1
|
Ravera S, Farsetti E, Maura G, Marcoli M, Bozzo M, Cervetto C, Amaroli A. 810-nm Photobiomodulation Evokes Glutamate Release in Normal and Rotenone-Dysfunctional Cortical Nerve Terminals by Modulating Mitochondrial Energy Metabolism. Cells 2025; 14:67. [PMID: 39851493 PMCID: PMC11764165 DOI: 10.3390/cells14020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
The dysfunction of mitochondria, the primary source of cellular energy and producer of reactive oxygen species (ROS), is associated with brain aging and neurodegenerative diseases. Scientific evidence indicates that light in the visible and near-infrared spectrum can modulate mitochondrial activity, a phenomenon known in medicine as photobiomodulation therapy (PBM-t). The beneficial effects of PBM-t on dementia and neurodegeneration have been reviewed in the literature. However, the molecular mechanisms underlying these findings have yet to be fully elucidated. This study investigates the mechanism behind dose-dependent glutamate release in nerve terminals after irradiation with 810 nm, 1 W for 60 s continuous, 1 cm2, 1 W/cm2, 60 J, 60 J/cm2 (810 nm-1 W) or 810 nm, 0.1 W for 60 s continuous, 1 cm2, 0.1 W/cm2, 6 J, 6 J/cm2 (810 nm-0.1 W), focusing on mitochondrial activities. The results show that PBM modulated the mitochondrial metabolism of cortical nerve terminals and supported a power-dependent increase in oxidative phosphorylation (OxPhos) activity when stimulated with pyruvate plus malate (P/M) or succinate (succ) as respiratory substrates. The PBM-induced increase in OxPhos was sensitive to adding rotenone (Complex I inhibitor) and antimycin A (Complex III inhibitor) when synaptosomes were stimulated with P/M, but only to antimycin A when stimulated with succ. This allowed us to observe that the glutamate efflux, disrupted in the presence of rotenone, was partially restored by PBM due to the increase in the OxPhos pathway led by Complex II. This evidence suggests that PBM, acting on mitochondria, could facilitate physiological communication within the neuron-astrocyte network through vesicular glutamate release, potentially regulating healthy brain function and brain dysfunction.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, 16148 Genova, Italy;
| | - Guido Maura
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (G.M.); (M.M.); (M.B.)
| | - Manuela Marcoli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (G.M.); (M.M.); (M.B.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (G.M.); (M.M.); (M.B.)
| | - Chiara Cervetto
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, 16148 Genova, Italy;
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- BIO-Photonics Overarching Research Laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy
| |
Collapse
|
2
|
Stigliani S, Ravera S, Maccarini E, Rizzo C, Massarotti C, Anserini P, Bozzo M, Amaroli A, Scaruffi P. The power of 810 nm near-infrared photobiomodulation therapy for human asthenozoospermia. Sci Rep 2024; 14:26819. [PMID: 39501019 PMCID: PMC11538380 DOI: 10.1038/s41598-024-77823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Sperm motility is a crucial factor in male fertility. Photobiomodulation (PBM) has been reported to increase sperm motility, but a consistent approach suitable for identifying standardizable protocols is lacking. We collected asthenozoospermic (n = 70) and normozoospermic (n = 20) semen. The asthenozoospermic samples were irradiated with an 810 nm diode laser, in continuous wave mode, at 0.25 W, 0.5 W, 1 W and 2 W for 60 s on a circular area of 1 cm2 through a novel handpiece with an innovative flat-top profile. Sperm motility was assessed immediately, after 30 and 60 min. A sample size calculator, unpaired t-test and one-way ANOVA with post-hoc Tukey HSD tests were used for statistics. One and 2 W were the most effective outputs in increasing progressive motility compared to control (p < 0.001). The maximum effect was immediately after 1 W-PBM (p < 0.001) and decreased after 60 min (p < 0.001). Time physiologically decreased vitality (p < 0.001), but less in the 1 W-PBM samples (p < 0.05). 1 W-PBM did not affect chromatin condensation. Asthenozoospermic samples displayed an impairment of 80% in oxygen consumption and ATP production and a slight inefficiency of oxidative phosphorylation compared to normozoospermic samples (p < 0.001). 1 W-PBM partially restored the functionality of aerobic metabolism (p < 0.001) by recovery of oxidative phosphorylation efficiency. PBM did not affect lactate dehydrogenase (glycolysis pathway). No irradiated samples increased accumulated malondialdehyde, a marker of lipidic peroxidation. In conclusion, PBM improves progressive motility in asthenozoospermia through increased mitochondrial energetic metabolism without harmful oxidative stress.
Collapse
Affiliation(s)
- Sara Stigliani
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Elena Maccarini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Camilla Rizzo
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Massarotti
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Paola Anserini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Bozzo
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Andrea Amaroli
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy.
| | - Paola Scaruffi
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
3
|
Amaroli A, Clemente Vargas MR, Pasquale C, Raffetto M, Ravera S. Photobiomodulation on isolated mitochondria at 810 nm: first results on the efficiency of the energy conversion process. Sci Rep 2024; 14:11060. [PMID: 38744931 PMCID: PMC11094005 DOI: 10.1038/s41598-024-61740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
In this paper the photobiomodulation on isolated mitochondria of bovine liver is studied as a thermodynamic process of conversion of energy. This analysis is conducted by considering a particular set-up for the photobiomodulation experiments of interest. It allows, in particular, the computation of the electromagnetic field and the related energetic quantities in the stimulated organelles. The measurements of the excess of biochemical power density produced by the illuminated mitochondria are performed at regular time intervals after the experiments. The calculations and the measurements finally allow us to obtain the first results on the efficiency of the process of conversion of electromagnetic energy into excess of biochemical energy released by the isolated organelles.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Mario Rene Clemente Vargas
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia 11a, 16145, Genoa, Italy
| | - Claudio Pasquale
- Department of Mechanical, Energy, Management and Transport Engineering, University of Genova, Via Opera Pia 15, 16145, Genoa, Italy
| | - Mirco Raffetto
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia 11a, 16145, Genoa, Italy.
