessed the effects of PBM on functional and morphologic recovery in rats divided into control, facial nerve damage (FND) and FND irradiated with a 633 nm or 804 nm lasers. Injured rats treated with 633-nm light had better facial palsy scores, larger axon diameter and higher expression of Schwann cells compared with the FND group. No positive results were observed in rats irradiated at 804-nm light. These findings indicate that 633-nm PBM promotes accelerated nerve regeneration and improved functional recovery in an injured facial nerve.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, South Korea
| | - Nathaniel T Carpena
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, South Korea
| | - Sehwan Kim
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae Yun Jung
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
| | - Ji Eun Choi
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
| |
Collapse
|
10
|
Li B, Wang X. Photobiomodulation enhances facial nerve regeneration via activation of PI3K/Akt signaling pathway-mediated antioxidant response. Lasers Med Sci 2021; 37:993-1006. [PMID: 34302577 PMCID: PMC8918185 DOI: 10.1007/s10103-021-03344-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/16/2021] [Indexed: 12/14/2022]
Abstract
Facial nerve dysfunction is a common clinical condition that leads to disfigurement and emotional distress in the affected individuals. This study aimed to evaluate whether photobiomodulation can enhance regeneration of crushed facial nerves and attempt to investigate the possible underlying mechanism of neuroprotective function and therapeutic target. Various parameters of photobiomodulation were assigned to the facial nerves and Schwann cells (SCs) separately during crushed injury in rats. Axonal regeneration, functional outcomes, and SC apoptosis, proliferation, and underlying mechanisms of action were evaluated by morphological, histopathological, and functional assessments, flow cytometry, western blotting, real-time PCR, and IncuCyte. The results showed that photobiomodulation improved axonal regeneration and functional recovery, and also promoted proliferation, and inhibited apoptosis of SCs, both of these were considered as the most effective parameters in 250mW group. In addition, the neuroprotective effects of photobiomodulation (500mW) were likely associated with oxidative stress-induced SC apoptosis via activation of the PI3K/Akt signaling pathway. Our results revealed that photobiomodulation significantly promoted axonal regeneration, functional recovery, and regeneration of the facial nucleus, and its mechanism was related to the up-regulation of the PI3K/Akt signaling pathway. These findings provide clear experimental evidence of photobiomodulation as an alternative therapeutic strategy for peripheral nerve damage.
Collapse
Affiliation(s)
- Bohan Li
- Department of Stomatology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Xiao Wang
- Department of Stomatology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
11
|
Alayat MSM, Basalamah MA, Elbarrany WGEAE, El Sawy NAM, Abdel-Kafy EM. Efficacy of multi-wave locked system laser therapy on nerve regeneration after crushing in Wister rats. J Phys Ther Sci 2021; 33:549-553. [PMID: 34219963 PMCID: PMC8245262 DOI: 10.1589/jpts.33.549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
[Purpose] To investigate the efficacy of the multi-wave locked system laser therapy on
the regeneration of peripheral nerve injuries by evaluating the functional,
electrophysiological, and morphological changes of the crushed sciatic nerve in Wistar
rats. [Materials and Methods] Sixty male Wistar rats (200–250 g) were randomly assigned to
control negative, control positive, or laser groups and subjected to no laser therapy or
crushing, to crushing without laser therapy, or crushing followed by multi-wave locked
system laser therapy five times/week for four weeks (power=1 W, energy
density=10 J/cm2, total energy=100 J), respectively. Functional,
electrophysiological, and morphometric analyses were performed before and 7, 15, 21, and
28 days after crushing. The sciatic functional index, compound motor action potential
amplitude, motor nerve conduction velocity, and nerve and myelin sheath diameters were
measured. [Results] The sciatic functional index value decreased significantly, while the
compound motor action potential amplitude, motor nerve conduction velocity, nerve
diameter, and myelin sheath diameter increased significantly in the laser group
post-treatment compared to the values in the control groups. [Conclusion] Multi-wave
locked system laser therapy was effective in accelerating the regeneration of crushed
sciatic nerves in Wistar rats.
Collapse
Affiliation(s)
- Mohamed Salaheldien Mohamed Alayat
- Physical Therapy Department, Faculty of Applied Medical Science, Umm Al-Qura University: 4888 Bathaa Qurish, Mecca, Mecca 21955, Saudi Arabia
| | | | | | | | - Ehab Mohamed Abdel-Kafy
- Physical Therapy Department, Faculty of Applied Medical Science, Umm Al-Qura University: 4888 Bathaa Qurish, Mecca, Mecca 21955, Saudi Arabia
| |
Collapse
|
12
|
Canever JB, Barbosa RI, Hendler KG, Neves LMSD, Kuriki HU, Júnior ASA, Fonseca MDCR, Marcolino AM. Effects of photobiomodulation on different application points and different phases of complex regional pain syndrome type I in the experimental model. Korean J Pain 2021; 34:250-261. [PMID: 34193632 PMCID: PMC8255157 DOI: 10.3344/kjp.2021.34.3.250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Complex regional pain syndrome type I (CRPS-I) consists of disorders caused by spontaneous pain or induced by some stimulus. The objective was to verify the effects of photobiomodulation (PBM) using 830 nm wavelength light at the affected paw and involved spinal cord segments during the warm or acute phase. METHODS Fifty-six mice were randomized into seven groups. Group (G) 1 was the placebo group; G2 and G3 were treated with PBM on the paw in the warm and acute phase, respectively; G4 and G5 treated with PBM on involved spinal cord segments in the warm and acute phase, respectively; G6 and G7 treated with PBM on paw and involved spinal cord segments in the warm and acute phase, respectively. Edema degree, thermal and mechanical hyperalgesia, skin temperature, and functional quality of gait (Sciatic Static Index [SSI] and Sciatic Functional Index [SFI]) were evaluated. RESULTS Edema was lower in G3 and G7, and these were the only groups to return to baseline values at the end of treatment. For thermal hyperalgesia only G3 and G5 returned to baseline values. Regarding mechanical hyperalgesia, the groups did not show significant differences. Thermography showed increased temperature in all groups on the seventh day. In SSI and SFI assessment, G3 and G7 showed lower values when compared to G1, respectively. CONCLUSIONS PBM irradiation in the acute phase and in the affected paw showed better results in reducing edema, thermal and mechanical hyperalgesia, and in improving gait quality, demonstrating efficacy in treatment of CRPS-I symptoms.
