1
|
Weerasekera A, Coelho DRA, Ratai EM, Collins KA, Puerto AMH, De Taboada L, Gersten MB, Clancy JA, Hoptman MJ, Irvin MK, Sparpana AM, Sullivan EF, Song X, Adib A, Cassano P, Iosifescu DV. Dose-dependent effects of transcranial photobiomodulation on brain temperature in patients with major depressive disorder: a spectroscopy study. Lasers Med Sci 2024; 39:249. [PMID: 39370461 DOI: 10.1007/s10103-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to evaluate the dose-dependent brain temperature effects of transcranial photobiomodulation (t-PBM). Thirty adult subjects with major depressive disorder were randomized to three t-PBM sessions with different doses (low: 50 mW/cm2, medium: 300 mW/cm2, high: 850 mW/cm2) and a sham treatment. The low and medium doses were administered in continuous wave mode, while the high dose was administered in pulsed wave mode. A 3T MRI scanner was used to perform proton magnetic resonance spectroscopy (1H-MRS). A voxel with a volume of 30 × 30 × 15 mm3 was placed on the left prefrontal region. Brain temperature (°C) was derived by analyzing 1H-MRS spectrum chemical shift differences between the water (~ 4.7 ppm) and N-acetyl aspartate (NAA) (~ 2.01 ppm) peaks. After quality control of the data, the following group numbers were available for both pre- and post-temperature estimations: sham (n = 10), low (n = 11), medium (n = 10), and high (n = 8). We did not detect significant temperature differences for any t-PBM-active or sham groups post-irradiation (p-value range = 0.105 and 0.781). We also tested for potential differences in the pre-post variability of brain temperature in each group. As for t-PBM active groups, the lowest fluctuation (variance) was observed for the medium dose (σ2 = 0.29), followed by the low dose (σ2 = 0.47), and the highest fluctuation was for the high dose (σ2 = 0.67). t-PBM sham condition showed the overall lowest fluctuation (σ2 = 0.11). Our 1H-MRS thermometry results showed no significant brain temperature elevations during t-PBM administration.
Collapse
Affiliation(s)
- Akila Weerasekera
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, Boston, MA, 2612, USA.
- Department of Radiology, Massachusetts General Hospital (MGH), Boston, MA, USA.
| | - David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, Boston, MA, 2612, USA
- Department of Radiology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | | | - Aura Maria Hurtado Puerto
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | | | - Maia Beth Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Julie A Clancy
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Matthew J Hoptman
- Nathan Kline Institute (NKI), Orangeburg, NY, USA
- New York University (NYU) School of Medicine, New York City, NY, USA
| | | | | | | | - Xiaotong Song
- New York University (NYU) School of Medicine, New York City, NY, USA
| | - Arwa Adib
- New York University (NYU) School of Medicine, New York City, NY, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | | |
Collapse
|
2
|
Sancho-Balsells A, Borràs-Pernas S, Flotta F, Chen W, Del Toro D, Rodríguez MJ, Alberch J, Blivet G, Touchon J, Xifró X, Giralt A. Brain-gut photobiomodulation restores cognitive alterations in chronically stressed mice through the regulation of Sirt1 and neuroinflammation. J Affect Disord 2024; 354:574-588. [PMID: 38490587 DOI: 10.1016/j.jad.2024.03.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Chronic stress is an important risk factor for the development of major depressive disorder (MDD). Recent studies have shown microbiome dysbiosis as one of the pathogenic mechanisms associated with MDD. Thus, it is important to find novel non-pharmacological therapeutic strategies that can modulate gut microbiota and brain activity. One such strategy is photobiomodulation (PBM), which involves the non-invasive use of light. OBJECTIVE/HYPOTHESIS Brain-gut PBM could have a synergistic beneficial effect on the alterations induced by chronic stress. METHODS We employed the chronic unpredictable mild stress (CUMS) protocol to induce a depressive-like state in mice. Subsequently, we administered brain-gut PBM for 6 min per day over a period of 3 weeks. Following PBM treatment, we examined behavioral, structural, molecular, and cellular alterations induced by CUMS. RESULTS We observed that the CUMS protocol induces profound behavioral alterations and an increase of sirtuin1 (Sirt1) levels in the hippocampus. We then combined the stress protocol with PBM and found that tissue-combined PBM was able to rescue cognitive alterations induced by CUMS. This rescue was accompanied by a restoration of hippocampal Sirt1 levels, prevention of spine density loss in the CA1 of the hippocampus, and the modulation of the gut microbiome. PBM was also effective in reducing neuroinflammation and modulating the morphology of Iba1-positive microglia. LIMITATIONS The molecular mechanisms behind the beneficial effects of tissue-combined PBM are not fully understood. CONCLUSIONS Our results suggest that non-invasive photobiomodulation of both the brain and the gut microbiome could be beneficial in the context of stress-induced MDD.
Collapse
Affiliation(s)
- Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| | - Sara Borràs-Pernas
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Francesca Flotta
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Wanqi Chen
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Manuel J Rodríguez
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; Production and Validation Centre of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | | | | | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain.
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
3
|
Argenbright CM, Bertlesman AM, Russell IM, Greer TL, Peng YB, Fuchs PN. The Fibromyalgia Pain Experience: A Scoping Review of the Preclinical Evidence for Replication and Treatment of the Affective and Cognitive Pain Dimensions. Biomedicines 2024; 12:778. [PMID: 38672134 PMCID: PMC11048409 DOI: 10.3390/biomedicines12040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Fibromyalgia is a chronic, widespread pain disorder that is strongly represented across the affective and cognitive dimensions of pain, given that the underlying pathophysiology of the disorder is yet to be identified. These affective and cognitive deficits are crucial to understanding and treating the fibromyalgia pain experience as a whole but replicating this multidimensionality on a preclinical level is challenging. To understand the underlying mechanisms, animal models are used. In this scoping review, we evaluate the current primary animal models of fibromyalgia regarding their translational relevance within the affective and cognitive pain realms, as well as summarize treatments that have been identified preclinically for attenuating these deficits.