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, 16132, Genoa, Italy
| |
Collapse
|
4
|
Agbele AT, Dehpour AR, Jafari RM, Mahdavi SRM, Elyassi A, Seydi M, Bagheri M, Ala M, Roudsari BA, Hejazi M. Development and Application of Prototype System Based on Light-Emitting Diode Arrays (660 nm) with a Top Hat Beam Profile in Order to Optimize Photobiomodulation Protocols for Treatment of Radiation-Induced Oral Mucositis in Rats. Photobiomodul Photomed Laser Surg 2023; 41:622-631. [PMID: 37890115 DOI: 10.1089/photob.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Background: Oral mucositis (OM) is a common adverse effect of radiation to the head and neck. Recent research has shown that extra oral photobiomodulation (EO-PBM) reduces the severity of OM. However, appropriate EO-PBM therapy parameters for OM severity reduction have not been documented. Objective: This work aims to optimize EO-PBM radiation parameters for lowering the severity of radiation-induced OM in rats by establishing a photobiomodulation (PBM) treatment system based on light-emitting diode arrays with top-hat beam profile. Methods: The 36 rats are separated into 2 control groups and 4 groups receiving PBM treatment. The PBM groups are exposed to irradiance between 4 and 24 J/cm2 at 660 nm. The cheek pouch mucosa is removed after scarification for biochemical and histological examination. Student's t-test, and one-way analysis of variance (ANOVA) followed by Tukey's Multiple were applied to compare the statistical significance of differences between control groups and PBM treatment groups. Results: Statistical analysis reveals that PBM irradiation at 12 J/cm2 (200 sec) with a flatness of 0.8 and a diameter of 3 cm substantially decreased the level of inflammatory cytokines compared with the positive control group. Conclusions: Our results indicate that the designed treatment PBM system is capable of delivering the optical parameters necessary for therapeutic treatment.
Collapse
Affiliation(s)
- Alaba Tolulope Agbele
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabi Mehdi Mahdavi
- Department of Cell Biology and Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Elyassi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Seydi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bagheri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arji Roudsari
- Department of Cell Biology and Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Marjaneh Hejazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
de Andrade ALM, da Silva LP, Parizotto NA, Brassolatti P, Liebano RE, Marques AP. Effect of photobiomodulation on the behaviour of mesenchymal stem cells in three-dimensional cultures. Lasers Med Sci 2023; 38:221. [PMID: 37749444 DOI: 10.1007/s10103-023-03883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Photobiomodulation (PBM) has been proposed as a strategy to improve the regenerative capacity of human adipose-derived stem cells (hASCs). Yet, this effect has been proved in 2D culture conditions. To analyze the effect of different doses of laser irradiation (660 nm) with different levels of energy (1 J, 2 J and 6 J) on hASCs cultured at 2D and 3D conditions. We used gellan gum spongy-like hydrogels as a biomaterial to 3D culture hASCs. Different doses (1-7 daily irradiations) and energy levels (1-6 J) of PBM were applied, and the metabolic activity, viability, proliferation, and release of ROS and IL-8 was evaluated up to 7 days. In 3D, cell proliferation increased at high energy (6 J) and after a single dose of irradiation, while in 2D, metabolic activity and proliferation was enhanced only after 3 doses and independently of the energy. More than 1 dose was needed to promote ROS secretion both in 2D and 3D culture conditions. Interestingly, a decrease of IL-8 secretion was detected only in 3D after 3-7 daily irradiations. Overall, hASCs response to PBM was not only dependent on the energy level and the number of applied stimuli, but also on the in vitro culture conditions.
Collapse
Affiliation(s)
- Ana Laura Martins de Andrade
- Physiotherapeutic Resources Laboratory, Post-Graduate Program in Physiotherapy, Department of Physiotherapy, Federal of University São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program in Biomedical Engineering, Department of Biomedical Engineering, University Brazil, Campus Itaquera, Rua Carolina Fonseca, 584, Vila Santana, 08230030, São Paulo, SP, Brazil
| | - Lucília Pereira da Silva
- 3B's Research Group, Biomaterials, Biodegradable and Biomimetics, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| | - Nivaldo Antonio Parizotto
- Physiotherapeutic Resources Laboratory, Post-Graduate Program in Physiotherapy, Department of Physiotherapy, Federal of University São Carlos, São Carlos, São Paulo, Brazil.
- Post-Graduate Program in Biomedical Engineering, Department of Biomedical Engineering, University Brazil, Campus Itaquera, Rua Carolina Fonseca, 584, Vila Santana, 08230030, São Paulo, SP, Brazil.
| | - Patrícia Brassolatti
- Department of Morphology and Pathology, Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Richard Eloin Liebano
- Physiotherapeutic Resources Laboratory, Post-Graduate Program in Physiotherapy, Department of Physiotherapy, Federal of University São Carlos, São Carlos, São Paulo, Brazil
| | - Alexandra Pinto Marques
- 3B's Research Group, Biomaterials, Biodegradable and Biomimetics, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Cervetto C, Amaroli A, Amato S, Gatta E, Diaspro A, Maura G, Signore A, Benedicenti S, Marcoli M. Photons Induce Vesicular Exocytotic Release of Glutamate in a Power-Dependent Way. Int J Mol Sci 2023; 24:10977. [PMID: 37446155 DOI: 10.3390/ijms241310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia-IIT, Via Morego 30, 16133 Genova, Italy
- Biophysics Institute, National Research Council-CNR, Via de Marini, 6, 16149 Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moskow, Russia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
7
|
Cronshaw M, Parker S, Grootveld M, Lynch E. Photothermal Effects of High-Energy Photobiomodulation Therapies: An In Vitro Investigation. Biomedicines 2023; 11:1634. [PMID: 37371729 DOI: 10.3390/biomedicines11061634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study was to investigate photothermal aspects of photobiomodulation therapies (PBMT) in vitro to assist in the development of safe clinical parameters with respect to higher-power devices with large surface applicators. Laser wavelengths in the range of 650 nm-1064 nm were investigated using a thermal camera. Thermographic measures of surface and sub-surface temperature variations of similar lean porcine muscle tissue samples were recorded for a series of calibrated experiments. A thermal comparison was then made between Flat-top and Gaussian beam spatial distribution devices. Outcome data were subjected to statistical analysis using an ANOVA model. Results acquired at similar parameters of irradiance indicated that the application of the 980 nm wavelength was associated with the highest rise in temperature, which decreased with other wavelengths in the order 980 > 1064 ≈ 650 >>> 810 nm (p < 5 × 10-20). All wavelengths assessed were associated with a significant temperature increase, and with the exception of 810 nm, all exceeded the threshold of a 6 °C rise within the prescribed parameter limits. Optical scanning by movement of the applied source over a relevant area was found to offer effective mitigation of these temperature increases. An extended discussion is presented, analysing the clinical significance of the study outcomes. Recommendations are made within the limits of this in vitro study in order to assist future clinical investigations.