Collapse
Affiliation(s)
- Jaquelini Betta Canever
- Laboratory of Assesment and Rehabilitation of the Locomotor Apparatus, Department of Health Sciences, Center Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
| | - Rafael Inácio Barbosa
- Laboratory of Assesment and Rehabilitation of the Locomotor Apparatus, Department of Health Sciences, Center Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina, Araranguá, Brazil
| | - Ketlyn Germann Hendler
- Laboratory of Assesment and Rehabilitation of the Locomotor Apparatus, Department of Health Sciences, Center Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina, Araranguá, Brazil
| | - Lais Mara Siqueira das Neves
- Laboratory of Assesment and Rehabilitation of the Locomotor Apparatus, Department of Health Sciences, Center Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance of the Departament of Health Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Heloyse Uliam Kuriki
- Laboratory of Assesment and Rehabilitation of the Locomotor Apparatus, Department of Health Sciences, Center Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina, Araranguá, Brazil
| | | | - Marisa de Cassia Registro Fonseca
- Postgraduate Program in Rehabilitation and Functional Performance of the Departament of Health Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Márcio Marcolino
- Laboratory of Assesment and Rehabilitation of the Locomotor Apparatus, Department of Health Sciences, Center Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina, Araranguá, Brazil
| |
Collapse
|
13
|
Neves M, Tavares ALF, Reginato A, Kakihata CMM, Bertolini GRF, Ribeiro LFC. Low-Level Laser Therapy in Different Wavelengths on the Tibialis Anterior Muscle of Wistar Rats After Nerve Compression Injury. J Manipulative Physiol Ther 2020; 43:700-707. [PMID: 32896420 DOI: 10.1016/j.jmpt.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Traumatic injuries are common and may promote disruption of neuromuscular communication, triggering phenomena that lead to nerve degeneration and affect muscle function. A laser accelerates tissue recovery; however, the parameters used are varied, making it difficult to compare studies. The purpose of this study was to evaluate the effect of low-level laser therapy, at 660- and 830-nm wavelengths, on the tibialis anterior muscle of Wistar rats after sciatic nerve compression. METHODS Twenty animals were separated into 4 groups: control, sciatic nerve injury, lesion + 660-nm laser, and lesion + 830-nm laser. In the lesion groups, the right sciatic nerve was surgically exposed and compressed with hemostatic forceps for 30 seconds. After the third postoperative day, the groups with laser therapy were submitted to treatment for 2 weeks totaling 10 applications, performed directly on the surgical scar of the nerve injury. Grip strength was analyzed before and after the nerve injury and during the treatment period. The tibialis anterior muscle was processed for light microscopy, area measurement, smaller diameter, number of fibers, nuclei, and connective tissue. RESULTS The animals submitted to the injury experienced muscular atrophy and morphological changes in the number of muscle fibers and nuclei. In the connective tissue morphometry, there was a decrease in the treated groups compared with the untreated groups. CONCLUSION The laser treatment at different wavelengths showed no improvement in the tibialis anterior muscle of Wistar rats within the morphological and functional aspects evaluated.
Collapse
Affiliation(s)
- Morgana Neves
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Alana L F Tavares
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Aline Reginato
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Camila M M Kakihata
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Gladson R F Bertolini
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil.