Collapse
Affiliation(s)
- Cassie M. Argenbright
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alysia M. Bertlesman
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Izabella M. Russell
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Tracy L. Greer
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Yuan B. Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Perry N. Fuchs
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
4
|
Lutfy RH, Essawy AE, Mohammed HS, Shakweer MM, Salam SA. Transcranial Irradiation Mitigates Paradoxical Sleep Deprivation Effect in an Age-Dependent Manner: Role of BDNF and GLP-1. Neurochem Res 2024; 49:919-934. [PMID: 38114728 PMCID: PMC10902205 DOI: 10.1007/s11064-023-04071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
The growing prevalence of aged sleep-deprived nations is turning into a pandemic state. Acute sleep deprivation (SD) accompanies aging, changing the hippocampal cellular pattern, neurogenesis pathway expression, and aggravating cognitive deterioration. The present study investigated the ability of Near Infra Red (NIR) light laser to ameliorate cognitive impairment induced by SD in young and senile rats. Wistar rats ≤ 2 months (young) and ≥ 14 months (senile) were sleep-deprived for 72 h with or without transcranial administration of NIR laser of 830 nm. Our results showed that NIR photobiomodulation (PBM) attenuated cognitive deterioration made by SD in young, but not senile rats, while both sleep-deprived young and senile rats exhibited decreased anxiety (mania)-like behavior in response to PBM. NIR PBM had an inhibitory effect on AChE, enhanced the production of ACh, attenuated ROS, and regulated cell apoptosis factors such as Bax and Bcl-2. NIR increased mRNA expression of BDNF and GLP-1 in senile rats, thus facilitating neuronal survival and differentiation. The present findings also revealed that age exerts an additive factor to the cellular assaults produced by SD where hippocampal damages made in 2-month rats were less severe than those of the aged one. In conclusion, NIR PBM seems to promote cellular longevity of senile hippocampal cells by combating ROS, elevating neurotrophic factors, thus improving cognitive performance. The present findings provide NIR as a possible candidate for hippocampal neuronal insults accompanying aging and SD.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Haitham S Mohammed
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
5
|
Farazi N, Salehi-Pourmehr H, Farajdokht F, Mahmoudi J, Sadigh-Eteghad S. Photobiomodulation combination therapy as a new insight in neurological disorders: a comprehensive systematic review. BMC Neurol 2024; 24:101. [PMID: 38504162 PMCID: PMC10949673 DOI: 10.1186/s12883-024-03593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Preclinical and clinical studies have indicated that combining photobiomodulation (PBM) therapy with other therapeutic approaches may influence the treatment process in a variety of disorders. The purpose of this systematic review was to determine whether PBM-combined therapy provides additional benefits over monotherapies in neurologic and neuropsychiatric disorders. In addition, the review describes the most commonly used methods and PBM parameters in these conjunctional approaches.To accomplish this, a systematic search was conducted in Google Scholar, PubMed, and Scopus databases through January 2024. 95 potentially eligible articles on PBM-combined treatment strategies for neurological and neuropsychological disorders were identified, including 29 preclinical studies and 66 clinical trials.According to the findings, seven major categories of studies were identified based on disease type: neuropsychiatric diseases, neurodegenerative diseases, ischemia, nerve injury, pain, paresis, and neuropathy. These studies looked at the effects of laser therapy in combination with other therapies like pharmacotherapies, physical therapies, exercises, stem cells, and experimental materials on neurological disorders in both animal models and humans. The findings suggested that most combination therapies could produce synergistic effects, leading to better outcomes for treating neurologic and psychiatric disorders and relieving symptoms.These findings indicate that the combination of PBM may be a useful adjunct to conventional and experimental treatments for a variety of neurological and psychological disorders.
Collapse
Affiliation(s)
- Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
| |
Collapse
|
6
|
Song L, Wang H, Peng R. Advances in the Regulation of Neural Function by Infrared Light. Int J Mol Sci 2024; 25:928. [PMID: 38256001 PMCID: PMC10815576 DOI: 10.3390/ijms25020928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, with the rapid development of optical technology, infrared light has been increasingly used in biomedical fields. Research has shown that infrared light could play roles in light stimulation and biological regulation. Infrared light has been used to regulate neural function due to its high spatial resolution, safety and neural sensitivity and has been considered a useful method to replace traditional neural regulation approaches. Infrared neuromodulation methods have been used for neural activation, central nervous system disorder treatment and cognitive enhancement. Research on the regulation of neural function by infrared light stimulation began only recently, and the underlying mechanism remains unclear. This article reviews the characteristics of infrared light, the advantages and disadvantages of infrared neuromodulation, its effects on improving individual health, and its mechanism. This article aims to provide a reference for future research on the use of infrared neural regulation to treat neuropsychological disorders.
Collapse
Affiliation(s)
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
7
|
Mohammed HS, Hosny EN, Sawie HG, Khadrawy YA. Transcranial photobiomodulation ameliorates midbrain and striatum neurochemical impairments and behavioral deficits in reserpine-induced parkinsonism in rats. Photochem Photobiol Sci 2023; 22:2891-2904. [PMID: 37917308 DOI: 10.1007/s43630-023-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Photobiomodulation (PBM) of deep brain structures through transcranial infrared irradiation might be an effective treatment for Parkinson's disease (PD). However, the mechanisms underlying this intervention should be elucidated to optimize the therapeutic outcome and maximize therapeutic efficacy. The present study aimed at investigating the oxidative stress-related parameters of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) and the enzymatic activities of sodium-potassium-ATPase (Na+, K+-ATPase), Acetylcholinesterase (AChE), and monoamine oxidase (MAO) and monoamine levels (dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the midbrain and striatum of reserpine-induced PD in an animal model treated with PBM. Furthermore, the locomotor behavior of the animals has been determined by the open field test. Animals were divided into three groups; the control group, the PD-induced model group, and the PD-induced model treated with the PBM group. Non-invasive treatment of animals for 14 days with 100 mW, 830 nm laser has demonstrated successful attainment in the recovery of oxidative stress, and enzymatic activities impairments induced by reserpine (0.2 mg/kg) in both midbrain and striatum of adult male Wistar rats. PBM also improved the decrease in DA, NE, and 5-HT in the investigated brain regions. On a behavioral level, animals showed improvement in their locomotion activity. These findings have shed more light on some mechanisms underlying the treatment potential of PBM and displayed the safety, easiness, and efficacy of PBM treatment as an alternative to pharmacological treatment for PD.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Faculty of Science, Biophysics Department, Cairo University, Giza, Egypt.