Collapse
Affiliation(s)
- Mark Cronshaw
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
8
|
Yong J, Gröger S, Wu Z, Ruf S, Ye Y, Chen X. Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review. Bioengineering (Basel) 2023; 10:bioengineering10030371. [PMID: 36978762 PMCID: PMC10045842 DOI: 10.3390/bioengineering10030371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Regenerative endodontic procedures (REPs) were used to recover the dental pulp’s vitality in order to avoid the undesirable outcomes of conventional endodontic treatment and to promote dentinal formation, especially for immature permanent teeth. Photobiomodulation therapy (PBMT) exhibits photobiological and photochemical effects for improving the root canal’s environmental conditions by compensating for oxidative stress and increasing the blood supply to implanted stem cells and improving their survival. Basic research has revealed that PBMT can modulate human dental pulp stem cells’ (hDPSCs) differentiation, proliferation, and activity, and subsequent tissue activation. However, many unclear points still remain regarding the mechanisms of action induced by PBMT in REPs. Therefore, in this review, we present the applications of laser and PBMT irradiation to the procedures of REPs and in endodontics. In addition, the effects of PBMT on the regenerative processes of hDPSCs are reviewed from biochemical and cytological perspectives on the basis of the available literature. Furthermore, we consider the feasibility of treatment in which PBMT irradiation is applied to stem cells, including dental pulp stem cells, and we discuss research that has reported on its effect.
Collapse
Affiliation(s)
- Jiawen Yong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence:
| |
Collapse
|
9
|
Amaroli A, Tassara E, Ferrando S, Aicardi S, Pasquale C, Giovine M, Bertolino M, Zekiy A, Pozzolini M. Near-Infrared 810 nm Light Affects Porifera Chondrosia reniformis (Nardo, 1847) Regeneration: Molecular Implications and Evolutionary Considerations of Photobiomodulation-Animal Cell Interaction. Int J Mol Sci 2022; 24:ijms24010226. [PMID: 36613670 PMCID: PMC9820676 DOI: 10.3390/ijms24010226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chemotrophic choice as a metabolic source of energy has characterised animal cell evolution. However, light interactions with animal cell photoacceptors that are able to increase energetic metabolism (photo-biomodulation (PBM)) have been previously described. In the present study, we cut three specimens of Chondrosia reniformis into four equal parts (12 fragments), and we irradiated the regenerating edge of six fragments with the previously characterised 810 nm near-infrared light, delivered at 1 W, 60 J/cm2, 1 W/cm2, and 60 J in a continuous-wave mode for 60 s through a flat-top hand-piece with a rounded spot-size area of 1 cm2. Six fragments were irradiated with 0 W for 60 s as the controls. We performed irradiation at the time 0 h and every 24 h for a total of five administrations. We monitored the regeneration process for five days (120 h) in aquaria by examining the macroscopic and histological changes. We analysed the gene expression profile of the inflammatory processes, apoptosis, heat stress, growth factors, and collagen production and determined oxidative stress enzyme activity and the total prokaryotic symbiont content. PBM sped up C. reniformis regeneration when compared to the controls. Particularly, transforming growth factor TGF3 and TGF6 upregulation during the early phase of regeneration and TGF5 upregulation 120 h postinjury in the irradiated samples supports the positive effect of PBM in sponge tissue recovery. Conversely, the expression of TGF4, a sponge fibroblast growth factor homologue, was not affected by irradiation, indicating that multiple, independent pathways regulate the TGF genes. The results are consistent with our previous data on a wide range of organisms and humans, suggesting that PBM interaction with primary and secondary cell targets has been conserved through the evolution of life forms.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: (A.A.); (M.P.)
| | - Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Stefano Aicardi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
- Correspondence: (A.A.); (M.P.)
| |
Collapse
|
10
|
Lazăr L, Manu DR, Dako T, Mârțu MA, Suciu M, Ormenișan A, Păcurar M, Lazăr AP. Effects of Laser Application on Alveolar Bone Mesenchymal Stem Cells and Osteoblasts: An In Vitro Study. Diagnostics (Basel) 2022; 12:diagnostics12102358. [PMID: 36292047 PMCID: PMC9600660 DOI: 10.3390/diagnostics12102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells isolated from the bone marrow have a great differentiation potential, being able to produce many cell lines, including osteoblasts. Osteoblasts have an important role in bone remodeling by actively participating in the maturation and mineralization of the extracellular matrix. The aim of this study was to determine the effect of laser application on the viability and proliferation of osteoblasts. Methods: Alveolar bone was harvested from 8 patients and placed into a culture medium to induce proliferation of mesenchymal stem cells. These were differentiated into osteoblasts in special conditions. The cells from each patient were split into two groups, one was treated using a 980 nm laser (1W output power, pulsed mode, 20 s, 50 mm distance) (laser “+”) and the other one did not receive laser stimulation (laser “-”). Results: Using the confocal microscope, we determined that the cells from the laser “+” group were more active when compared to the laser “-” group. The number of cells in the laser “+” group was significantly greater compared to the laser “-” group as the ImageJ-NIH software showed (p = 0.0072). Conclusions: Laser application increases the proliferation rate of osteoblasts and intensifies their cellular activity.
Collapse
Affiliation(s)
- Luminița Lazăr
- Department of Periodontology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Timea Dako
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
- Correspondence: (T.D.); (M.-A.M.); Tel.: +40-740629857 (T.D.)
