1
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Varela PJR, Barros PAG, Montagner PG, Provout MB, Martinez EF, Suzuki SS, Garcez AS. Can Collagen Membrane on Bone Graft Interfere with Light Transmission and Influence Tissue Neoformation During Photobiomodulation? A Preliminary Study. Photobiomodul Photomed Laser Surg 2023; 41:167-174. [PMID: 37074308 DOI: 10.1089/photob.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Objective: This study qualitatively and quantitatively evaluated the transmission of light through a collagen membrane and the consequent local bone formation in a critical bone defect in vitro and in an animal model. Background: Currently, bone substitutes and collagen membranes are used to promote new bone formation; however, when associated with photobiomodulation, biomaterials can act as a barrier, hindering the passage of light radiation to the area to be treated. Methods: Light transmittance was evaluated in vitro with a power meter and a 100 mW, 808 nm laser source with and without membrane. Twenty-four male rats received a critical surgical defect of 5 mm in diameter in the calvarial bone, subsequently a biomaterial (Bio-Oss; Geistlich®, Switzerland) was applied, and the animals were divided into the following three groups: G1-collagen membrane and no irradiation; G2-collagen membrane and photobiomodulation (irradiation with 4 J of 808 nm); and G3-photobiomodulation (4 J) followed by a collagen membrane. Histomophometric analyses were performed at 7 and 14 days after euthanasia. Results: The membrane reduced the light transmittance (808 nm) by an average of 78%. Histomophometric analyses showed significant differences in new blood vessels on day 7 and bone neoformation on day 14. Irradiation without membrane interposition resulted in a 15% more neoformed bone compared with the control (G1), and 6.5% more bone compared with irradiation over the membrane (G2). Conclusions: The collagen membrane interferes with light penetration during photobiomodulation, decreases light dosimetry on the wound area, and interferes with bone neoformation.
Collapse
|
3
|
Turgut F, Yanmaz LE. Investigating effects of locally applied boric acid on fracture healing with and without low-level laser therapy. Lasers Med Sci 2022; 38:11. [PMID: 36539645 DOI: 10.1007/s10103-022-03695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the effects on fracture healing of locally applied boric acid (BA) with and without low-level laser therapy (LLLT). A unicortical femoral defect was surgically created on the anterolateral surface of proximal femur of each subject. The subjects, totaling 56 Wistar albino rats, were randomly allocated into four groups (n = 14 each): control, LLLT (λ = 905 μm, 10,000 Hz, 25 mW, and peak power 25 W), BA (40 mg/kg), and BA + LLLT groups. On the 30th day, the highest radiological score was recorded for the BA + LLLT group (3.63 [2-4]), followed by the BA (3.38 [2.75-3.75]), control (3 [2-3.25]), and LLLT (2.5 [1.25-3]) groups. On days 15 and 30 post-surgery, malondialdehyde levels were significantly lower among the BA + LLLT group compared to the control group (p < 0.001). On day 30, superoxide dismutase, catalase, and alkaline phosphatase levels were highest in the BA + LLLT group compared to the control group (p < 0.001). When the histopathological, immunofluorescence, and immunohistochemical findings on the 15th and 30th days were compared with the control group, a statistically significant difference was found for the BA and BA + LLLT groups (p ˂ 0.05). This study suggests that locally applied BA with LLLT may accelerate fracture healing.
Collapse
Affiliation(s)
- Ferda Turgut
- Department of Surgery, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Latif Emrah Yanmaz
- Department of Surgery, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
4
|
Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCollagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.
Graphical abstract
Collapse
|
5
|
In Vivo Study of Nasal Bone Reconstruction with Collagen, Elastin and Chitosan Membranes in Abstainer and Alcoholic Rats. Polymers (Basel) 2022; 14:polym14010188. [PMID: 35012210 PMCID: PMC8747723 DOI: 10.3390/polym14010188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to evaluate the use of collagen, elastin, or chitosan biomaterial for bone reconstruction in rats submitted or not to experimental alcoholism. Wistar male rats were divided into eight groups, submitted to chronic alcohol ingestion (G5 to G8) or not (G1 to G4). Nasal bone defects were filled with clot in animals of G1 and G5 and with collagen, elastin, and chitosan grafts in G2/G6, G3/G7, and G4/G8, respectively. Six weeks after, all specimens underwent radiographic, tomographic, and microscopic evaluations. Bone mineral density was lower in the defect area in alcoholic animals compared to the abstainer animals. Bone neoformation was greater in the abstainer groups receiving the elastin membrane and in abstainer and alcoholic rats receiving the chitosan membrane (15.78 ± 1.19, 27.81 ± 0.91, 47.29 ± 0.97, 42.69 ± 1.52, 13.81 ± 1.60, 18.59 ± 1.37, 16.54 ± 0.89, and 37.06 ± 1.17 in G1 to G8, respectively). In conclusion, osteogenesis and bone density were more expressive after the application of the elastin matrix in abstainer animals and of the chitosan matrix in both abstainer and alcoholic animals. Chronic alcohol ingestion resulted in lower bone formation and greater formation of fibrous connective tissue.
Collapse
|
6
|
Cunha FB, Pomini KT, Plepis AMDG, Martins VDCA, Machado EG, de Moraes R, Munhoz MDAES, Machado MVR, Duarte MAH, Alcalde MP, Buchaim DV, Buchaim RL, Fernandes VAR, Pereira EDSBM, Pelegrine AA, da Cunha MR. In Vivo Biological Behavior of Polymer Scaffolds of Natural Origin in the Bone Repair Process. Molecules 2021; 26:molecules26061598. [PMID: 33805847 PMCID: PMC8002007 DOI: 10.3390/molecules26061598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).
Collapse
Affiliation(s)
- Fernando Bento Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, SP, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil;
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, SP, Brazil;
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Renato de Moraes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Marcelo de Azevedo e Souza Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Michela Vanessa Ribeiro Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, SP, Brazil;
| | - Murilo Priori Alcalde
- Department of Health Science, Unisagrado University Center, Bauru 17011-160, SP, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil;
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, SP, Brazil;
- Correspondence: ; Tel.: +55-1432358220
| | - Victor Augusto Ramos Fernandes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Laboratory of Anatomy, University Center Our Lady of Patronage (CEUNSP), University of South Cruise, Itu 13300-200, SP, Brazil
| | | | - André Antonio Pelegrine
- Research Institute, Postgraduate Program, São Leopoldo Mandic, School of Dentistry, Campinas 13045-755, SP, Brazil;
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
- Laboratory of Anatomy, University Center Our Lady of Patronage (CEUNSP), University of South Cruise, Itu 13300-200, SP, Brazil
- Research Institute, Postgraduate Program, São Leopoldo Mandic, School of Dentistry, Campinas 13045-755, SP, Brazil;
| |
Collapse
|