| | - Eman N Hosny
- Medical Division, Medical Physiology Department, National Research Centre, Giza, Egypt
| | - Hussein G Sawie
- Medical Division, Medical Physiology Department, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Division, Medical Physiology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Elkholy NS, Mohammed HS, Shafaa MW. Assessment of the therapeutic potential of lutein and beta-carotene nanodispersions in a rat model of fibromyalgia. Sci Rep 2023; 13:19712. [PMID: 37953299 PMCID: PMC10641082 DOI: 10.1038/s41598-023-46980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Fibromyalgia (FM) is a chronic disorder characterized by widespread musculoskeletal pain, fatigue, and cognitive impairment. Despite the availability of various treatment options, FM remains a challenging condition to manage. In the present study, we investigated the efficacy of formulated nanodispersions of lutein and beta-carotene in treating FM-related symptoms induced by reserpine in female Wistar rats. Several techniques have been implemented to assess this efficacy at various levels, including biochemical, bioelectrical, and behavioral. Namely, oxidative stress markers, monoamine levels, electrocorticography, pain threshold test, and open field test were conducted on control, FM-induced, and FM-treated groups of animals. Our results provided compelling evidence for the efficacy of carotenoid nanodispersions in treating FM-related symptoms. Specifically, we found that the dual action of the nanodispersion, as both antioxidant and antidepressant, accounted for their beneficial effects in treating FM. With further investigation, nano-carotenoids and particularly nano-lutein could potentially become an effective alternative treatment for patients with FM who do not respond to current treatment options.
Collapse
Affiliation(s)
- Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
- Nawah Scientific Co., Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
9
|
Cho Y, Tural U, Iosifescu DV. Efficacy of Transcranial Photobiomodulation on Depressive Symptoms: A Meta-Analysis. Photobiomodul Photomed Laser Surg 2023; 41:460-466. [PMID: 37651208 PMCID: PMC10518694 DOI: 10.1089/photob.2023.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
Background: Transcranial photobiomodulation (tPBM) is a novel, noninvasive, device-based intervention, which has been tested as a possible treatment for various neurological and psychiatric conditions. Recently, it has been investigated as an innovative treatment for major depressive disorder (MDD). There have been several animal and clinical studies that evaluated the underlying mechanism and the efficacy of its antidepressant effects, but results have been conflicting. Objective: Thus, we conducted the first meta-analysis on effects of tPBM on depressive symptoms. Materials and methods: Thirty original articles on tPBM were retrieved, eight of them met criteria for inclusion to a random effects meta-analysis. Results: tPBM appeared effective in decreasing depressive symptom severity regardless of diagnosis (Hedges' g = 1.415, p < 0.001, k = 8), but a significant heterogeneity has been found. The meta-analysis of single-arm studies (baseline to endpoint changes) limited to participants with MDD has supported the significant effect of tPBM in reducing the depression severity, without a significant heterogeneity (Hedges' g = 1.142, 95% confidence interval = 0.780-1.504, z = 6.19, p < 0.001, k = 5). However, the meta-analysis of the few double-blind, sham-controlled studies in MDD has not supported the statistically significant superiority of tPBM over sham (Hedges' g = 0.499, p = 0.211, k = 3), although a sample size bias is likely present. Conclusions: Overall, this meta-analysis provides weak support for the promising role of tPBM in the treatment of depressive symptoms. Dose finding studies to determine optimal tPBM parameters followed by larger, randomized, sham-controlled studies will be needed to fully demonstrate the antidepressant efficacy of tPBM.
Collapse
Affiliation(s)
- Yoonju Cho
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Umit Tural
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Abijo A, Lee CY, Huang CY, Ho PC, Tsai KJ. The Beneficial Role of Photobiomodulation in Neurodegenerative Diseases. Biomedicines 2023; 11:1828. [PMID: 37509468 PMCID: PMC10377111 DOI: 10.3390/biomedicines11071828] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Photobiomodulation (PBM), also known as Low-level Laser Therapy (LLLT), involves the use of light from a laser or light-emitting diode (LED) in the treatment of various disorders and it has recently gained increasing interest. Progressive neuronal loss with attendant consequences such as cognitive and/or motor decline characterize neurodegenerative diseases. The available therapeutic drugs have only been able to provide symptomatic relief and may also present with some side effects, thus precluding their use in treatment. Recently, there has been an exponential increase in interest and attention in the use of PBM as a therapy in various neurodegenerative diseases in animal studies. Because of the financial and social burden of neurodegenerative diseases on the sufferers and the need for the discovery of potential therapeutic inventions in their management, it is pertinent to examine the beneficial effects of PBM and the various cellular mechanisms by which it modulates neural activity. Here, we highlight the various ways by which PBM may possess beneficial effects on neural activity and has been reported in various neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, epilepsy, TBI, stroke) with the hope that it may serve as an alternative therapy in the management of neurodegenerative diseases because of the biological side effects associated with drugs currently used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayodeji Abijo
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Neurobiology Unit, Department of Anatomy, Ben S. Carson School of Medicine, Babcock University, Ilishan-Remo 121003, Nigeria
| | - Chun-Yuan Lee
- Aether Services, Taiwan, Ltd., Hsinchu 30078, Taiwan
| | | | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuen-Jer Tsai