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (T.D.); (M.-A.M.); Tel.: +40-740629857 (T.D.)
| | - Mircea Suciu
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Alina Ormenișan
- Department of Oral and Maxillofacial Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Mariana Păcurar
- Department of Orthodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Ana-Petra Lazăr
- Institution Organizing University Doctoral Studies (I. O. S. U. D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureş, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| |
Collapse
|
11
|
The 1064-nm Nd: YAG Photobiomodulation vs. 20% Benzocaine Topical Gel in Inducing Mucosal Anesthetic Effect: A Double-Blind Randomized Clinical Trial. PHOTONICS 2022. [DOI: 10.3390/photonics9080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The periapical local anesthetic injection may be associated with fear of needles and pain administration. Dental topical anesthetic agents can help to reduce pain perception; however, adverse events can occur. To investigate the efficacy of 1064-nm photobiomodualtion (PBM) in inducing mucosal anesthesia delivered with a flat-top hand-piece compared to 20% Benzocaine topical anesthetic gel, sixty healthy patients were randomly allocated (1:1) to either 20% benzocaine topical gel + placebo laser (T group) or PBM + placebo gel (L group). The 1064-nm Nd:YAG laser was employed and is associated with a novel flat-top hand piece. The applied operational parameters were 0.5 W, 10 Hz, 100 µs pulse width, and 30 J/cm2 for one-minute single application time. The enrolled subjects were asked to assess pain intensity at the time of anesthetic injection with a Visual Analog Scale. Taking into consideration taste, undesirable numbness, and overall satisfaction, the patients were asked to rate their experiences according to a verbal rating scale. Statistical analysis showed no statistically significant difference between the T and L Groups for pain ratings (p = 0.0596). The L Group displayed significantly higher ratings than T Group for taste, undesirable numbness, and overall satisfaction (p < 0.001). The 1064-nm PBM delivered by flat-top hand piece is effective in inducing mucosal anesthesia, eliminating the adverse side-effects of the conventional topical anesthetic gel.
Collapse
|
12
|
Can Photobiomodulation Support the Management of Temporomandibular Joint Pain? Molecular Mechanisms and a Systematic Review of Human Clinical Trials. PHOTONICS 2022. [DOI: 10.3390/photonics9060420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to point out the correlation between photobiomodulation (PBM) targets and effects and management of temporomandibular disorders (TMDs) pain using diode lasers with infrared wavelengths ranging from 780 up to 980 nanometers (nm). A systematic search of multiple electronic databases was done to identify the clinical trials published between 1st January 2010 and 18th December 2021. The included studies were limited to human subjects who had TMD pain, involving two genders with age > 18 years, and were treated with PBM using a diode laser (780–980 nm) as a non-pharmacological therapy to decrease the intensity of the pain associated to TMDs. The risk of bias for included studies was assessed using the Cochrane RoB tool (for randomized studies). The methodologic quality was rated using the Delphi list. The findings suggest that PBM is an effective tool in alleviating TMDs’ pain and increasing the range of movement in patients with Axis 1 of TMDs. However, TMDs’ pain related to underlying pathology cannot be solely treated by PBM. The causative factors must be treated first. Studies displaying the highest quality Delphi score may represent a suggested PBM therapy protocol to follow for TMDs pain management.
Collapse
|
13
|
Amaroli A, Pasquale C, Zekiy A, Benedicenti S, Marchegiani A, Sabbieti MG, Agas D. Steering the multipotent mesenchymal cells towards an anti-inflammatory and osteogenic bias via photobiomodulation therapy: How to kill two birds with one stone. J Tissue Eng 2022; 13:20417314221110192. [PMID: 35832724 PMCID: PMC9272199 DOI: 10.1177/20417314221110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
The bone marrow-derived multipotent mesenchymal cells (MSCs) have captured scientific interest due to their multi-purpose features and clinical applications. The operational dimension of MSCs is not limited to the bone marrow reservoir, which exerts bone-building and niche anabolic tasks; they also meet the needs of quenching inflammation and restoring inflamed tissues. Thus, the range of MSC activities extends to conditions such as neurodegenerative diseases, immune disorders and various forms of osteopenia. Steering these cells towards becoming an effective therapeutic tool has become mandatory. Many laboratories have employed distinct strategies to improve the plasticity and secretome of MSCs. We aimed to present how photobiomodulation therapy (PBM-t) can manipulate MSCs to render them an extraordinary anti-inflammatory and osteogenic instrument. Moreover, we discuss the outcomes of different PBM-t protocols on MSCs, concluding with some perplexities and complexities of PBM-t in vivo but encouraging and feasible in vitro solutions.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
14
|
Recovery from Idiopathic Facial Paralysis (Bell’s Palsy) Using Photobiomodulation in Patients Non-Responsive to Standard Treatment: A Case Series Study. PHOTONICS 2021. [DOI: 10.3390/photonics8080341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diminished facial movement and marked facial asymmetry can lead to a consistent psychological burden. Bell′s palsy (BP) is one of the most common causes of facial nerve illness, which comes with unilateral acute facial paresis. Nowadays, no clear guidelines for treating BP are available. We carried out a case series study to test the efficacy of photobiomodulation (PBM) therapy in patients with BP non-responsive to standard treatment. The study was experimentally performed at the Department of Surgical and Diagnostic Sciences, University of Genoa (Genoa, Italy), in accordance with case report guidelines. Patients were referred to our department by colleagues for evaluation to be included in the case series because no consistent improvement was observed at least 3 months from the diagnosis of BP. All the patients interrupted their pharmacological therapy before the initiation of PBM therapy. PBM therapy (808 nm, 1 W irradiated in continuous-wave for 60 s on spot-size 1 cm2; 1 W/cm2; 60 J/cm2; and 60 J) was administered every 2 days until complete resolution. Evaluation of the House-Brackmann scale was performed before and after treatments. Fourteen patients were screened as eligible for the study. Patients were Caucasians (36% females and 64% males) with a mean age ± standard deviation of 56.07 ± 15.21 years. Eleven patients out of 14, who experienced BP a maximum of 6 months, completely recovered through PBM. The three patients that did not show improvement were those who had experienced BP for years. PBM could be a supportive therapy for the management of BP in patients non-responsive to standard treatment. However, randomized controlled trials are necessary to sustain our encouraging results, exclude bias, and better explain the boundary between the time from diagnosis and the recovery of BP through PBM therapy.