| | - Lucinéia F C Ribeiro
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| |
Collapse
|
14
|
Sasso LL, de Souza LG, Girasol CE, Marcolino AM, de Jesus Guirro RR, Barbosa RI. Photobiomodulation in Sciatic Nerve Crush Injuries in Rodents: A Systematic Review of the Literature and Perspectives for Clinical Treatment. J Lasers Med Sci 2020; 11:332-344. [PMID: 32802295 DOI: 10.34172/jlms.2020.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective : The aim of the study was to perform a literature review to analyze the effect of photobiomodulation in experimental studies on peripheral nerve regeneration after sciatic nerve crush injury in rodents. Methods: A bibliographic search was performed in the electronic databases, including MEDLINE (PubMed), SCOPUS, and SciELO, from 2008 to 2018. Results: A total of 1912 articles were identified in the search, and only 19 fulfilled all the inclusion criteria. Along with the parameters most found in the manuscripts, the most used wavelengths were 660 nm and 830 nm, power of 30 and 40 mW, and energy density of 4 and 10 J/cm2 . For total energy throughout the intervention period, the lowest energy found with positive effects was 0.70 J, and the highest 1.141 J. Seventeen studies reported positive effects on nerve regeneration. The variables selected to analyze the effect were: Sciatic Functional Index (SFI), Static Sciatic Index (SSI), morphometric, morphological, histological, zymographic, electrophysiological, resistance mechanics and range of motion (ROM). The variety of parameters used in the studies demonstrated that there is yet no pre-determined protocol for treating peripheral nerve regeneration. Only two studies by different authors used the same power, energy density, beam area, and power density. Conclusion: It was concluded that the therapeutic window of the photobiomodulation presents a high variability of parameters with the wavelength (632.8 to 940 nm), power (5 to 170 mW) and energy density (3 to 280 J /cm2 ), promoting nerve regeneration through the expression of cytokines and growth factors that aid in modulating the inflammatory process, improving morphological aspects, restoring the functionality to the animals in a brief period.
Collapse
Affiliation(s)
- Letícia Lemes Sasso
- Department of Health Sciences, Federal University of Santa Catarina/UFSC - Araranguá, Brazil
| | - Luana Gabriel de Souza
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil
| | - Carlos Eduardo Girasol
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo/USP - Ribeirão Preto, Brazil
| | - Alexandre Márcio Marcolino
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil
| | | | - Rafael Inácio Barbosa
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil.,Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo/USP - Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Pelissari D, Ribeiro LDFC, Machado LGV, Neves M, Costa RM, Bertolini GRF. Comparação de diferentes comprimentos de onda do laser de baixa potência no sóleo de ratos Wistar após lesão nervosa. FISIOTERAPIA E PESQUISA 2020. [DOI: 10.1590/1809-2950/18019627022020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Os músculos esqueléticos podem ser afetados por lesões do sistema nervoso periférico, levando a fraqueza e atrofia muscular. Na tentativa de recuperar a funcionalidade dos músculos, existem vários recursos terapêuticos utilizados, dentre os quais o laser de baixa potência (LBP). Este estudo comparou o efeito do LBP em dois comprimentos de onda (660 nm e 830 nm), em características morfológicas do tecido muscular após axonotmese de nervos isquiáticos de ratos Wistar. Para tanto, foram utilizados 32 ratos Wistar, divididos em quatro grupos, sendo G1 (controle), G2 (lesão), G3 (lesão e tratamento com LBP de 660 nm) e G4 (lesão e tratamento com LBP de 830 nm). Os animais de G2, G3 e G4 foram submetidos à lesão do nervo isquiático e, três dias após a lesão, G3 e G4 realizaram tratamento com LBP de 660 nm e 830 nm, respectivamente. Após o tratamento, todos os animais foram eutanasiados e os músculos sóleos coletados para confecção das lâminas histológicas, visando a realização de análises morfológicas do tecido. Constatou-se que os animais submetidos à lesão sofreram alterações morfológicas na fibra, resultando em sua atrofia. Foi percebido também que o LBP com comprimento de onda de 830 nm apresentou ligeiros sinais de recuperação das características morfométricas analisadas.
Collapse
|
16
|
Andreo L, Ribeiro BG, Alves AN, Martinelli AS, Soldera CB, Horliana ACR, Bussadori SK, Fernandes KP, Mesquita‐Ferrari RA. Effects of Photobiomodulation with Low‐level Laser Therapy on Muscle Repair Following a Peripheral Nerve Injury in Wistar Rats. Photochem Photobiol 2020; 96:1124-1132. [DOI: 10.1111/php.13255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Lucas Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Beatriz G. Ribeiro
- Postgraduate Program in Rehabilitation Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Agnelo N. Alves
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Andréia S.A. Martinelli
- Postgraduate Program in Rehabilitation Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Carla B. Soldera
- Postgraduate Program in Rehabilitation Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Anna Carolina R.T. Horliana
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Kristianne P.S. Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Raquel A. Mesquita‐Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| |
Collapse
|
17
|
Alayat MSM, Basalamah MA, Elbarrany WGEAE, El-Sawy NAM, Abdel-Kafy EM, El-Fiky AAR. Dose-dependent effect of the pulsed Nd:YAG laser in the treatment of crushed sciatic nerve in Wister rats: an experimental model. Lasers Med Sci 2020; 35:1989-1998. [PMID: 32193821 DOI: 10.1007/s10103-020-02999-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The objective of the study was to investigate the efficacy of three energy densities 4, 10, and 50 J/cm2 of pulsed Nd:YAG laser for the treatment of crushed sciatic nerve in Wister rats by evaluating changes in the sciatic functional index and the electrophysiology.A total of 180 Wistar rats were involved in the study. Rats were randomly assigned to five groups. Rats were subjected to the sciatic nerve crushing. Control negative (CONT-ve), which received no crushing; control positive (CONT+ve), which received crushing with no laser; and HILT-4, HILT-10, and HILT-50 groups, which received pulsed Nd:YAG laser (10 Hz, 360 mJ/cm2) with energy densities 4, 10, and 50 J/cm2, respectively. The SFI, the amilitude of compound motor action potential (CMAP) and sciatic motor nerve conduction velocity (MNCV) were measured before and after seven, 14, and 21 days after crushing. For the SFI and electrophysiological analysis, repeated measures ANOVA is used, followed by Bonferroni's repeated-measures test. Statistical significance was set at p < 0.05. After one week, there was no significant difference in SFI, CMAP, and MNCV among the three laser groups with significant changes between them and CONT-ve and CONT+ve groups. There was a significant increase in either CMAP amplitude or MNCV after 14 days with significant decrease in the SFI after 21 days among all treatment groups. The pulsed Nd:YAG laser applied with energy densities 4, 10, and 50 J/cm2 significantly decreased the SFI and increased the CMAP and MNCV of the crushed sciatic nerve in Wister rats. Among laser doses, the difference in the rate of recovery in the electrophysiology was found after two weeks while in the SFI after three weeks. The improvement after the nerve injury was time and dose dependent.