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
11
|
Vieira WF, Iosifescu DV, McEachern KM, Gersten M, Cassano P. Photobiomodulation: An Emerging Treatment Modality for Depression. Psychiatr Clin North Am 2023; 46:331-348. [PMID: 37149348 DOI: 10.1016/j.psc.2023.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Major depressive disorder (MDD) is considered a global crisis. Conventional treatments for MDD consist of pharmacotherapy and psychotherapy, although a significant number of patients with depression respond poorly to conventional treatments and are diagnosed with treatment-resistant depression (TRD). Transcranial photobiomodulation (t-PBM) therapy uses near-infrared light, delivered transcranially, to modulate the brain cortex. The aim of this review was to revisit the antidepressant effects of t-PBM, with a special emphasis on individuals with TRD. A search on PubMed and ClinicalTrials.gov tracked clinical studies using t-PBM for the treatment of patients diagnosed with MDD and TRD.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School (HMS), 25 Shattuck Street, Boston, MA 02115, USA; Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), 2415 Prof. Lineu Prestes Avenue, Sao Paulo, SP 05508-000, Brazil
| | - Dan V Iosifescu
- Clinical Research Division, Nathan Kline Institute (NKI) for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University (NYU) School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Kayla Marie McEachern
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School (HMS), 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Vieira WF, Gersten M, Caldieraro MAK, Cassano P. Photobiomodulation for Major Depressive Disorder: Linking Transcranial Infrared Light, Biophotons and Oxidative Stress. Harv Rev Psychiatry 2023; 31:124-141. [PMID: 37171473 DOI: 10.1097/hrp.0000000000000363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Incompletely treated major depressive disorder (MDD) poses an enormous global health burden. Conventional treatment for MDD consists of pharmacotherapy and psychotherapy, though a significant number of patients do not achieve remission with such treatments. Transcranial photobiomodulation (t-PBM) is a promising novel therapy that uses extracranial light, especially in the near-infrared (NIR) and red spectra, for biological and therapeutic effects. The aims of this Review are to evaluate the current clinical and preclinical literature on t-PBM in MDD and to discuss candidate mechanisms for effects of t-PBM in MDD, with specific attention to biophotons and oxidative stress. A search on PubMed and ClinicalTrials.gov identified clinical and preclinical studies using t-PBM for the treatment of MDD as a primary focus. After a systematic screening, only 19 studies containing original data were included in this review (9 clinical and 10 preclinical trials). Study results demonstrate consensus that t-PBM is a safe and potentially effective treatment; however, varying treatment parameters among studies complicate definitive conclusions about efficacy. Among other mechanisms of action, t-PBM stimulates the complex IV of the mitochondrial respiratory chain and induces an increase in cellular energy metabolism. We suggest that future trials include biological measures to better understand the mechanisms of action of t-PBM and to optimize treatment efficiency. Of particular interest going forward will be studying potential effects of t-PBM-an external light source on the NIR spectra-on neural circuitry implicated in depression.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- From Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA (Drs. Vieira, Gersten, Cassano); Department of Psychiatry, Harvard Medical School, Boston, MA (Drs. Vieira, Cassano); Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Sao Paulo, SP, Brazil (Dr. Vieira); Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil (Dr. Caldieraro); Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria e Medicina Legal, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil (Dr. Caldieraro)
| | | | | | | |
Collapse
|
13
|
Montazeri K, Farhadi M, Fekrazad R, Chaibakhsh S, Mahmoudian S. Photobiomodulation therapy in mood disorders: a systematic review. Lasers Med Sci 2022; 37:3343-3351. [DOI: 10.1007/s10103-022-03641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
14
|
Hamdy O, Mohammed HS. Variations in tissue optical parameters with the incident power of an infrared laser. PLoS One 2022; 17:e0263164. [PMID: 35100314 PMCID: PMC8803203 DOI: 10.1371/journal.pone.0263164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Infrared (IR) lasers are extensively utilized as an effective tool in many medical practices. Nevertheless, light penetration into the inspected tissue, which is highly affected by tissue optical properties, is a crucial factor for successful optical procedures. Although the optical properties are highly wavelength-dependent, they can be affected by the power of the incident laser. The present study demonstrates a considerable change in the scattering and absorption coefficients as a result of varying the incident laser power probing into biological samples at a constant laser wavelength (808 nm). The optical parameters were investigated using an integrating sphere and Kubelka-Munk model. Additionally, fluence distribution at the sample's surface was modeled using COMSOL-multiphysics software. The experimental results were validated using Receiver Operating Characteristic (ROC) curves and Monte-Carlo simulation. The results showed that tissue scattering coefficient decreases as the incident laser power increases while the absorption coefficient experienced a slight change. Moreover, the penetration depth increases with the optical parameters. The reduction in the scattering coefficients leads to wider and more diffusive fluence rate distribution at the tissue surface. The simulation results showed a good agreement with the experimental data and revealed that tissue anisotropy may be responsible for this scattering reduction. The present findings could be considered in order for the specialists to accurately specify the laser optical dose in various biomedical applications.
