1
|
Rath S, Das S. Oxidative stress-induced DNA damage and DNA repair mechanisms in mangrove bacteria exposed to climatic and heavy metal stressors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122722. [PMID: 37863253 DOI: 10.1016/j.envpol.2023.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Bacteria thriving in the mangrove ecosystem are major drivers of elemental cycles. Climate change and environmental stressors (heavy metals) influence the performance of these microorganisms, thereby affecting the biogeochemical cycle. The present study reports the genotoxic effect of climatic and heavy metal stressors on mangrove bacteria and their adaptation strategies. Comparative analysis between two bacterial strains, Bacillus stercoris GST-03 and Pseudomonas balearica DST-02 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India, showed cellular injuries in response to various stressors as evident by declined growth, elevated levels of reactive oxygen species (ROS) and resulted DNA damage. B. stercoris GST-03 showed more tolerance towards acidic pH, whereas P. balearica DST-02 showed higher tolerance towards UV exposure and heavy metals (Lead and Cadmium). The adaptation strategies of the strains revealed a significant role of GST in ROS scavenging activity and the involvement of Nucleotide excision repair or SOS response pathways. However, irreparable DNA damage was observed at pH 9 and 200 ppm Cd in B. stercoris GST-03, and at pH 4, 1000 ppm of Pb and 200 ppm of Cd in P. balearica DST-02. The current findings provide a broad overview of bacterial response and adaptability concerning future climate and environmental changes.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
2
|
Song C, Wen R, Zhou J, Zeng X, Kou Z, Li Y, Yun F, Wu R. UV C Light from a Light-Emitting Diode at 275 Nanometers Shortens Wound Healing Time in Bacterium- and Fungus-Infected Skin in Mice. Microbiol Spectr 2022; 10:e0342422. [PMID: 36453911 PMCID: PMC9769979 DOI: 10.1128/spectrum.03424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the changes in pathogenic species and the absence of research on topical skin antibiotics, the therapy of skin and soft tissue infections (SSTIs) is facing more and more severe challenges. It is particularly urgent to look for alternative therapies without induction of drug resistance. UV C (UVC) light within the range of 200 to 280 nm is one of the most common techniques used to kill and/or inactivate pathogenic microorganisms. However, the traditional most commonly used wavelength of 254 nm irradiated from a low-pressure mercury lamp is hazardous to human health, being both carcinogenic and damaging to eye tissues, which limits its applications in vivo. This research aimed to investigate the antimicrobial properties and influence of 275-nm UVC light from a light-emitting diode (UVC-LED light) on wound healing time. Five bacteria, three fungi, and scalded-mouse models combined with SSTIs were used to evaluate the antimicrobial effect in vitro and in vivo. 275-nm UVC-LED light inactivated both bacteria and fungi with a very short irradiation time in vitro and induced neither DNA damage nor epidermal lesions in the mice's skin. Furthermore, in mouse models of SSTIs induced by either methicillin-resistant Staphylococcus aureus (MRSA) or Candida albicans, the 275-nm UVC-LED light showed significant antimicrobial effects and shortened the wound healing time compared with that in the no-irradiation group. UVC-LED light at 275 nm has the potential to be a new form of physical therapy for SSTIs. IMPORTANCE As a common clinical problem, the therapy of SSTIs is facing growing challenges due to an increase in the number of drug-resistant bacteria and fungi. UV C (UVC) light sterilization has been widely used in all aspects of daily life, but there are very few reports about in vivo therapy using UVC light. It is well known that prolonged exposure to UVC light increases the possibility of skin cancer. In addition, it is also very harmful for eyes. UV irradiation with 254-nm UVC light can cause corneal damage, like thinning of the corneal epithelial layer, superficial punctate keratitis, corneal erosion, etc. In this study, we focused on looking for a more accessible light source and safer UVC wavelength, and 275-nm UVC LED light was chosen. We investigated its applicability for SSTIs therapy with relative skin safety and expected that it could be used as a new physical therapy method for SSTIs.