Collapse
Affiliation(s)
| | | | | | | | - Ehab Mohamed Abdel-Kafy
- Physical Therapy Department, Faculty of Applied Medical Science, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amir Abdel-Raouf El-Fiky
- Physical Therapy Department, Faculty of Applied Medical Science, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
18
|
Hakimiha N, Dehghan MM, Manaheji H, Zaringhalam J, Farzad-Mohajeri S, Fekrazad R, Moslemi N. Recovery of inferior alveolar nerve by photobiomodulation therapy using two laser wavelengths: A behavioral and immunological study in rat. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111785. [PMID: 31954267 DOI: 10.1016/j.jphotobiol.2020.111785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Abstract
Postoperative sensory disturbances of inferior alveolar nerve (IAN) are major challenges in dental procedures. We aimed to investigate the effect of photobiomodulation therapy (PBMT) with 810 nm and 980 nm diode lasers on behavioral and immunological factors in a rat IAN crush model. Seventy-two rats were randomly assigned to the four groups of 810 nm laser (crush injury+810 nm laser; 6 J/cm2, 15 sessions, every 48 h), 980 nm laser (crush injury+980 nm laser; same protocol), control (crush injury without irradiation), and sham surgery (no crush injury and no irradiation). The neurosensory response of IAN was evaluated by Von Frey behavioral test before (baseline) and post-surgery in a period of one month. Changes of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), nuclear factor-kappa B (NF-κB), TNF-α, and IL-1β, were assessed on days 2 and 30 post injury. Data were analyzed for significant differences by repeated measures and one-way ANOVA (p < .05). One day after surgery, all rats subjected to nerve injury showed significant increase in the withdrawal threshold of von Frey test compared to the baseline (p = .02 for control and p = .03 for laser groups). The threshold gradually returned to the baseline scores in 810 nm, 980 nm, and control groups from days 11, 17, and 29, respectively. There was a significant lower withdrawal threshold in 810 nm and 980 nm laser groups compared to the control group in days 11 to 19 and 9 to 23, respectively. At both time points, the levels of NGF and BDNF were significantly higher in 810 nm laser group compared to the control group. There was a significant difference between laser and control groups regarding NF-κB expression (all p values<.001). TNF-α and IL-1β were significantly lower in laser groups compared to the control group (all p values < .001). PBMT with 810 and 980 nm diode laser protocol used in this study, promoted the neurosensory recovery of IAN after crush injury in rats. In addition, application of 810 nm diode laser was associated with more improvement in immunological responses compared to that of 980 nm laser.
Collapse
Affiliation(s)
- Neda Hakimiha
- Laser Research Center of Dentistry, Dental Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Homa Manaheji
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and ResearchNetwork (USERN), Tehran, Iran
| | - Neda Moslemi
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
The Effect of Four Weeks of Low-Level Laser Radiation (660 nm) on Movement Recovery and Fibroblasts Invasion. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.87225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Comparative effects of photobiomodulation therapy at wavelengths of 660 and 808 nm on regeneration of inferior alveolar nerve in rats following crush injury. Lasers Med Sci 2019; 35:413-420. [PMID: 31273571 DOI: 10.1007/s10103-019-02838-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to investigate the therapeutic effects of 660-nm and 880-nm photobiomodulation therapy (PBMT) following inferior alveolar nerve (IAN) crush injury. Following the nerve crush injuries of IAN, 36 Wistar rats were randomly divided into three groups as follows: (1) control, (2) 660-nm PBMT, and (3) 808-nm PBMT (GaAlAs laser, 100 J/cm2, 70 mW, 0.028-cm2 beam). PBMT was started immediately after surgery and performed once every 3 days during the postoperative period. At the end of the 30-day treatment period, histopathological and histomorphometric evaluations of tissue sections were made under a light and electron microscope. The ratio of the inner axonal diameter to the total outer axonal diameter (g-ratio) and the number of axons per square micrometer were evaluated. In the 808-nm PBMT group, the number of nerve fibers with suboptimal g-ratio ranges of 0-0.49 (p < 0.001) is significantly lower than expected, which indicates better rate of myelinization in the 808-nm PBMT group. The number of axons per square micrometer was significantly higher in the 808-nm PBMT group when compared with the control (p < 0.001) and 660-nm PBMT group (p = 0.010). The data and the histopathological investigations suggest that the PBMT with the 808-nm wavelength along with its settings was able to enhance IAN regeneration after nerve crush injury.