Collapse
Affiliation(s)
- Omnia Hamdy
- Engineering Applications of Lasers Department, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | | |
Collapse
|
15
|
Perez Garcia G, Perez GM, Otero-Pagan A, Abutarboush R, Kawoos U, De Gasperi R, Gama Sosa MA, Pryor D, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Transcranial Laser Therapy Does Not Improve Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2021; 2:548-563. [PMID: 34901948 PMCID: PMC8655798 DOI: 10.1089/neur.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Transcranial laser therapy (TLT) uses low-power lasers emitting light in the far- to near-infrared ranges. Beneficial effects of TLT have been reported in neurological and mental-health-related disorders in humans and animal models, including TBI. Rats exposed to repetitive low-level blast develop chronic cognitive and PTSD-related behavioral traits. We tested whether TLT treatment could reverse these traits. Rats received a 74.5-kPa blast or sham exposures delivered one per day for 3 consecutive days. Beginning at 34 weeks after blast exposure, the following groups of rats were treated with active or sham TLT: 1) Sham-exposed rats (n = 12) were treated with sham TLT; 2) blast-exposed rats (n = 13) were treated with sham TLT; and 3) blast-exposed rats (n = 14) were treated with active TLT. Rats received 5 min of TLT five times per week for 6 weeks (wavelength, 808 nm; power of irradiance, 240 mW). At the end of treatment, rats were tested in tasks found previously to be most informative (novel object recognition, novel object localization, contextual/cued fear conditioning, elevated zero maze, and light/dark emergence). TLT did not improve blast-related effects in any of these tests, and blast-exposed rats were worse after TLT in some anxiety-related measures. Based on these findings, TLT does not appear to be a promising treatment for the chronic cognitive and mental health problems that follow blast injury.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Barbara and Maurice A. Deane Center for Wellness and Cognitive Health and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
16
|
Mohammed HS, Khadrawy YA. Antidepressant and antioxidant effects of transcranial irradiation with 830-nm low-power laser in an animal model of depression. Lasers Med Sci 2021; 37:1615-1623. [PMID: 34487275 DOI: 10.1007/s10103-021-03410-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed at investigating the antidepressant and antioxidant actions of near-infrared (NIR) laser at a wavelength of 830 nm and power of 100 mW which applied transcranially on an animal model of depression induced by repeated doses of reserpine (0.2 mg/kg). Thirty male Wistar adult rats were divided into three groups: rat model of depression; rat model of depression irradiated with laser for 14 days after induction of depression; and the control group that was given the drug vehicle and sham-exposed to the laser. Forced swimming test (FST) was used to verify the induction of animal model of depression and to screen the effect of antidepressant effect of low-level laser at the end of the experiment. Monoamine level, oxidative stress markers, and activities of acetylcholinesterase (AchE) and monoamine oxidase (MAO) were determined in the cortex and hippocampus of the rat brain. Reserpine resulted in depletion of monoamines and elevation in the oxidative stress markers and change in the enzymatic activities measured in both brain areas. Laser irradiation has an inhibitory action on the monoamine oxidase (MAO) in the cortex and hippocampus leading to elevation of the monoamine levels and attenuation of the oxidative stress in the studied areas. FST has emphasized the antidepressant effect of the utilized laser irradiation parameters on the behavioral level. The present findings provide evidence for the antidepressant and antioxidant actions of NIR low-power laser in the rat model of depression. Accordingly, low-laser irradiation may be presented as a potential candidate modality for depression treatment.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| |
Collapse
|
17
|
Farazi N, Mahmoudi J, Sadigh-Eteghad S, Farajdokht F, Rasta SH. Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive- and anxiety-like behaviors in a mice model of noise stress. Lasers Med Sci 2021; 37:1181-1191. [PMID: 34432186 DOI: 10.1007/s10103-021-03370-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
The development of anxiety and depression due to chronic exposure to noise stress has remained as an unsolved health problem so far. Despite the studies suggesting the neuroenhancement effects of transcranial photobiomodulation (tPBM) and housing in an enriched environment (EE), the combined effects of these treatments have not been elucidated yet. Also, there is no available data on the relationship between the application of tPBM and hippocampal brain-derived neurotrophic factor (BDNF) expression in animal models of stress. The present study aims to investigate the application of the tPBM and EE (alone or in combination) on depressive- and anxiety-like behaviors in a mice model of noise stress. Mice were divided into five groups: control, noise, noise + EE, noise + tPBM, and noise + EE + tPBM. Except for the control group, other groups were subjected to 110 dB SPL white noise for 4 h/day for 14 consecutive days and received their respective treatments. Forced Swimming Test (FST) was used to evaluate depressive-like behaviors. Elevated Plus Maze (EPM) and Open Field Test (OFT) were used to evaluate anxiety-like behaviors. BDNF, tyrosine receptor kinase B (TrkB), and cAMP response element-binding (CREB) protein levels in the hippocampus were determined by the Western blot method, and also serum corticosterone levels were assessed using an ELISA kit. Exposure to noise stress significantly elevated serum corticosterone level; downregulated hippocampal BDNF, TrkB, and CREB protein expressions; and resulted in depressive- and anxiety-like behaviors. While, the application of tPBM (810 nm wavelength, 8 J/cm2 fluence, 10 Hz pulsed wave mode), housing in EE, and their combination lowered corticosterone levels, upregulated the BDNF/TrkB/CREB signaling pathway in the hippocampus, and improved behavioral outcomes in noise stress subjected mice. Our finding revealed the improving effects of tPBM and EE on depressive and anxiety-like behaviors induced by noise stress, possibly by augmenting the BDNF/TrkB/CREB signaling pathway.
Collapse
Affiliation(s)
- Narmin Farazi
- Department of Medical Physics, Tabriz University of Medical Sciences, 51666-14766, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, 51666-14766, Tabriz, Iran. .,Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran. .,School of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
18
|
Spera V, Sitnikova T, Ward MJ, Farzam P, Hughes J, Gazecki S, Bui E, Maiello M, De Taboada L, Hamblin MR, Franceschini MA, Cassano P. Pilot Study on Dose-Dependent Effects of Transcranial Photobiomodulation on Brain Electrical Oscillations: A Potential Therapeutic Target in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1481-1498. [PMID: 34092636 DOI: 10.3233/jad-210058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain. OBJECTIVE We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF). METHODS We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.6±12.9 years]. c-tPBM near-infrared radiation (NIR) (830 nm; 54.8 mW/cm2; 65.8 J/cm2; 2.3 kJ) and p-tPBM (830 nm; 10 Hz; 54.8 mW/cm2; 33%; 21.7 J/cm2; 0.8 kJ) were delivered concurrently to the frontal areas by four LED clusters. EEG and DCS recordings were performed weekly before, during, and after each tPBM session. RESULTS c-tPBM significantly boosted gamma (t = 3.02, df = 7, p < 0.02) and beta (t = 2.91, df = 7, p < 0.03) EEG spectral powers in eyes-open recordings and gamma power (t = 3.61, df = 6, p < 0.015) in eyes-closed recordings, with a widespread increase over frontal-central scalp regions. There was no significant effect of tPBM on CBF compared to sham. CONCLUSION Our data suggest a dose-dependent effect of tPBM with NIR on cerebral gamma and beta neuronal activity. Altogether, our findings support the neuromodulatory effect of transcranial NIR.
