1
|
Tan L, Wang Y, Li M. Formation of Microporous Poly Acrylonitrile-Co-Methyl Acrylate Membrane via Thermally Induced Phase Separation for Immiscible Oil/Water Separation. Molecules 2024; 29:2302. [PMID: 38792160 PMCID: PMC11123695 DOI: 10.3390/molecules29102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
An interconnected sponge structure and porous surface poly (acrylonitrile-co-methyl acrylate) (P(AN-MA)) microfiltration membranes (MF) were fabricated via thermally induced phase separation (TIPS) by using caprolactam (CPL), and acetamide (AC) as the mixed diluent. When the ternary system was composed of 15 wt.% P(AN-MA), 90 wt.% CPL, and 10 wt.% AC and formed in a 25 °C air bath, the membrane exhibited the highest water flux of 8107 L/m2·h. The P(AN-MA) membrane contained hydrophobic groups (-COOCH3) and hydrophilic groups (-CN), leading it to exhibit oleophobic properties underwater and hydrophobic properties in oil. The membrane demonstrates efficient separation of immiscible oil/water mixtures. The pure water flux of the petroleum ether/water mixture measured 870 L/m2·h, and the pure oil flux of the petroleum tetrachloride/water mixture measured 1230 L/m2·h under the influence of gravity. Additionally, the recovery efficiency of diluents through recrystallization was 85.3%, significantly reducing potential pollution and production costs.
Collapse
Affiliation(s)
- Linli Tan
- College of Intelligent Systems Science and Technology, Hubei Minzu University, Enshi 445000, China
- Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Com, Enshi 445000, China
| | - Yuqi Wang
- College of Intelligent Systems Science and Technology, Hubei Minzu University, Enshi 445000, China
- Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Com, Enshi 445000, China
| | - Mingpu Li
- College of Intelligent Systems Science and Technology, Hubei Minzu University, Enshi 445000, China
- Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Com, Enshi 445000, China
| |
Collapse
|
2
|
Nguyen THA, Quang DT, Tan LV, Vo TK. Ultrasonic spray pyrolysis synthesis of TiO 2/Al 2O 3 microspheres with enhanced removal efficiency towards toxic industrial dyes. RSC Adv 2023; 13:5859-5868. [PMID: 36816090 PMCID: PMC9932635 DOI: 10.1039/d3ra00024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Developing low-cost and highly effective adsorbent materials to decolorate wastewater is still challenging in the industry. In this study, TiO2-modified Al2O3 microspheres with different TiO2 contents were produced by spray pyrolysis, which is rapid and easy to scale up. Results reveal that the modification of γ-Al2O3 with TiO2 reduced the crystallite size of Al2O3 and generated more active sites in the composite sample. The as-synthesized Al2O3-TiO2 microspheres were applied to remove anionic methyl orange (MO) and cationic rhodamine B (RB) dyes in an aqueous solution using batch and continuous flow column sorption processes. Results show that the Al2O3 microspheres modified with 15 wt% of TiO2 exhibited the maximum adsorbing capacity of ∼41.15 mg g-1 and ∼32.28 mg g-1 for MO and RB, respectively, exceeding the bare γ-Al2O3 and TiO2. The impact of environmental complexities on the material's reactivity for the organic pollutants was further delineated by adjusting the pH and adding coexisting ions. At pH ∼5.5, the TiO2/Al2O3 microspheres showed higher sorption selectivity towards MO. In the continuous flow column removal, the TiO2/Al2O3 microspheres achieved sorption capacities of ∼31 mg g-1 and ∼19 mg g-1 until the breakthrough point for MO and RB, respectively. The findings reveal that TiO2-modified Al2O3 microspheres were rapidly prepared by spray pyrolysis, and they effectively treated organic dyes in water in batch and continuous flow removal processes.