Collapse
|
21
|
Mirzaei A, Saberi-Demneh A, Gutknecht N, Ramezani G. The effect of low-level laser radiation on improving inferior alveolar nerve damage after sagittal split osteotomy: a systematic review. Lasers Med Sci 2019; 34:865-872. [DOI: 10.1007/s10103-019-02718-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|
22
|
Al-Shammari AM, Syhood Y, Al-Khafaji AS. Use of low-power He-Ne laser therapy to accelerate regeneration processes of injured sciatic nerve in rabbit. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019; 55:1. [PMID: 30679899 PMCID: PMC6320753 DOI: 10.1186/s41983-018-0047-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Photostimulation using low-power laser had been used for nervous repair with interesting results. This study aimed to evaluate the influence of 20 mW low-power He-Ne laser on the regeneration of a peripheral sciatic nerve after trauma using the Albino rabbit as an animal model for experimental treatment. Methods Six adult male rabbits were randomly assigned into two equal groups (control- and laser-treated). General anesthesia was administered intramuscularly, and exploration of the sciatic nerve was done in the lateral aspect of the legs. Complete longitudinal and reverse sections of the nerve were performed, which was followed by crushing of the neural sheath. Treatment was carried out directly after the trauma. Irradiation doses of low-level laser therapy (LLLT-31.5 J/cm2) with once a day application for 10 consecutive days and observed for 30 days. The animals were followed up for an extra 2 weeks. Two important factors were examined histopathology and functionality of the nerve. Results Compared to the control group, significant variations in regeneration were observed, including thicker nerve fibers, and more regular myelin layers in the treated group. Conclusions The results of the present study suggest that laser therapy may be a viable approach for nerve regeneration and repair.
Collapse
Affiliation(s)
- Ahmed Majeed Al-Shammari
- 1Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, 1001 Iraq
| | - Yahya Syhood
- 1Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, 1001 Iraq
| | - Ahmed S Al-Khafaji
- 2Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
23
|
Wang T, Ito A, Aoyama T, Nakahara R, Nakahata A, Ji X, Zhang J, Kawai H, Kuroki H. Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model: A comparison between sciatic functional index and kinematic analysis. PLoS One 2018; 13:e0208985. [PMID: 30540822 PMCID: PMC6291147 DOI: 10.1371/journal.pone.0208985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Elucidating whether there is a correlation between biomechanical functions and histomorphometric data in the rat sciatic nerve crush injury model would contribute to an accurate evaluation of the regeneration state without sacrificing animals. The gold standard for functional evaluation is the sciatic functional index (SFI) despite there being intrinsic shortcomings. Kinematic analysis is considered a reliable and sensitive approach for functional evaluation, most commonly assessed as ankle angle at various phases of a gait cycle. Studies utilizing the toe angle for functional evaluation are scarce, and changes in the toe angle following surgery remain unknown. The present study assessed correlations of ankle angle, toe angle and SFI with histomorphometric data, aiming to determine which parameters most accurately reflect changes in histomorphometric data over time. Six Lewis rats were designated as the control group. 30 animals received surgery, six of them were randomly selected on the first, second, third, fourth, and sixth week after surgery for measurements of ankle and toe angles in the “toe-off” phase, and for evaluation of SFI. Histomorphometric analysis were also performed, to determine the number of myelinated nerve fibers, diameters of myelinated nerve fibers, axon diameters, and myelin sheath thicknesses. Furthermore, we investigated changes in ankle angle, toe angle, SFI, and histomorphometric data over time, as well as correlations between ankle angle, toe angle, and SFI with histomorphometric data. The results revealed that changes in SFI, ankle angle, and toe angle highly correlate with histomorphometric data in the rat sciatic nerve crush injury model. Toe angle reflected changes in histomorphometric data with time more precisely than ankle angle or SFI did, and ankle angle was a better prognostic parameter than SFI.