Collapse
Affiliation(s)
- Vincenza Spera
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | - Tatiana Sitnikova
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Parya Farzam
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeremy Hughes
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Gazecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marco Maiello
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Angela Franceschini
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Yang M, Yang Z, Wang P, Sun Z. Current application and future directions of photobiomodulation in central nervous diseases. Neural Regen Res 2021; 16:1177-1185. [PMID: 33269767 PMCID: PMC8224127 DOI: 10.4103/1673-5374.300486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions. Photobiomodulation can promote neurogenesis and elicit anti-apoptotic, anti-inflammatory and antioxidative responses. Its therapeutic effects have been demonstrated in studies on neurological diseases, peripheral nerve injuries, pain relief and wound healing. We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019. The NCBI PubMed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. We reviewed 95 papers and analyzed. Photobiomodulation has wide applicability in the treatment of stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, major depressive disorder, and other diseases. Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases. However, additional studies with adequate sample size are needed to optimize treatment parameters.
Collapse
Affiliation(s)
- Muyue Yang
- Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Chengdu, Sichuan Province, China
| | - Pu Wang
- Department of Rehabilitation Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhihui Sun
- Department of Psychosomatic Medicine, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu Province, China
| |
Collapse
|
20
|
Elkholy NS, Shafaa MW, Mohammed HS. Cationic liposome-encapsulated carotenoids as a potential treatment for fibromyalgia in an animal model. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166150. [PMID: 33892079 DOI: 10.1016/j.bbadis.2021.166150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022]
Abstract
The present study investigated the efficacy of cationic liposome-encapsulated carotenoids (lutein or beta-carotene) as a treatment in an animal model of fibromyalgia (FM). Preparation and characterization of the nano-sized cationic liposomal carotenoids have been carried out. FM has been induced in the experimental animals via successive subcutaneous reserpine injection (1 mg/kg). Animals were divided into four groups; control, reserpinized (Res), reserpinized and cationic liposomal lutein-treated (Res + CL-Lut), and reserpinized and liposomal beta-carotene-treated (Res + CL-Bc). Levels of norepinephrine (NE), dopamine (DA), and serotonin (5-HT), and oxidative stress markers (MDA, H2O2, NO, and GSH) were determined in the brain's cortical tissue of the different groups of animals. Furthermore, the spectral analysis of the electrocorticogram (ECoG) was carried out. Animal behavior was tested for different animal groups. Results showed a significant reduction in monoamines, an elevation of oxidative stress markers, a shift in the ECoG frequency band power, and a change in pain threshold of the reserpinized animals. A return to a non-significant difference from the control values of all the measured parameters has been obtained after two weeks of cationic liposomal carotenoid preparations treatment. The present findings shed more light on the validity of the reserpine model of FM and provide evidence for the antidepressant, antioxidant, and anti-nociceptive potential of the cationic liposomal carotenoids. The present results proofed that the natural product preparations on a nano-sized scale could be a good alternative to the pharmacological interventions for FM treatment.
Collapse
Affiliation(s)
- Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
21
|
Photobiomodulation as a promising new tool in the management of psychological disorders: A systematic review. Neurosci Biobehav Rev 2020; 119:242-254. [PMID: 33069687 DOI: 10.1016/j.neubiorev.2020.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation is a brain modulation technique that has become a promising treatment for multiple pathologies. This systematic review collects studies up to 2019 about the beneficial effects of photobiomodulation as a therapy for treating psychological disorders and a tool for modulating cognitive processes. This technique is mostly used for the treatment of depression and stress, as well as to study its effects on psychological variables in healthy subjects. Despite the lack of parameters used, photobiomodulation seems to achieve enough brain penetration to produce beneficial effects in healthy subjects and patients with multiple pathologies. The best parameters are the wavelengths of 810 nm for the treatment of depression and 1064 nm for cognitive enhancement, along with a scalp irradiance of 250 mW/cm2 and a scalp yield of 60 J/cm2. It weekly application on the bilateral prefrontal area and the default mode network seems to be ideal for the maintenance of the effects. Photobiomodulation could be used as an effective and safe therapy for the treatment of multiple psychological pathologies.
Collapse
|
22
|
Hamdy O, Mohammed HS. Investigating the transmission profiles of 808 nm laser through different regions of the rat's head. Lasers Med Sci 2020; 36:803-810. [PMID: 32638241 DOI: 10.1007/s10103-020-03098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
Studying light penetration in biological tissues became a very important concern in various medical applications. It is an essential factor required to resolve the optical dose in many diagnostic and therapeutic procedures. The absorption and scattering properties of the inspected tissue control how deep the light will travel inside the tissue. However, these optical properties are highly dependent on the wavelength of the light source. In this work, the light transmission through different regions of the rat's head was investigated and the minimum laser power required to reach different parts of the head is also determined using 808-nm semiconductor laser diode. The power variation in different regions of the head is estimated using Monte Carlo simulation. Absorption and scattering coefficients of the head layers were calculated using integrating sphere measurements and Kubelka-Munk model. The absorption coefficient of the skin was 0.19 ± 0.071 mm-1, 0.024 ± 0.11 mm-1 for skull, and 0.35 ± 0.13 mm-1 for the brain, while the scattering coefficients were 7.35 ± 1.09, 2.71 ± 0.37, and 13.04 ± 0.36 mm-1 for skin, skull, and brain, respectively. The obtained results provide a relationship between laser incident power and the depth in the rat's head showing a higher optical transmission at the frontal part of the head than the middle or back regions due to the variations in the skull thickness. Therefore, the study revealed that the transmitted power of 808 nm laser at different incident locations on the head is nonlinear and variable due to different skull's thickness.