Collapse
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry140 Le Trong Tan, Tan PhuHo Chi Minh CityVietnam
| | - Duong Tuan Quang
- University of Education, Hue University34 Le Loi, Phu HoiHue City530000Vietnam
| | - Le Van Tan
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| | - The Ky Vo
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Engineering a low-cost diatomite with Zn-Mg-Al Layered triple hydroxide (LTH) adsorbents for the effectual removal of Congo red: Studies on batch adsorption, mechanism, high selectivity, and desorption. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Synthesis and characterization of montmorillonite – mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Enhanced Adsorption of Methyl Orange by Mongolian Montmorillonite after Aluminum Pillaring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article studies the enhancement of methyl orange (MO) adsorption by Mongolian montmorillonite (MMt) modified by the intercalation of the Keggin Al13 complex, followed by calcination during the pillaring process. The properties of MMt, Al-intercalated MMt (P-MMt), and Al-pillared MMt (P-MMt-C) were determined using X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface-area analysis, and a field emission scanning electron microscope (FE-SEM). The MO adsorption by modified MMt was subsequently evaluated. The XRD basal distance (d001) and the specific surface area (SSA) increased after the modification of MMt. The TGA results revealed that P-MMt and P-MMt-C had better thermal stability than MMt. The Al-pillared MMt obtained after calcination (e.g., P-MMt-C400) showed a larger basal distance and surface area than that without pillaring. The MO adsorption process of P-MMt-C400 was supposed to be dominated by chemisorption and heterogeneous multilayer adsorption, according to the kinetic and isotherm studies. The maximum adsorption capacity of P-MMt-C400 is 6.23 mg/g. The MO adsorption ability of Al-pillared MMt was contributed by the Keggin Al13 complex attracting MO and the increase in the surface area of macro-, meso- and micro-pores (>1.2 nm). The Al-pillared MMt in this study could be applied as an adsorbent in a water purification system to remove MO or other dye elements.
Collapse
|
6
|
Nano-Porous Composites of Activated Carbon–Metal Organic Frameworks (Fe-BDC@AC) for Rapid Removal of Cr (VI): Synthesis, Adsorption, Mechanism, and Kinetics Studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02237-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractMetal–organic frameworks (MOFs) are a group of porous materials that display potential in the elimination of toxic industrial compounds (TICs) from polluted water streams. However, their applications have so far been held up by issues due to their physical nature and cost. In this study, activated carbon (AC) is modified with an Fe-based MOF, iron terephthalate (Fe-BDC). A facile and cost-effective impregnation method is used for enhanced removal from aqueous solutions. The new adsorbent is characterized by SEM, FTIR, PXRD, and BET. The composite displays excellent uptake of Cr (VI) when compared to un-impregnated AC with a maximum monolayer adsorption capacity of 100 mg·g−1. The experimental data shows a high correlation to the Langmuir adsorption model. The adsorption kinetic study reveals that the adsorption of Cr (VI) to Fe-BDC@AC obeys the pseudo-first-order equation. The composite shows high reusability after five cycles and high adsorption rates reaching equilibrium in just 50 min. Such properties make the nanocomposite promising for water decontamination on larger scales compared to powder-based alternatives, such as individual MOF crystals.
Collapse
|
7
|
Evaluation of Amine Functionalized Thermal Power Plant Solid Waste for Industrial Wastewater Remediation. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8335566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Micro/nanoparticles generated after the combustion of coal/lignite in the thermal power plants were modified with amino groups of (3-aminopropyl) triethoxysilane (APTES). These silane-based functional particles were applied in textile dye (xylenol orange, XO and methyl orange, MO) removal process to deal with an industrial wastewater problem. The maximum adsorption efficiencies of APTES coated micro/nanoparticles for MO and XO dye molecules were calculated to be around 98% and 75%, respectively. The adsorption behavior of the LCFA against dyes is also assessed by investigating the effect of adsorbent dosage, contact time, pH, and temperature. The optimum dye removal was observed at a pH of 4.0, and the equilibrium was achieved within 5 min. The maximum uptake capacities of LCFA-APTES for MO and XO dye molecules were calculated to be around 17.91 and 14.72 mg g−1, respectively. This value is approximately 3 − 5 times higher than the similar adsorbent in the literature. The uptake mechanism of MO and XO dyes onto LCFA-APTES is governed by electrostatic interaction and hydrogen bonding between dye molecules and APTES. The surface chemical modifications and the nature of functional groups were ascertained by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray fluorescence (XRF), and X-ray photoelectron spectroscopy (XPS). The application of recovered micro/nanoparticles from solid wastes and their utilization for wastewater treatment is important not only for economy of developing countries but also for protecting the environment.