Collapse
Affiliation(s)
- Chenghua Song
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ruichao Wen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxuan Zhou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zi Kou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Li
- Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Feng Yun
- Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Bui TKN, Mawatari K, Emoto T, Fukushima S, Shimohata T, Uebanso T, Akutagawa M, Kinouchi Y, Takahashi A. UV-LED irradiation reduces the infectivity of herpes simplex virus type 1 by targeting different viral components depending on the peak wavelength. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112410. [PMID: 35193038 DOI: 10.1016/j.jphotobiol.2022.112410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is an enveloped virus that mainly infects humans. Given its high global prevalence, disinfection is critical for reducing the risk of infection. Ultraviolet-light-emitting diodes (UV-LEDs) are eco-friendly irradiating modules with different peak wavelengths, but the molecules degraded by UV-LED irradiation have not been clarified. To identify the target viral molecules of UV-LEDs, we exposed HSV-1 suspensions to UV-LED irradiation at wavelengths of 260-, 280-, 310-, and 365-nm and measured viral DNA, protein, and lipid damage and infectivity in host cells. All UV-LEDs substantially reduced by inhibiting host cell transcription, but 260- and 280-nm UV-LEDs had significantly stronger virucidal efficiency than 310- and 365-nm UV-LEDs. Meanwhile, 260- and 280-nm UV-LEDs induced the formation of viral DNA photoproducts and the degradation of viral proteins and some phosphoglycerolipid species. Unlike 260- and 280-nm UV-LEDs, 310- and 365-nm UV-LEDs decreased the viral protein levels, but they did not drastically change the levels of viral DNA photoproducts and lipophilic metabolites. These results suggest that UV-LEDs reduce the infectivity of HSV-1 by targeting different viral molecules based on the peak wavelength. These findings could facilitate the optimization of UV-LED irradiation for viral inactivation.
Collapse
Affiliation(s)
- Thi Kim Ngan Bui
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan.
| | - Takahiro Emoto
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Shiho Fukushima
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan; Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama, Fukui 917-0003, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Masatake Akutagawa
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Yohsuke Kinouchi
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| |
Collapse
|
4
|
Fukuda S, Ito S, Nishikawa J, Takagi T, Kubota N, Otsuyama KI, Tsuneoka H, Nojima J, Harada K, Mishima K, Suehiro Y, Yamasaki T, Sakaida I. Deep Ultraviolet Light-Emitting Diode Light Therapy for Fusobacterium nucleatum. Microorganisms 2021; 9:microorganisms9020430. [PMID: 33669771 PMCID: PMC7922187 DOI: 10.3390/microorganisms9020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Fusobacterium nucleatum, which is associated with periodontitis and gingivitis, has been detected in colorectal cancer (CRC). Methods: We evaluated the bactericidal effect of deep ultraviolet (DUV) light-emitting diode (LED) light therapy on F. nucleatum both qualitatively and quantitatively. Two DUV-LEDs with peak wavelengths of 265 and 280-nm were used. DNA damage to F. nucleatum was evaluated by the production of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6–4PP). Results: DUV-LEDs showed a bactericidal effect on F. nucleatum. No colony growth was observed after 3 min of either 265 nm or 280 nm DUV-LED irradiation. The survival rates of F. nucleatum under 265 nm DUV-LED light irradiation dropped to 0.0014% for 10 s and to 0% for 20 s irradiation. Similarly, the survival rate of F. nucleatum under 280 nm DUV-LED light irradiation dropped to 0.00044% for 10 s and 0% for 20 s irradiation. The irradiance at the distance of 35 mm from the DUV-LED was 0.265 mW/cm2 for the 265 nm LED and 0.415 mW/cm2 for the 280 nm LED. Thus, the radiant energy for lethality was 5.3 mJ/cm2 for the 265 nm LED and 8.3 mJ/cm2 for the 280 nm LED. Amounts of CPD and 6–4PP in F. nucleatum irradiated with 265 nm DUV-LED light were 6.548 ng/µg and 1.333 ng/µg, respectively. Conclusions: DUV-LED light exerted a bactericidal effect on F. nucleatum by causing the formation of pyrimidine dimers indicative of DNA damage. Thus, DUV-LED light therapy may have the potential to prevent CRC.
Collapse
Affiliation(s)
- Soichiro Fukuda
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Shunsuke Ito
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| | - Jun Nishikawa
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
- Correspondence: ; Tel.: +81-836-22-2835
| | - Tatsuya Takagi
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Naoto Kubota
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Ken-ichiro Otsuyama
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Hidehiro Tsuneoka
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Junzo Nojima
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Koji Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Katsuaki Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| |
Collapse
|