Collapse
|
15
|
Ravera S, Colombo E, Pasquale C, Benedicenti S, Solimei L, Signore A, Amaroli A. Mitochondrial Bioenergetic, Photobiomodulation and Trigeminal Branches Nerve Damage, What's the Connection? A Review. Int J Mol Sci 2021; 22:4347. [PMID: 33919443 PMCID: PMC8122620 DOI: 10.3390/ijms22094347] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Injury of the trigeminal nerve in oral and maxillofacial surgery can occur. Schwann cell mitochondria are regulators in the development, maintenance and regeneration of peripheral nerve axons. Evidence shows that after the nerve injury, mitochondrial bioenergetic dysfunction occurs and is associated with pain, neuropathy and nerve regeneration deficit. A challenge for research is to individuate new therapies able to normalise mitochondrial and energetic metabolism to aid nerve recovery after damage. Photobiomodulation therapy can be an interesting candidate, because it is a technique involving cell manipulation through the photonic energy of a non-ionising light source (visible and NIR light), which produces a nonthermal therapeutic effect on the stressed tissue. METHODS The review was based on the following questions: (1) Can photo-biomodulation by red and NIR light affect mitochondrial bioenergetics? (2) Can photobiomodulation support damage to the trigeminal nerve branches? (preclinical and clinical studies), and, if yes, (3) What is the best photobiomodulatory therapy for the recovery of the trigeminal nerve branches? The papers were searched using the PubMed, Scopus and Cochrane databases. This review followed the ARRIVE-2.0, PRISMA and Cochrane RoB-2 guidelines. RESULTS AND CONCLUSIONS The reliability of photobiomodulatory event strongly bases on biological and physical-chemical evidence. Its principal player is the mitochondrion, whether its cytochromes are directly involved as a photoacceptor or indirectly through a vibrational and energetic variation of bound water: water as the photoacceptor. The 808-nm and 100 J/cm2 (0.07 W; 2.5 W/cm2; pulsed 50 Hz; 27 J per point; 80 s) on rats and 800-nm and 0.2 W/cm2 (0.2 W; 12 J/cm2; 12 J per point; 60 s, CW) on humans resulted as trustworthy therapies, which could be supported by extensive studies.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Esteban Colombo
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Luca Solimei
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
16
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
17
|
Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation-A Review. BIOLOGY 2020; 9:biology9110409. [PMID: 33238412 PMCID: PMC7700402 DOI: 10.3390/biology9110409] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Dental implants are becoming an accepted tool, and thousands of implants are placed every year by specialists and general practitioners. However, more than 10% of bone surgeries and related procedures can show healing complications as a consequence of infections, tissue damage, or inadequate blood supply. In particular, a deficient blood supply impacts on the optimal healing process because of altered oxygen delivery to cells in the wound and a decrease in their energy supply. Researchers showed how red and infrared light affects key cellular pathways by interacting with specific photoacceptors located within the cell, particularly in mitochondria. Low-level laser therapy or photobiomodulation (PBM), as the recent medical subject heading defines it, is based on a light–cell interaction, which modifies cell metabolism by increasing oxygen consumption and ATP production through mitochondria. Although not all aspects of this interconnection are completely described, many in vitro and in vivo studies showed the benefit of PBM in wound defect management. For instance, treatment of bone with PBM results in a greater amount of new-formed osteoblasts and matrix, an increase in collagen synthesis, and microvascular reestablishment. In our review, we highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM for socket preservation is discussed. Abstract Bone defects are the main reason for aesthetic and functional disability, which negatively affect patient’s quality of life. Particularly, after tooth extraction, the bone of the alveolar process resorbs, limiting the optimal prosthetic implant placement. One of the major pathophysiological events in slowly- or non-healing tissues is a blood supply deficiency, followed by a significant decrease in cellular energy amount. The literature shows that photons at the red and infrared wavelengths can interact with specific photoacceptors located within the cell. Through this mechanism, photobiomodulation (PBM) can modify cellular metabolism, by increasing mitochondrial ATP production. Here, we present a review of the literature on the effect of PBM on bone healing, for the management of socket preservation. A search strategy was developed in line with the PRISMA statement. The PubMed and Scholar electronic databases were consulted to search for in vivo studies, with restrictions on the year (<50 years-old), language (English), bone socket preservation, and PBM. Following the search strategy, we identified 269 records, which became 14, after duplicates were removed and titles, abstract and inclusion-, exclusion-criteria were screened. Additional articles identified were 3. Therefore, 17 articles were included in the synthesis. We highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM is discussed.
Collapse
|
18
|
Wang H, Ouyang W, Zhang X, Xue J, Lou X, Fan R, Zhao X, Shan L, Jiang T. Bacteria-induced aggregation of bioorthogonal gold nanoparticles for SERS imaging and enhanced photothermal ablation of Gram-positive bacteria. J Mater Chem B 2020; 7:4630-4637. [PMID: 31364668 DOI: 10.1039/c9tb00845d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenge in antimicrobial photothermal therapy (PTT) is to develop strategies for decreasing the damage to cells and increasing the antibacterial efficiency. Herein, we report a novel theranostic strategy based on bacteria-induced gold nanoparticle (GNP) aggregation, in which GNPs in situ aggregated on the bacterial surface via specific targeting of vancomycin and bioorthogonal cycloaddition. Plasmonic coupling between adjacent GNPs exhibited a strong "hot spot" effect, enabling effective surface enhanced Raman scattering (SERS) imaging of bacterial pathogens. More importantly, in situ aggregation of GNPs showed strong NIR adsorption and high photothermal conversion, allowing enhanced photokilling activity against Gram-positive bacteria. In the absence of bacterial strains, GNPs were dispersed and showed a very low photothermal effect, minimizing the side effects towards surrounding healthy tissues. Given the above advantages, the bioorthogonal theranostic strategy developed in this study may find potential applications in treating bacterial infection and even multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Huijie Wang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Wenwen Ouyang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xuerui Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Jing Xue
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaoran Lou
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Ranran Fan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaonai Zhao
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Lianqi Shan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
19
|
Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, Utyuzh AS, Parker S, Sabbieti MG, Benedicenti S, Amaroli A. The 808 nm and 980 nm infrared laser irradiation affects spore germination and stored calcium homeostasis: A comparative study using delivery hand-pieces with standard (Gaussian) or flat-top profile. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111627. [PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
Abstract
Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
Collapse
Affiliation(s)
- Sara Ferrando
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genova, Genova, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino,Macerata, Italy
| | - Serena Mirata
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genova, Genova, Italy
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; Faculty of Therapeutic Stomatology, Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nicola De Angelis
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; University of Technology MARA, Department of Dentistry, Sungai Buloh, Malaysia
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Anatoliy S Utyuzh
- Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991 Moscow, Russian Federation
| | - Steven Parker
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino,Macerata, Italy
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991 Moscow, Russian Federation.