Collapse
Affiliation(s)
- Tianshu Wang
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiang Ji
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jue Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Andreo L, Soldera CA, Ribeiro BG, Matos PRV, Sousa PB, Amorim WW, Horliana ACRT, Bussadori SK, Fernandes KPS, Mesquita‐Ferrari RA. Effects of Photobiomodulation on Functionality in Wistar Rats with Sciatic Nerve Injury. Photochem Photobiol 2018; 95:879-885. [DOI: 10.1111/php.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/30/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Lucas Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Carla A. Soldera
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| | | | | | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| | | | - Raquel Agnelli Mesquita‐Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences University Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| |
Collapse
|
25
|
de Almeida Melo Maciel Mangueira M, Maciel Mangueira N, Pereira Gama Filho O, Moysés de Oliveira M, Albuquerque Heluy R, Silveira L, Caparelli Moniz de Aragão Dáquer E. Biochemical changes in injured sciatic nerve of rats after low-level laser therapy (660 nm and 808 nm) evaluated by Raman spectroscopy. Lasers Med Sci 2018; 34:525-535. [PMID: 30244400 DOI: 10.1007/s10103-018-2627-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022]
Abstract
The aim of this study was to identify biochemical changes in sciatic nerve (SN) after crush injury and low-level laser therapy (LLLT) with 660 nm and 808 nm by Raman spectroscopy (RS) analysis. A number of 32 Wistar rats were used, divided into four groups (control 1, control 2, LASER 660 nm, and LASER 808 nm). All animals underwent surgical procedure of the SN and groups control 2, LASER 660 nm, and LASER 808 nm were submitted to SN crush damage (axonotmesis). The LLLT in the groups LASER 660 nm and LASER 808 nm was applied daily for 21 consecutive days (100 mW, 30 s, 133 J/cm2 fluence). The hind paw was removed and the SN was dissected and positioned on an aluminum support to collect dispersive Raman spectra (830 nm excitation, 30 s accumulation). To estimate the biochemical changes in the SN associated with LLLT, the principal component analysis (PCA) was applied. The Raman spectra of the sciatic nerve fragments showed peaks of the major biochemical components of the nerve, especially sphingolipids, phospholipids, glycoproteins, and collagen. The spectral features identified in some of the principal component loading vectors are referred to the biochemical elements present on the SN and were increased in the groups treated with LLLT, mainly lipids (sphingo and phospholipids) and proteins (collagen)-constituents of the myelin sheath. The RS was effective in identifying the biochemical differences in the SN after the crush injury, and LASER 660 nm was more efficient than the LASER 808 nm in cell proliferation and repair of the injured SN.
Collapse
Affiliation(s)
| | - Nilton Maciel Mangueira
- Department of Morphology, Universidade Federal do Maranhão - UFMA, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966, Bacanga, São Luís, Maranhão, 65080-805, Brazil.
| | - Ozimo Pereira Gama Filho
- Department of Morphology, Universidade Federal do Maranhão - UFMA, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966, Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Márcio Moysés de Oliveira
- Department of Morphology, Universidade Federal do Maranhão - UFMA, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966, Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Renato Albuquerque Heluy
- Department of Morphology, Universidade Federal do Maranhão - UFMA, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966, Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Landulfo Silveira
- Center for Innovation, Technology and Education - CITE, Universidade Anhembi Morumbi - UAM, Parque Tecnológico de São José dos Campos, Estrada Dr. Altino Bondensan, 500, São José dos Campos, São Paulo, 12247-016, Brazil
| | - Egas Caparelli Moniz de Aragão Dáquer
- Physiological Sciences Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Avenida Professor Manuel de Abreu, 444/ 5° andar, Vila Isabel, Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| |
Collapse
|
26
|
Rosso MPDO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL. Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. Bioengineering (Basel) 2018; 5:bioengineering5020044. [PMID: 29890728 PMCID: PMC6027218 DOI: 10.3390/bioengineering5020044] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Photobiomodulation therapy (PBMT) has been investigated because of its intimate relationship with tissue recovery processes, such as on peripheral nerve damage. Based on the wide range of benefits that the PBMT has shown and its clinical relevance, the aim of this research was to carry out a systematic review of the last 10 years, ascertaining the influence of the PBMT in the regeneration of injured peripheral nerves. The search was performed in the PubMed/MEDLINE database with the combination of the keywords: low-level laser therapy AND nerve regeneration. Initially, 54 articles were obtained, 26 articles of which were chosen for the study according to the inclusion criteria. In the qualitative aspect, it was observed that PBMT was able to accelerate the process of nerve regeneration, presenting an increase in the number of myelinated fibers and a better lamellar organization of myelin sheath, besides improvement of electrophysiological function, immunoreactivity, high functionality rate, decrease of inflammation, pain, and the facilitation of neural regeneration, release of growth factors, increase of vascular network and collagen. It was concluded that PBMT has beneficial effects on the recovery of nerve lesions, especially when related to a faster regeneration and functional improvement, despite the variety of parameters.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
| | - Daniela Vieira Buchaim
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
- Medical School, Discipline of Neuroanatomy, University Center of Adamantina (UNIFAI), Rua Nove de Julho, 730, Centro, Adamantina, São Paulo CEP 17800-000, Brazil.
| | - Natália Kawano
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| | - Gabriela Furlanette
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| |
Collapse
|
27
|
Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci 2018; 33:1341-1349. [DOI: 10.1007/s10103-018-2494-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
|
28
|
Effects of photobiomodulation on experimental models of peripheral nerve injury. Lasers Med Sci 2017; 32:2155-2165. [DOI: 10.1007/s10103-017-2359-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
29
|
Ranjbar R, Takhtfooladi MA. The effects of photobiomodulation therapy on Staphylococcus aureus infected surgical wounds in diabetic rats. A microbiological, histopathological, and biomechanical study. Acta Cir Bras 2017; 31:498-504. [PMID: 27579876 DOI: 10.1590/s0102-865020160080000001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the effects of photobiomodulation therapy (PBMT) at 685 nm on diabetic wound healing in rats suffering from bacterial infection induced by Staphylococcus aureus (S. aureus). METHODS Thirty streptozotocin-induced diabetic rats were allocated into two groups: control and PBMT. A 4-cm full-thickness linear-incision was made on the dorsal midline and was contaminated with S. aureus. The wounds in the PBMT group were irradiated daily for 5 consecutive days, starting 3 days after the induction and always in the mornings. RESULTS The result revealed that PBMT resulted in a significant decrease in S. aureus CFU in the PBMT group in comparison to the control group (P<0.05). The length of wounds, in the 2nd and 3rd weeks, in the PBMT group were significantly shorter compared to the control group (P<0.05). PBMT caused a significant increase in the histological parameters in comparison to the control group (P<0.05). Moreover, PBMT significantly increased the breaking strength of the surgical scars produced in the skin of the PBMT group when compared to the control group (P<0.05). CONCLUSION Photobiomodulation therapy may be useful in the management of wound infection through a significant bacterial growth inhibition and an acceleration of wound healing process.