Collapse
|
8
|
Oke N, Mohan S. Development of nanoporous textile sludge based adsorbent for the dye removal from industrial textile effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126864. [PMID: 34416690 DOI: 10.1016/j.jhazmat.2021.126864] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The development of a novel textile sludge based activated carbon (TSBAC) adsorbent and its performance for the treatment of textile dyeing effluent, have been explained in this paper. TSBAC was prepared by the thermal treatment of textile effluent treatment sludge followed by the chemical activation using phosphoric acid. Characterization of TSBAC resulted in enhanced specific surface area (123.65 m2/g) along with the presence of active surface functional groups including -OH, -COOH, -CO. TSBAC showed superior adsorption capacity for methylene blue (123.6 mg/g), reactive red 198 (101.4 mg/g), and reactive yellow 145 (96.8 mg/g) individually, and from the synthetic textile effluent (106 mg/g). The pseudo-second order model and Langmuir isotherm model were found to be fitted well with batch experimental data. The results of the continuous column studies showed that adsorption capacity for methylene blue, reactive red 198, reactive yellow 145 are 101.8 mg/g, 76.6 mg/g, and 75.1 mg/g respectively, and the synthetic textile effluent resulted in an adsorption capacity value of 79.1 mg/g. The reuse potential of TSBAC was proved by effective dye removal up to six reuse cycles. The leachability studies proved that the used adsorbent could be safely disposed of without any harmful effect to the environment.
Collapse
Affiliation(s)
- Ninad Oke
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| | - S Mohan
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
9
|
Preparation of Sodalite and Faujasite Clay Composite Membranes and Their Utilization in the Decontamination of Dye Effluents. MEMBRANES 2021; 12:membranes12010012. [PMID: 35054538 PMCID: PMC8782013 DOI: 10.3390/membranes12010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
The present work describes the deposition of two zeolite films, sodalite and faujasite, by the hydrothermal method to tune the mesopores of clay support, which are prepared from a widely available clay depot from the central region of Morocco (Midelt). The clay supports were prepared by a powder metallurgy method from different granulometries with activated carbon as a porosity agent, using uniaxial compression followed by a sintering process. The 160 µm ≤ Φ ≤ 250 µm support showed the highest water flux compared to the supports made from smaller granulometries with a minimum water flux of 1405 L.m−2·h−1 after a working time of 2 h and 90 min. This support was chosen for the deposition of sodalite (SOM) and faujasite (FAM) zeolite membranes. The X-ray diffraction of sodalite and faujasite showed that they were well crystallized, and the obtained spectra corresponded well with the sought phases. Such findings were confirmed by the SEM analysis, which showed that SOM was crystalized as fine particles while the FAM micrographs showed the existence of crystals with an average size ranging from 0.53 µm to 1.8 µm with a bipyramidal shape and a square or Cubo octahedral base. Nitrogen adsorption analysis showed that the pore sizes of the supports got narrowed to 2.28 nm after deposition of sodalite and faujasite. The efficiencies of SOM and FAM membranes were evaluated by filtration tests of solutions containing methyl orange (MO) using a flow loop, which were developed for dead-end filtration. The retention of methylene orange (MO) followed the order: SOM > FAM > 160 µm ≤ Φ ≤ 250 µm clay support with 55%, 48% and 35%, respectively. Size exclusion was the predominant mechanism of filtration of MO through SOM, FAM, and the support. However, the charge repulsion between the surface of the membrane and the negatively charged MO have not been ruled out. The point of zero charge (pzc) of the clay support, SOM and FAM membrane were pHpzc = 9.4, pHpzc = 10.6, and pHpzc = 11.4, respectively. Filtrations of MO were carried out between pH = 5.5 and pH = 6.5, which indicated that the surface of the membranes was positively charged while MO was negatively charged. The interaction of MO with the membranes might have happened through its vertical geometry.
Collapse
|
10
|
Vo TK, Kim J. Facile synthesis of magnetic framework composite MgFe 2O 4@UiO-66(Zr) and its applications in the adsorption-photocatalytic degradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68261-68275. [PMID: 34268686 DOI: 10.1007/s11356-021-15423-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Recently, metal-organic framework (MOF)-based hybrid composites have attracted significant attention in photocatalytic applications. In this work, MgFe2O4@UiO-66(Zr) (MFeO@UiO) composites with varying compositions were successfully synthesized via facile in situ assemblies. Depositing the UiO-66(Zr) framework onto ferrite nanoparticles yielded a composite structure having a lower bandgap energy (2.28-2.60 eV) than that of the parent UiO-66(Zr) (~3.8 eV). Moreover, the MFeO@UiO composite exhibited magnetic separation property and improved porosity. The removal experiment for tetracycline (TC) in aqueous media revealed that the MFeO@UiO composite exhibited a high total TC removal efficiency of ca. ~94% within 45-min preadsorption and 120-min visible-light illumination, which is higher than that of pristine ferrite and UiO-66(Zr). The enhanced photodegradation efficiency of MFeO@UiO is attributed to efficient interfacial charge transfer at the heterojunction and the synergistic effect between the semiconductors. Radical scavenging experiments revealed that photogenerated holes (h+) and hydroxyl radicals (·OH) were the major reactive species involved in TC photodegradation. Moreover, the prepared MFeO@UiO nanocomposite showed good recyclability and renewability, making it a potential material for wastewater treatments.