Collapse
Affiliation(s)
- Omnia Hamdy
- Department Of Engineering Applications of Laser, The National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
23
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
Cassano P, Caldieraro MA, Norton R, Mischoulon D, Trinh NH, Nyer M, Dording C, Hamblin MR, Campbell B, Iosifescu DV. Reported Side Effects, Weight and Blood Pressure, After Repeated Sessions of Transcranial Photobiomodulation. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:651-656. [PMID: 31647774 DOI: 10.1089/photob.2019.4678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Transcranial photobiomodulation (t-PBM) consists in the delivery of near-infrared light (NIR) to the scalp, directed to cortical areas of the brain. NIR t-PBM recently emerged as a potential therapy for depression, although safety of repeated treatments has not been adequately explored. Objective: This study assessed incidence of side effects, including weight and blood pressure changes, during repeated sessions of NIR t-PBM using a light-emitting diode source. Methods: We performed a secondary analysis of a double-blind clinical trial on t-PBM for major depressive disorder. Eighteen individuals received NIR t-PBM (n = 9) or sham (n = 9) twice weekly for 8 weeks. Side effects were assessed using the Systematic Assessment for Treatment-Emergent Effects-Specific Inquiry. In 14 individuals (nNIR = 6 vs. nsham = 8), body weight and systemic blood pressure were recorded at baseline and end-point. Results: More subjects in the NIR t-PBM group experienced side effects compared to sham, but only a trend for statistical significance was observed (χ2 = 3.60; df = 1; p = 0.058). The rate of side effects described by participants as "severe" in intensity was low and similar between the treatment groups (χ2 = 0.4; df = 1; p = 0.53), with no serious adverse events. Most side effects resolved during the study and treatment interruption were not required. Changes in weight and systolic blood pressure across groups were neither significant nor approached significance. In the NIR t-PBM group, diastolic blood pressure increased and reached statistical-however not clinical-significance (5.67 ± 7.26 vs. -6.13 ± 6.88; z = -2.40, p = 0.016). Conclusions: This small-sample, exploratory study indicates repeated sessions of NIR t-PBM might be associated with treatment-emergent side effects. The systemic metabolic and hemodynamic profile of repeated t-PBM appeared benign. Future studies with larger samples and longer follow-up are needed to more accurately determine the side-effect profile and safety of NIR t-PBM.
Collapse
Affiliation(s)
- Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Richard Norton
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Nhi-Ha Trinh
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Maren Nyer
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Christina Dording
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Benjamin Campbell
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Dan V Iosifescu
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| |
Collapse
|
25
|
Askalsky P, Iosifescu DV. Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives. Neuropsychiatr Dis Treat 2019; 15:3255-3272. [PMID: 31819453 PMCID: PMC6878920 DOI: 10.2147/ndt.s188906] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent condition associated with high rates of disability, as well as suicidal ideation and behavior. Current treatments for MDD have significant limitations in efficacy and side effect burden. FDA-approved devices for MDD are burdensome (due to repeated in-office procedures) and are most suitable for severely ill subjects. There is a critical need for device-based treatments in MDD that are efficacious, well-tolerated, and easy to use. In this paper, we review a novel neuromodulation strategy, transcranial photobiomodulation (t-PBM) with near-infrared light (NIR). The scope of our review includes the known biological mechanisms of t-PBM, as well as its efficacy in animal models of depression and in patients with MDD. Theoretically, t-PBM penetrates into the cerebral cortex, stimulating the mitochondrial respiratory chain, and also significantly increases cerebral blood flow. Animal and human studies, using a variety of t-PBM settings and experimental models, suggest that t-PBM may have significant efficacy and good tolerability in MDD. In aggregate, these data support the need for large confirmatory studies for t-PBM as a novel, likely safe, and easy-to-administer antidepressant treatment.
Collapse
Affiliation(s)
- Paula Askalsky
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
| | - Dan V Iosifescu
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
26
|
Zinchenko E, Navolokin N, Shirokov A, Khlebtsov B, Dubrovsky A, Saranceva E, Abdurashitov A, Khorovodov A, Terskov A, Mamedova A, Klimova M, Agranovich I, Martinov D, Tuchin V, Semyachkina-Glushkovskaya O, Kurts J. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for non-pharmacologic therapy of Alzheimer's disease. BIOMEDICAL OPTICS EXPRESS 2019; 10:4003-4017. [PMID: 0 PMCID: PMC6701516 DOI: 10.1364/boe.10.004003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 05/03/2023]
Abstract
In this pilot study, we analyzed effects of transcranial photobiomodulation (tPBM, 1267 nm, 32 J/cm2) on clearance of beta-amyloid (Aβ) from the mouse brain. The immunohistochemical and confocal data clearly demonstrate the significant reduction of deposition of Aβ plaques in mice after tPBM vs. untreated animals. The behavior tests showed that tPBM improved the cognitive, memory and neurological status of mice with Alzheimer's disease (AD). Using of our original method based on optical coherence tomography (OCT) analysis of clearance of gold nanorods (GNRs) from the brain, we proposed possible mechanism underlying tPBM-stimulating effects on clearance of Aβ via the lymphatic system of the brain and the neck. These results open breakthrough strategies for a non-pharmacological therapy of Alzheimer's disease and clearly demonstrate that tPBM might be a promising therapeutic target for preventing or delaying Alzheimer's disease.