| |
Collapse
|
20
|
Ravera S, Ferrando S, Agas D, De Angelis N, Raffetto M, Sabbieti MG, Signore A, Benedicenti S, Amaroli A. 1064 nm Nd:YAG laser light affects transmembrane mitochondria respiratory chain complexes. JOURNAL OF BIOPHOTONICS 2019; 12:e201900101. [PMID: 31033186 DOI: 10.1002/jbio.201900101] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Photobiomodulation (PBM) is a non-plant-cell manipulation through a transfer of energy by means of light sources at the non-ablative or thermal intensity. Authors showed that cytochrome-c-oxidase (complex IV) is the specific chromophore's target of PBM at the red (600-700 nm) and NIR (760-900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in the β-oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2 . Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe-S proteins and Cu-centers of respiratory complexes and with the water molecules could be supposed.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy
| | - Nicola De Angelis
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genoa, Genoa, Italy
- Department of Dentistry, University of Technology MARA, Sungai Buloh, Malaysia
| | - Mirco Raffetto
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Genoa, Italy
| | - Maria G Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genoa, Genoa, Italy
- Faculty of Therapeutic Stomatology, Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genoa, Genoa, Italy
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Walski T, Dąbrowska K, Drohomirecka A, Jędruchniewicz N, Trochanowska-Pauk N, Witkiewicz W, Komorowska M. The effect of red-to-near-infrared (R/NIR) irradiation on inflammatory processes. Int J Radiat Biol 2019; 95:1326-1336. [PMID: 31170016 DOI: 10.1080/09553002.2019.1625464] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Near-infrared (NIR) and red-to-near-infrared (R/NIR) radiation are increasingly applied for therapeutic use. R/NIR-employing therapies aim to stimulate healing, prevent tissue necrosis, increase mitochondrial function, and improve blood flow and tissue oxygenation. The wide range of applications of this radiation raises questions concerning the effects of R/NIR on the immune system. Methods: In this review, we discuss the potential effects of exposure to R/NIR light on immune cells in the context of physical parameters of light. Discussion: The effects that R/NIR may induce in immune cells typically involve the production of reactive oxygen species (ROS), nitrogen oxide (NO), or interleukins. Production of ROS after exposure to R/NIR can either be inhibited or to some extent increased, which suggests that detailed conditions of experiments, such as the spectrum of radiation, irradiance, exposure time, determine the outcome of the treatment. However, a wide range of immune cell studies have demonstrated that exposure to R/NIR most often has an anti-inflammatory effect. Finally, photobiomodulation molecular mechanism with particular attention to the role of interfacial water structure changes for cell physiology and regulation of the inflammatory process was described. Conclusions: Optimization of light parameters allows R/NIR to act as an anti-inflammatory agent in a wide range of medical applications.
Collapse
Affiliation(s)
- Tomasz Walski
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology , Wrocław , Poland
| | - Krystyna Dąbrowska
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wrocław , Poland
| | - Anna Drohomirecka
- Department of Heart Failure and Transplantology, Institute of Cardiology , Warsaw , Poland
| | | | - Natalia Trochanowska-Pauk
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology , Wrocław , Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland
| | - Małgorzata Komorowska
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology , Wrocław , Poland
| |
Collapse
|
22
|
Hanna R, Agas D, Benedicenti S, Ferrando S, Laus F, Cuteri V, Lacava G, Sabbieti MG, Amaroli A. A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece With Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation. Front Endocrinol (Lausanne) 2019; 10:92. [PMID: 30842754 PMCID: PMC6391326 DOI: 10.3389/fendo.2019.00092] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/01/2019] [Indexed: 12/19/2022] Open
Abstract
Photobiomodulation (PBM) is a clinically accepted tool in regenerative medicine and dentistry to improve tissue healing and repair and to restore the functional disability. The current in vitro study aimed to investigate the photobiomodulatory effects of 980 nm wavelength (the real energy at the target: ~0.9 W, ~0.9 W/cm2, 60 s, ~55 J/cm2 and a single energy ~55 J in CW) on MC3T3-E1 pre-osteoblast, delivered with flattop profile in comparison to the standard profile. The laser groupings and their associated energies were: Group 1 - once per week (total energy 110 J); Group 2 - three times per week (alternate day) (total energy 330 J); Group 3 - five times per week (total energy 550 J). The metabolic activity and the osteoblasts maturation were analyzed by alkaline phosphatase assay, alizarin red S histological staining, immunoblot and/or double immunolabeling analysis for Bcl2, Bax, Runx-2, Osx, Dlx5, osteocalcin, and collagen Type 1. Our data, for the first time, prove that laser irradiation of 980 nm wavelength with flat-top beam profile delivery system, compared to standard-Gaussian profile, has improved photobiomodulatory efficacy on pre-osteoblastic cells differentiation. Mechanistically, the irradiation enhances the pre-osteoblast differentiation through activation of Wnt signaling and activation of Smads 2/3-βcatenin pathway.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical and Diagnostic Sciences, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Oral Surgery, Dental Institute, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, Laser Therapy Centre, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Hamblin MR, Huang YY, Heiskanen V. Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light? Photochem Photobiol 2019; 95:126-139. [PMID: 29882348 PMCID: PMC6286699 DOI: 10.1111/php.12951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress toward wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light-emitting diodes (LEDs) are being explored. The almost complete lack of side effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review covers some of these studies and a recent number of papers that have applied PBM to so-called "model organisms." These models include flies (Drosophila), worms (Caenorhabditis elegans), fish (zebrafish) and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biologic effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light."