Collapse
Affiliation(s)
- Reza Ranjbar
- Full professor, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Design and supervised all phases of the study
| | - Mohammad Ashrafzadeh Takhtfooladi
- PhD, Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran. Conception and design of the study; acquisition, analysis and interpretation of data; statistical analysis; manuscript writing
| |
Collapse
|
30
|
Ziago EKM, Fazan VPS, Iyomasa MM, Sousa LG, Yamauchi PY, da Silva EA, Borie E, Fuentes R, Dias FJ. Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci 2017; 32:369-378. [PMID: 28063018 DOI: 10.1007/s10103-016-2126-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023]
Abstract
The objective of this study was to evaluate three energy densities of low-level laser therapy (LLLT, GaAlAs, 780 nm, 40 mW, 0.04 cm2) for the treatment of lesions to peripheral nerves using the sciatic nerve of rats injured via crushing model (15 kgf, 5.2 MPa). Thirty Wistar rats (♂, 200-250 g) were divided into five groups (n = 6): C-control, not injured, and irradiated; L0-injured nerve without irradiation; L4-injured nerve irradiated with LLLT 4 J/cm2 (0.16 J); L10-injured nerve irradiated with LLLT 10 J/cm2 (0.4 J); and L50-injured nerve irradiated with LLLT 50 J/cm2 (2 J). The animals were sacrificed 2 weeks after the injury via perfusion with glutaraldehyde (2.5%, 0.1 M sodium cacodylate buffer). The nerve tissue was embedded in historesin, cut (3 μm), mounted on slides, and stained (Sudan black and neutral red). The morphological and quantitative analysis (myelin and blood capillary densities) and morphometric parameters (maximum and minimum diameters of nerve fibers, axon diameter, G-ratio, myelin sheath thickness) were assessed using the ImageJ software. ANOVA (parametric) or Kruskal-Wallis (nonparametric) tests were used for the statistical analysis. Groups L0, L4, L10, and L50 exhibited diminished values of all the quantitative and morphometric parameters in comparison to the control group. The morphological, quantitative, and morphometric data revealed improvement after injury in groups L4, L10, and L50 (irradiated groups) compared to the injured-only group (L0); the best results, in general, were observed for the L10 group after 15 days of nerve injury.
Collapse
Affiliation(s)
| | | | | | - Luiz Gustavo Sousa
- School of Dentistry, University of São Paulo, USP, Ribeirão Preto, Brazil
| | | | | | - Eduardo Borie
- Department of Integral Dentistry, CICO - Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Ramón Fuentes
- Department of Integral Dentistry, CICO - Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Fernando José Dias
- School of Medicine, University of São Paulo, USP, Ribeirão Preto, Brazil. .,Department of Integral Dentistry, CICO - Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
31
|
Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, Dong X, Qian J, Sun H. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 2016; 32:169-180. [PMID: 27864646 DOI: 10.1007/s10103-016-2099-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca2+] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca2+) stores. Blockade of Ca2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca2+-ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengping Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenhao Li
- Cadet Brigade, Fourth Military Medical University, Xi'an, 710032, China
| | - Siguo Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jian Zhao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Xin Dong
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jixian Qian
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| | - Honghui Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
32
|
Effect of photobiomodulation on ischemia/reperfusion-induced renal damage in diabetic rats. Lasers Med Sci 2016; 31:1943-1948. [DOI: 10.1007/s10103-016-2073-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/05/2016] [Indexed: 10/24/2022]
|
33
|
Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 162:577-582. [PMID: 27475781 DOI: 10.1016/j.jphotobiol.2016.07.022] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
CONTEXT Identification of factors that enhance the proliferation of human dental mesenchymal stem cells (DMSCs) is vital to facilitate tissue regeneration. The role of low-level laser irradiation (LLLI) on proliferation of human DMSCs has not been well established. OBJECTIVE To assess the effect of LLLI on proliferation of human DMSCs when applied in-vitro. DATA SOURCES Electronic search of literature was conducted (2000-2016) on PubMed, Web of Science, and Scopus databases. Search terms included low-level light therapy, low-level laser irradiation, low-level light irradiation, LLLT, humans, adolescent, adult, cells, cultured, periodontal ligament, dental pulp, stem cells, dental pulp stem cells, mesenchymal stem cells, periodontal ligament stem cell, deciduous teeth, cell proliferation, adult stem cells, radiation, and proliferation. RESULTS The literature search identified 165 studies with 6 being eligible for inclusion; all used diode lasers; 5 studies used InGaAIP diode lasers; 4 used 660nm, and the other two applied 810nm or 980nm wavelength LLLI. The distance between the DMSCs and the laser spot ranged between 0.5mm to 2mm. The time intervals of cell proliferation analysis ranged from 0h to 7days after LLLI. After 660nm LLLI, an increase in the DMSC's proliferation was reported [DMSCs extracted from dental pulp of deciduous teeth (two irradiations, 3J/cm(2), 20mW was more effective than 40mW), adult teeth (two irradiations, 0.5 and 1.0J/cm(2), 30mW), and from adult periodontal ligament (two irradiations, 1.0J/cm(2) was more effective than 0.5J/cm(2), 30mW)]. Similarly, an increase in the proliferation of DMSCs extracted from dental pulp of adult teeth was reported after 810nm LLLI (7 irradiations in 7days, 0.1 and 0.2J/cm(2), 60mW) or 980nm LLLI (single irradiation, 3J/cm(2), 100mW). However, 660nm LLLI in one study did not increase the proliferation of DMSCs (single irradiation, energy densities of 0.05, 0.30, 7, and 42J/cm(2), 28mW). CONCLUSION There is limited evidence that in-vitro LLLI (660/810/980nm, with energy densities of 0.1-3J/cm(2)) increases the proliferation of DMSCs. Considering the limited evidence and their method heterogeneity it is difficult to reach a firm conclusion. Further research is necessary to identify the optimal characteristics of the LLLI setting (wave length, energy density, power output, frequency/duration of irradiations, distance between the cells and the laser spot/probe) to increase proliferation of DMSCs, and assess its impact on replicative senescence, as well as determine feasibility of the use in the clinical setting.