Collapse
Affiliation(s)
| | - Nikita Navolokin
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Saratov State Medical University, Saratov 410012, Russia
| | - Alexander Shirokov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Saratov State Medical University, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Entusiastov Str. 13, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Entusiastov Str. 13, Saratov 410049, Russia
| | | | - Elena Saranceva
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Arkady Abdurashitov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Tomsk State University, Laboratory of Biophotonics, 36 Lenin's Ave., Tomsk 634050, Russian Federation
| | | | - Andrey Terskov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Aysel Mamedova
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Maria Klimova
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Ilana Agranovich
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Dmitry Martinov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Valery Tuchin
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Tomsk State University, Laboratory of Biophotonics, 36 Lenin's Ave., Tomsk 634050, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, 24 Rabochaya Str., Saratov 410028, Russian Federation
| | | | - Jurgen Kurts
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
27
|
Caldieraro MA, Cassano P. Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms. J Affect Disord 2019; 243:262-273. [PMID: 30248638 DOI: 10.1016/j.jad.2018.09.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/24/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Photobiomodulation (PBM) with red and near-infrared light (NIR) -also known as Low-Level Light Therapy-is a low risk, inexpensive treatment-based on non-retinal exposure-under study for several neuropsychiatric conditions. The aim of this paper is to discuss the proposed mechanism of action and to perform a systematic review of pre-clinical and clinical studies on PBM for major depressive disorder (MDD). METHODS A search on MEDLINE and EMBASE databases was performed in July 2017. No time or language restrictions were used. Studies with a primary focus on MDD and presenting original data were included (n = 17). References on the mechanisms of action of PBM also included review articles and studies not focused on MDD. RESULTS Red and NIR light penetrate the skull and modulate brain cortex; an indirect effect of red and NIR light, when delivered non-transcranially, is also postulated. The main proposed mechanism for PBM is the enhancement of mitochondrial metabolism after absorption of NIR energy by the cytochrome C oxidase; however, actions on other pathways relevant to MDD are also reported. Studies on animal models indicate a benefit from PBM that is comparable to antidepressant medications. Clinical studies also indicate a significant antidepressant effect and good tolerability. LIMITATIONS Clinical studies are heterogeneous for population and treatment parameters, and most lack an appropriate control. CONCLUSIONS Preliminary evidence supports the potential of non-retinal PBM as a novel treatment for MDD. Future studies should clarify the ideal stimulation parameters as well as the overall efficacy, effectiveness and safety profile of this treatment.
Collapse
Affiliation(s)
- Marco A Caldieraro
- Serviço de Psiquiatria, Hospital de Clínicas de Porto Alegre. Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil.
| | - Paolo Cassano
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital. 1 Bowdoin Square, Boston, MA 02114, USA; Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston. 1 Bowdoin Square, MA 02114, USA
| |
Collapse
|
28
|
Near-infrared photobiomodulation combined with coenzyme Q 10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull 2018; 144:213-222. [PMID: 30385146 DOI: 10.1016/j.brainresbull.2018.10.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
This study was aimed to evaluate the effects of near-infrared (NIR) photobiomodulation (PBM) combined with coenzyme Q10 (CoQ10) on depressive-like behavior, cerebral oxidative stress, inflammation, and apoptosis markers in mice. To induce a depressive-like model, mice were subjected to sub-chronic restraint stress for 5 consecutive days. NIR PBM (810 nm laser, 33.3 J/cm2) and/or CoQ10 (500 mg/kg/day, gavage) were administered for five days concomitantly with immobilization. Behavior was evaluated by the forced swim test (FST), tail suspension test (TST), and open field test (OFT). Mitochondrial membrane potential as well as oxidative stress, neuroinflammatory, and markers of apoptosis were evaluated in the prefrontal cortex (PFC) and hippocampus (HIP). The serum levels of pro-inflammatory cytokines, cortisol, and corticosterone were also measured. PBM or CoQ10, or the combination, ameliorated depressive-like behaviors induced by restraint stress as indicated by decreased immobility time in both the FST and TST. PBM and/or CoQ10 treatments decreased lipid peroxidation and enhanced total antioxidant capacity (TAC), GSH levels, GPx and SOD activities in both brain areas. The neuroinflammatory response in the HIP and PFC was suppressed, as indicated by decreased NF-kB, p38, and JNK levels in PBM and/or CoQ10 groups. Intrinsic apoptosis biomarkers, BAX, Bcl-2, cytochrome c release, and caspase-3 and -9, were also significantly down-regulated by both treatments. Furthermore, both treatments decreased the elevated serum levels of cortisol, corticosterone, TNF-α, and IL-6 induced by restraint stress. Transcranial NIR PBM and CoQ10 therapies may be effective antidepressant strategies for the prevention of psychopathological and behavioral symptoms induced by stress.
Collapse
|
29
|
Cassano P, Petrie SR, Mischoulon D, Cusin C, Katnani H, Yeung A, De Taboada L, Archibald A, Bui E, Baer L, Chang T, Chen J, Pedrelli P, Fisher L, Farabaugh A, Hamblin MR, Alpert JE, Fava M, Iosifescu DV. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomed Laser Surg 2018; 36:634-646. [PMID: 30346890 DOI: 10.1089/pho.2018.4490] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: Our objective was to test the antidepressant effect of transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light in subjects suffering from major depressive disorder (MDD). Background: t-PBM with NIR light is a new treatment for MDD. NIR light is absorbed by mitochondria; it boosts cerebral metabolism, promotes neuroplasticity, and modulates endogenous opioids, while decreasing inflammation and oxidative stress. Materials and methods: We conducted a double-blind, sham-controlled study on the safety and efficacy [change in Hamilton Depression Rating Scale (HAM-D17) total score at end-point] of adjunct t-PBM NIR [823 nm; continuous wave (CW); 28.7 × 2 cm2; 36.2 mW/cm2; up to 65.2 J/cm2; 20-30 min/session], delivered to dorsolateral prefrontal cortex, bilaterally and simultaneously, twice a week, for 8 weeks, in subjects with MDD. Baseline observation carried forward (BOCF), last observation carried forward (LOCF), and completers analyses were performed. Results: The effect size for the antidepressant effect of t-PBM, based on change in HAM-D17 total score at end-point, was 0.90, 0.75, and 1.5 (Cohen's d), respectively for BOCF (n = 21), LOCF (n = 19), and completers (n = 13). Further, t-PBM was fairly well tolerated, with no serious adverse events. Conclusions: t-PBM with NIR light demonstrated antidepressant properties with a medium to large effect size in patients with MDD. Replication is warranted, especially in consideration of the small sample size.
Collapse
Affiliation(s)
- Paolo Cassano
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital, Boston, Massachusetts
| | - Samuel R Petrie
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - David Mischoulon
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Cristina Cusin
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Husam Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Albert Yeung
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Abigal Archibald
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Bui
- Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital, Boston, Massachusetts
| | - Lee Baer
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Trina Chang
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Justin Chen
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Paola Pedrelli
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Lauren Fisher
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Amy Farabaugh
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Jonathan E Alpert
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Maurizio Fava
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Dan V Iosifescu
- Adult Psychopharmacology Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|