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
24
|
Amaroli A, Marcoli M, Venturini A, Passalacqua M, Agnati LF, Signore A, Raffetto M, Maura G, Benedicenti S, Cervetto C. Near-infrared laser photons induce glutamate release from cerebrocortical nerve terminals. JOURNAL OF BIOPHOTONICS 2018; 11:e201800102. [PMID: 29931754 DOI: 10.1002/jbio.201800102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Although photons have been repeatedly shown to affect the functioning of the nervous system, their effects on neurotransmitter release have never been investigated. We exploited in vitro models that allow effects involving neuron-astrocyte network functioning to be detected (mouse cerebrocortical slices) and dissected these effects at cerebrocortical nerve endings and astrocyte processes. Infrared light proved able to induce glutamate release by stimulating glutamatergic nerve endings.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Luigi F Agnati
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Mirco Raffetto
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genova, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | | |
Collapse
|
25
|
Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 2018; 34:495-504. [DOI: 10.1007/s10103-018-2623-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
|
26
|
Yamakawa S, Niwa T, Karakida T, Kobayashi K, Yamamoto R, Chiba R, Yamakoshi Y, Hosoya N. Effects of Er:YAG and Diode Laser Irradiation on Dental Pulp Cells and Tissues. Int J Mol Sci 2018; 19:ijms19082429. [PMID: 30126087 PMCID: PMC6121961 DOI: 10.3390/ijms19082429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Vital pulp therapy (VPT) is to preserve the nerve and maintain healthy dental pulp tissue. Laser irradiation (LI) is beneficial for VPT. Understanding how LI affects dental pulp cells and tissues is necessary to elucidate the mechanism of reparative dentin and dentin regeneration. Here, we show how Er:YAG-LI and diode-LI modulated cell proliferation, apoptosis, gene expression, protease activation, and mineralization induction in dental pulp cells and tissues using cell culture, immunohistochemical, genetic, and protein analysis techniques. Both LIs promoted proliferation in porcine dental pulp-derived cell lines (PPU-7), although the cell growth rate between the LIs was different. In addition to proliferation, both LIs also caused apoptosis; however, the apoptotic index for Er:YAG-LI was higher than that for diode-LI. The mRNA level of odontoblastic gene markers-two dentin sialophosphoprotein splicing variants and matrix metalloprotease (MMP)20 were enhanced by diode-LI, whereas MMP2 was increased by Er:YAG-LI. Both LIs enhanced alkaline phosphatase activity, suggesting that they may help induce PPU-7 differentiation into odontoblast-like cells. In terms of mineralization induction, the LIs were not significantly different, although their cell reactivity was likely different. Both LIs activated four MMPs in porcine dental pulp tissues. We helped elucidate how reparative dentin is formed during laser treatments.
Collapse
Affiliation(s)
- Shunjiro Yamakawa
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takahiko Niwa
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Kazuyuki Kobayashi
- Department of Dental Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Risako Chiba
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Noriyasu Hosoya
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
27
|
Amaroli A, Agas D, Laus F, Cuteri V, Hanna R, Sabbieti MG, Benedicenti S. The Effects of Photobiomodulation of 808 nm Diode Laser Therapy at Higher Fluence on the in Vitro Osteogenic Differentiation of Bone Marrow Stromal Cells. Front Physiol 2018. [PMID: 29527174 PMCID: PMC5829029 DOI: 10.3389/fphys.2018.00123] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The literature has supported the concept of mesenchymal stromal cells (MSCs) in bone regeneration as one of the most important applications in oro-maxillofacial reconstructions. However, the fate of the transplanted cells and their effects on the clinical outcome is still uncertain. Photobiomodulation (PBM) plays an important role in the acceleration of tissue regeneration and potential repair. The aim of this in vitro study is to evaluate the effectiveness of PBM with 808 nm diode laser therapy, using a flat-top hand-piece delivery system at a higher-fluence (64 J/cm2) irradiation (1 W, continuous-wave) on bone marrow stromal cells (BMSCs). The BMSCs of 3 old female Balb-c mice were analyzed. The cells were divided into two groups: irradiated group and control group. In the former the cells were irradiated every 24 h during 0 day (T0), 5 (T1), 10 (T2), and 15 (T3) days, whereas the control group was non-irradiated. The results have shown that the 64 J/cm2 laser irradiation has increased the Runt-related transcription factor 2 (Runx2). Runx2 is the most important early marker of osteoblast differentiation. The higher-fluence suppressed the synthesis of adipogenic transcription factor (PPARγ), the pivotal transcription factor in adipogenic differentiation. Also, the osteogenic markers such as Osterix (Osx) and alkaline phosphatase (ALP) were upregulated with an increase in the matrix mineralization. Furthermore, western blotting data demonstrated that the laser therapy has induced a statistically valid increase in the synthesis of transforming growth factor β1 (TGF-β1) but had no effects on the tumor necrosis factor α (TNFα) production. The data has statistically validated the down-regulation of the important pro-inflammatory cytokines such as interleukin IL-6, and IL-17 after 808 nm PBM exposition. An increase in anti-inflammatory cytokines such as IL-1rα and IL-10 was observed. These in vitro studies provide for first time the initial proof that the PBM of the 808 nm diode laser therapy with flat-top hand-piece delivery system at a higher-fluence irradiation of 64 J/cm2 (1 W/cm2) can modulate BMSCs differentiation in enhancing osteogenesis.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, Laser Therapy Center, University of Genoa, Genoa, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Reem Hanna
- Department of Surgical and Diagnostic Sciences, Laser Therapy Center, University of Genoa, Genoa, Italy
| | | | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, Laser Therapy Center, University of Genoa, Genoa, Italy
| |
Collapse
|
28
|
Amaroli A, Ferrando S, Pozzolini M, Gallus L, Parker S, Benedicenti S. The earthworm Dendrobaena veneta (Annelida): A new experimental-organism for photobiomodulation and wound healing. Eur J Histochem 2018; 62:2867. [PMID: 29569873 PMCID: PMC5820523 DOI: 10.4081/ejh.2018.2867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 02/08/2023] Open
Abstract
Photobiomodulation (PBM) is a manipulation of cellular behavior using non-ablative low intensity light sources. This manipulation triggers a cascade of metabolic effects and physiological changes resulting in improved tissue repair, of benefit in the treatment of tissue injury, degenerative or autoimmune diseases. PBM has witnessed an exponential increase in both clinical instrument technology and applications. It is therefore of benefit to find reliable experimental models to test the burgeoning laser technology for medical applications. In our work, we proposed the earthworm Dendrobaena veneta for the study of nonablative laser-light effects on wound healing. In our preliminary work, D. veneta has been shown to be positively affected by PBM. New tests using D. veneta were set up to evaluate the effectiveness of a chosen 808 nm-64 J/cm2–1W-CW laser therapy using the AB2799 hand-piece with flat-top bean profile, on the wound healing process of the earthworm. Effective outcome was assimilated through examining the macroscopic, histological, and molecular changes on the irradiated posterior-segment of excised-earthworms with respect to controls. Three successive treatments, one every 24 hours, were concluded as sufficient to promote the wound healing, by effects on muscular and blood vessel contraction, decrement of bacteria load, reduction of inflammatory processes and tissue degeneration. D. veneta was demonstrated to be a reliable experimental organism that meets well the 3Rs principles and the National Science Foundation statement. Through their genetic and evolutionary peculiarity, comparable to those of scientifically accredited models, D. veneta allows the effect of laser therapies by multidisciplinary methods, at various degree of complexity and costs to be investigated.