Collapse
Affiliation(s)
- The Ky Vo
- Chemical Engineering Department, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City, Vietnam.
| | - Jinsoo Kim
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
11
|
Simonescu CM, Tătăruş A, Culiţă DC, Stănică N, Butoi B, Kuncser A. Facile Synthesis of Cobalt Ferrite (CoFe 2O 4) Nanoparticles in the Presence of Sodium Bis (2-ethyl-hexyl) Sulfosuccinate and Their Application in Dyes Removal from Single and Binary Aqueous Solutions. NANOMATERIALS 2021; 11:nano11113128. [PMID: 34835892 PMCID: PMC8621345 DOI: 10.3390/nano11113128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
A research study was conducted to establish the effect of the presence of sodium bis-2-ethyl-hexyl-sulfosuccinate (DOSS) surfactant on the size, shape, and magnetic properties of cobalt ferrite nanoparticles, and also on their ability to remove anionic dyes from synthetic aqueous solutions. The effect of the molar ratio cobalt ferrite to surfactant (1:0.1; 1:0.25 and 1:0.5) on the physicochemical properties of the prepared cobalt ferrite particles was evaluated using different characterization techniques, such as FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis, and magnetic measurements. The results revealed that the surfactant has a significant impact on the textural and magnetic properties of CoFe2O4. The capacity of the synthesized CoFe2O4 samples to remove two anionic dyes, Congo Red (CR) and Methyl Orange (MO), by adsorption from aqueous solutions and the factors affecting the adsorption process, such as contact time, concentration of dyes in the initial solution, pH of the media, and the presence of a competing agent were investigated in batch experiments. Desorption experiments were performed to demonstrate the reusability of the adsorbents.
Collapse
Affiliation(s)
- Claudia Maria Simonescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania
- Correspondence: or (C.M.S.); (A.T.); (D.C.C.); Tel.: +40-753-071-418 (C.M.S.); +60-764-000-710 (A.T.); +40-765-309-363 (D.C.C.)
| | - Alina Tătăruş
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania
- National Research and Development Institute for Industrial Ecology, INCD-ECOIND, Drumul Podul Dambovitei Street, No. 71-73, District 6, 060652 Bucharest, Romania
- Correspondence: or (C.M.S.); (A.T.); (D.C.C.); Tel.: +40-753-071-418 (C.M.S.); +60-764-000-710 (A.T.); +40-765-309-363 (D.C.C.)
| | - Daniela Cristina Culiţă
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
- Correspondence: or (C.M.S.); (A.T.); (D.C.C.); Tel.: +40-753-071-418 (C.M.S.); +60-764-000-710 (A.T.); +40-765-309-363 (D.C.C.)
| | - Nicolae Stănică
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Bogdan Butoi
- National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania;
| | - Andrei Kuncser
- National Institute for Materials Physics, Atomistilor Street 405, 077125 Măgurele, Romania;
| |
Collapse
|
12
|
Cuong Nguyen X, Thanh Huyen Nguyen T, Hong Chuong Nguyen T, Van Le Q, Yen Binh Vo T, Cuc Phuong Tran T, Duong La D, Kumar G, Khanh Nguyen V, Chang SW, Jin Chung W, Duc Nguyen D. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water. CHEMOSPHERE 2021; 282:131009. [PMID: 34091298 DOI: 10.1016/j.chemosphere.2021.131009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
This study investigated methyl orange (MO) dye adsorption using three biochars produced from agro-waste and invasive plants; the latter consisted of wattle bark (BA), mimosa (BM), and coffee husks (BC). BC had the lowest specific surface area (2.62 m2/g) compared to BA (393.15 m2/g) and BM (285.53 m2/g). The adsorption efficiency of MO was stable at pH 2-7 (95%-96%), whilst it had reduced stability at pH 7-12. Between 0 and 30 min, MO adsorption efficiency was >82%, and at 120 min, representative adsorption equilibrium had occurred. The maximum adsorption capacity of the biochars was 12.3 mg/g. The underlying adsorption mechanisms of the three biochars were governed by electrostatic adsorption and pore diffusion. There was an abundance of active sites for adsorption in BA and BM, while chemical adsorption appeared to be more vital for BC, as it contained more functional groups on its surface. The highest MO adsorption efficiency occurred with BM. BC was not recommended for MO removal, as it was observed to stain the water when a dose exceeding 5.0 g/L was utilized.