Collapse
Affiliation(s)
- Ali Borzabadi-Farahani
- Orthodontics, Department of Clinical Sciences and Translational Medicine, Univeristy of Rome Tor Vergata, Rome, Italy; Warwick Medical School, University of Warwick, Coventry, and Specialist Orthodontic Practice, London, United Kingdom.
| |
Collapse
|
34
|
Takhtfooladi MA, Sharifi D. A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits. Lasers Med Sci 2015; 30:2319-24. [PMID: 26415928 DOI: 10.1007/s10103-015-1813-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 09/21/2015] [Indexed: 01/22/2023]
Abstract
This study aimed at evaluating the effects of red and blue light-emitting diodes (LED) and low-level laser (LLL) on the regeneration of the transected sciatic nerve after an end-to-end neurorrhaphy in rabbits. Forty healthy mature male New Zealand rabbits were randomly assigned into four experimental groups: control, LLL (680 nm), red LED (650 nm), and blue LED (450 nm). All animals underwent the right sciatic nerve neurotmesis injury under general anesthesia and end-to-end anastomosis. The phototherapy was initiated on the first postoperative day and lasted for 14 consecutive days at the same time of the day. On the 30th day post-surgery, the animals whose sciatic nerves were harvested for histopathological analysis were euthanized. The nerves were analyzed and quantified the following findings: Schwann cells, large myelinic axons, and neurons. In the LLL group, as compared to other groups, an increase in the number of all analyzed aspects was observed with significance level (P < 0.05). This finding suggests that postoperative LLL irradiation was able to accelerate and potentialize the peripheral nerve regeneration process in rabbits within 14 days of irradiation.
Collapse
Affiliation(s)
| | - Davood Sharifi
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Ashrafzadeh Takhtfooladi M, Ashrafzadeh Takhtfooladi H, Sedaghatfar H, Shabani S. Effect of low-level laser therapy on lung injury induced by hindlimb ischemia/reperfusion in rats. Lasers Med Sci 2015; 30:1757-62. [PMID: 26155904 DOI: 10.1007/s10103-015-1786-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/30/2015] [Indexed: 01/14/2023]
Abstract
To investigate the effect of low-level laser therapy (LLLT 650 nm) on the lung remote organ injury induced by hindlimb ischemia/reperfusion (I/R). The experiments were performed on 50 healthy mature male Wistar rats weighing mean 230 ± 20 g. The rats were randomly allocated into five equal groups as follows: normal group (animals nonmanipulated), sham group (operated with no ischemia), laser group (animals nonmanipulated and irradiated with laser), I/R group, and I/R + LLLT group. Rats were prepared for sterile surgery, and then, right hindlimbs were subjected to I/R induced by the femoral artery occlusion for duration of 120 min, followed by a 60-min reperfusion. The LLLT (K30 handheld probe, AZOR, Technica, Russia, 650 nm, 30 mW, surface area = 1 cm(2), 60 S/cm(2), energy density = 1.8 J/cm(2)) was carried out by irradiating the rats over a unique point on the skin over the right upper bronchus for 5 and 15 min after initiating reperfusion for 3 min. At the end of the trial, rats were euthanized under deep anesthesia and the right lung tissues were removed. Myeloperoxidase (MPO) and superoxide dismutase (SOD) activities and nitric oxide (NO), malondialdehyde (MDA), and glutathione (GSH) levels were measured in the lung tissues. The tissue samples were further examined histopathologically under light microscopy. It was found that I/R elevated MPO activity, MDA, and NO levels accompanied by a reduction in SOD activities and GSH levels (P < 0.05). LLLT restored MDA and NO levels, MPO and SOD activity, GSH levels, and lung injury scores (P < 0.05). In light of these findings, the LLLT has alleviated the lung tissue injuries after skeletal muscle I/R in this experimental model.
Collapse
|