Collapse
Affiliation(s)
- Andrea Amaroli
- University of Genoa, Department of Surgical Sciences and Integrated Diagnostic.
| | | | | | | | | | | |
Collapse
|
29
|
Amaroli A, Benedicenti A, Ravera S, Parker S, Selting W, Panfoli I, Benedicenti S. Short-pulse neodymium:yttrium–aluminium garnet (Nd:YAG 1064 nm) laser irradiation photobiomodulates mitochondria activity and cellular multiplication of Paramecium primaurelia (Protozoa). Eur J Protistol 2017; 61:294-304. [DOI: 10.1016/j.ejop.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/26/2022]
|
30
|
The photobiomodulation effect of higher-fluence 808-nm laser therapy with a flat-top handpiece on the wound healing of the earthworm Dendrobaena veneta: a brief report. Lasers Med Sci 2017; 33:221-225. [PMID: 28063017 DOI: 10.1007/s10103-016-2132-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
31
|
Amaroli A, Gambardella C, Ferrando S, Hanna R, Benedicenti A, Gallus L, Faimali M, Benedicenti S. The Effect of Photobiomodulation on the Sea Urchin Paracentrotus lividus (Echinodermata) Using Higher-Fluence on Fertilization, Embryogenesis, and Larval Development: An In Vitro Study. Photomed Laser Surg 2016; 35:127-135. [PMID: 28056208 DOI: 10.1089/pho.2016.4136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the photobiomodulation (PBM) effect of the 808 nm diode laser irradiation on spermatozoa, eggs, fertilized eggs, embryos, and larvae of Paracentrotus lividus, using two different power settings. BACKGROUND DATA Studies have shown the possible use of PBM in artificial insemination. These have shown the potential effect of low-power laser irradiation on spermatozoa, while there are few studies on the effect of laser photonic energy on oocytes and almost no reports on the influence of lasers in embryogenesis. METHODS P. lividus gametes, zygotes, embryos, and larvae were irradiated using the 808 nm diode laser (fluence 64 J/cm2 using 1 W or 192 J/cm2 with 3 W) with a flat-top hand-piece delivery, compared to a control without laser irradiation (0 J/cm2-0 W). The fertilization rate and the early developmental stages were investigated. RESULTS The fertilization ability was not affected by the sperm/egg irradiation. At the gastrula stage, no significant differences were observed compared with the control samples. In the late pluteus stage, there were no differences in the developmental percentage observed between the control and the treated samples (1 W), with the exception of larvae from gastrulae and larvae, which were irradiated at 3 W. CONCLUSIONS This study has demonstrated that both the 64 J/cm2-1 W and the 192 J/cm2-3 W do not induce morphological damage on the irradiated P. lividus gametes whose zygotes generate normal embryos and larvae. Our data therefore support the assumption to use higher fluence in preliminary studies on in vitro fertilization.
Collapse
Affiliation(s)
- Andrea Amaroli
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy .,2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Chiara Gambardella
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Sara Ferrando
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Reem Hanna
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy .,4 Department of Oral Surgery, Dental Institute , King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberico Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Lorenzo Gallus
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Marco Faimali
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Stefano Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| |
Collapse
|
32
|
Amaroli A, Benedicenti A, Ferrando S, Parker S, Selting W, Gallus L, Benedicenti S. Photobiomodulation by Infrared Diode Laser: Effects on Intracellular Calcium Concentration and Nitric Oxide Production of Paramecium. Photochem Photobiol 2016; 92:854-862. [PMID: 27716941 DOI: 10.1111/php.12644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
In Paramecium, cilia beating is correlated to intracellular calcium concentration ([Ca2+ ]i) and nitric oxide (NO) synthesis. Recent findings affirm that photobiomodulation (PBM) can transiently increase the [Ca2+ ]i in mammalian cells. In this study, we investigated the effect of both 808 and 980 nm diode laser irradiated with flat-top hand-piece on [Ca2+ ]i and NO production of Paramecium primaurelia, to provide basic information for the development of new therapeutic approaches. In the experiments, the laser power in CW varied (0.1; 0.5; 1; and 1.5 W) to generate the following respective fluences: 6.4; 32; 64; and 96 J cm-2 . The 6.4 J cm-2 did not induce PBM if irradiated by both 808 and 980 nm diode laser. Conversely, the 32 J cm-2 fluence had no effect on Paramecium cells if irradiated by the 808 nm laser, while if irradiated by the 980 nm laser induced increment in swimming speed (suggesting an effect on the [Ca2+ ]i, NO production, similar to the 64 J cm-2 with the 808 nm wavelength). The more evident discordance occurred with the 96 J cm-2 fluence, which had the more efficient effect on PBM among the parameters if irradiated with the 808 nm laser and killed the Paramecium cells if irradiated by the 980 nm laser. Lastly, the 980 nm and 64 or 96 J cm-2 were the only parameters to induce a release of stored calcium.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Wayne Selting
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| |
Collapse
|
33
|
An 808-nm Diode Laser with a Flat-Top Handpiece Positively Photobiomodulates Mitochondria Activities. Photomed Laser Surg 2016; 34:564-571. [PMID: 27622977 DOI: 10.1089/pho.2015.4035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Photobiomodulation is proposed as a non-linear process. Only the action of light at a low intensity and fluence is assumed to have stimulation on cells; whereas a higher light intensity and fluence generates negative effects, exhausting the cell's energy reserve as a consequence of a too strong stimulation. In our work, we detected the photobiomodulatory effect of an 808-nm higher-fluence diode laser [64 J/cm2-1 W, continuous wave (CW)] irradiated by a flat-top handpiece on mitochondria activities, such as oxygen consumption, activity of mitochondria complexes I, II, III, and IV, and cytochrome c as well as ATP synthesis. MATERIALS AND METHODS The experiments are performed by standard procedure on mitochondria purified from bovine liver. RESULTS Our higher-fluence diode laser positively photobiomodulates the mitochondria oxygen consumption, the activity of the complexes III and IV, and the ATP production, with a P/O = 2.6. The other activities are not influenced. CONCLUSION Our data show for the first time that even the higher fluences (64 J/cm2-1 W), similar to the low fluences, can photobiostimulate the mitochondria respiratory chain without uncoupling them and can induce an increment in the ATP production. These results suggest that the negative effects of higher fluences observed to date are not unequivocally due to higher fluence per se but might be a consequence of the irradiation carried by handpieces with a Gaussian profile.
Collapse
|