Collapse
Affiliation(s)
- X Cuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - T Thanh Huyen Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - T Hong Chuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Quyet Van Le
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - T Yen Binh Vo
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Viet Nam
| | - T Cuc Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Viet Nam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - V Khanh Nguyen
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea.
| |
Collapse
|
13
|
Nguyen DLT, Binh QA, Nguyen XC, Huyen Nguyen TT, Vo QN, Nguyen TD, Phuong Tran TC, Hang Nguyen TA, Kim SY, Nguyen TP, Bae J, Kim IT, Van Le Q. Metal salt-modified biochars derived from agro-waste for effective congo red dye removal. ENVIRONMENTAL RESEARCH 2021; 200:111492. [PMID: 34118243 DOI: 10.1016/j.envres.2021.111492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Anionic Congo red dye (CR) is not effectively removed by conventional adsorbents. Three novel biochars derived from agro-waste (Acacia auriculiformis), modified with metal salts of FeCl3, AlCl3, and CaCl2 at 500 °C pyrolysis have been developed to enhance CR treatment. These biochars revealed significant differences in effluents compared to BC, which satisfied initial research expectations (P < 0.05). The salt concentration of 2 M realized optimal biochars with the highest CR removal of 96.8%, for AlCl3-biochar and FeCl3-biochar and 70.8% for CaCl2-biochar. The modified biochars were low in the specific surface area (137.25-380.78 m2 g-1) compared normal biochar (393.15 m2 g-1), had more heterogeneous particles and successfully integrated metal oxides on the surface. The CR removal increased with a decrease in pH and increase in biochar dosage, which established an optimal point at an initial loading of 25 mg g-1. Maximum adsorption capacity achieved 130.0, 44.86, and 30.80 mg g-1 for BFe, BCa, and BAl, respectively. As magnetic biochar, which is easily separated from the solution and achieves a high adsorption capacity, FeCl3-biochar is the preferred biochar for CR treatment application.
Collapse
Affiliation(s)
- Dang Le Tri Nguyen
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Department of Academic Affairs and Testing, Dong Nai Technology University, Dong Nai, Viet Nam
| | - Xuan Cuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Thi Thanh Huyen Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Quang Nha Vo
- Department of Electrical Engineering, Hue University, Quang Tri Campus, Viet Nam
| | - Trung Duong Nguyen
- Department of Electrical Engineering, Hue University, Quang Tri Campus, Viet Nam
| | - Thi Cuc Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Viet Nam
| | - Thi An Hang Nguyen
- Vietnam Japan University (VNU-VJU), Vietnam National University, Hanoi, Luu Huu Phuoc St., Nam Tu Liem Dist., Hanoi, 101000, Viet Nam
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Thang Phan Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Jaehan Bae
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Il Tae Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Ozola-Davidane R, Burlakovs J, Tamm T, Zeltkalne S, Krauklis AE, Klavins M. Bentonite-ionic liquid composites for Congo red removal from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Rego RM, Sriram G, Ajeya KV, Jung HY, Kurkuri MD, Kigga M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125941. [PMID: 34492868 DOI: 10.1016/j.jhazmat.2021.125941] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrate the use of cerium (Ce)-UiO-66 metal organic framework (MOF) for the removal of a variety of potentially toxic pollutants. The Ce-UiO-66 MOF, with similar framework topologies to Zr-UiO-66, has not been explored for its adsorptive properties in water remediation. The replacement of Zr metal center with Ce yields a MOF that can be synthesized in shorter durations with lesser energy consumptions and with excellent multipollutant adsorption properties. Further, the Ce-UiO-66 MOF was also studied for its adsorption abilities in the binary component system. Interestingly, the adsorbent showed higher adsorption capacities in the presence of other pollutants. Removal studies for other potentially toxic anionic and cationic dyes showed that the Ce-UiO-66 MOF has a wide range of contaminant removal abilities. Investigations of individual adsorption capacities revealed that the Ce-UiO-66 MOF has a maximum adsorption capacity of 793.7 mg/g for congo red (CR), 110 mg/g for methylene blue (MB), 66.1 mg/g for fluoride (F-), 30 mg/g for Cr6+ and 485.4 mg/g for the pharmaceutical waste diclofenac sodium (DCF). To imply the practical applications of the Ce-UiO-66 MOF we have also demonstrated an adaptable filter that could separate all the potentially toxic pollutants.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| |
Collapse
|
16
|
Abuzalat O, Tantawy H, Abdlaty R, Elfiky M, Baraka A. Advances of the highly efficient and stable visible light active photocatalyst Zr(IV)-phthalate coordination polymer for the degradation of organic contaminants in water. Dalton Trans 2021; 50:8600-8611. [PMID: 34075986 DOI: 10.1039/d1dt01143j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents the restoration of the Zr-phthalate coordination polymer (Zr-Ph CP) via valuable application in photocatalysis. Zr-Ph CP was facilely synthesized using a soft hydrothermal method at 70 °C, and was characterized utilizing FTIR, Raman Spectrosopy, XPS, PXRD, SEM/EDX, BET, and a hyperspectral camera. Assessment of its photocatalytic degradation potential was performed against two different dyes, the cationic methylene blue (MB) and the anionic methyl orange (MO), as frequent models of organic contaminants, under properly selected mild visible illumination (9 W) where the bandgap energy (Eg) was determined to be 2.72 eV. Effects of different initial pH values and different dyes' initial concentrations were covered. Photocatalytic degradation studies showed that Zr-Ph CP effectively degraded both dyes for initial pH 7 within about 40-60 minutes. Degradation rate constants were calculated as 0.17 and 0.13 min-1 for MB and MO, respectively. Generally, both direct and indirect mechanisms share in the degradation, where adsorption has shown an important role. The repeated use of Zr-Ph CP does not significantly affect its photocatalytic performance suggesting high water stability.
Collapse
Affiliation(s)
- Osama Abuzalat
- Department of Chemical Engineering, Military Technical College, Cairo, Egypt.
| | - Hesham Tantawy
- Department of Chemical Engineering, Military Technical College, Cairo, Egypt.
| | - Ramy Abdlaty
- Biomedical Engineering Department, Military Technical College, Cairo, Egypt
| | - Mona Elfiky
- Department of Chemistry, Faculty of science, Tanta University, Tanta, Egypt
| | - Ahmad Baraka
- Department of Chemical Engineering, Military Technical College, Cairo, Egypt.
| |
Collapse
|
17
|
Liu Y, Qi R, Ge Z, Zhang Y, Jing L, Li M. N-doping copolymer derived hierarchical micro/mesoporous carbon:Pore regulation of melamine and fabulous adsorption performances. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Facile synthesis of graphite oxide/MIL-101(Cr) hybrid composites for enhanced adsorption performance towards industrial toxic dyes. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Lignin Based Activated Carbon Using H 3PO 4 Activation. Polymers (Basel) 2020; 12:polym12122829. [PMID: 33260706 PMCID: PMC7760334 DOI: 10.3390/polym12122829] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Activated carbon (AC) with a very high surface area of over 2000 m2/g was produced from low sulfur acid hydrotropic lignin (AHL) from poplar wood using H3PO4 at a moderate temperature of 450 °C (AHL-AC6). ACs with similar surface areas were also obtained under the same activation condition from commercial hardwood alkali lignin and lignosulfonate. Initial evaluation of AC performance was carried out using nitrogen adsorption-desorption and dye adsorption. AHL-AC6 exhibited the best specific surface area and dye adsorption performance. Furthermore, the adsorption results of congo red (CR) and methylene blue (MB) showed AHL-AC6 had greater adsorption capacity than those reported in literature. The dye adsorption data fit to the Langmuir model well. The fitting parameter suggests the adsorption is nearly strong and near irreversible, especially for MB. The present study for the first time provided a procedure for producing AC from lignin with Brunauer–Emmett–Teller (BET) surface area >2000 m2/g using low cost and low environmental impact H3PO4 at moderate temperatures.
Collapse
|
20
|
Xu TC, Han DH, Zhu YM, Duan GG, Liu KM, Hou HQ. High Strength Electrospun Single Copolyacrylonitrile (coPAN) Nanofibers with Improved Molecular Orientation by Drawing. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Mashkoor F, Nasar A. Facile synthesis of polypyrrole decorated chitosan-based magsorbent: Characterizations, performance, and applications in removing cationic and anionic dyes from aqueous medium. Int J Biol Macromol 2020; 161:88-100. [DOI: 10.1016/j.ijbiomac.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
22
|
Barakat MA, Selim AQ, Mobarak M, Kumar R, Anastopoulos I, Giannakoudakis D, Bonilla-Petriciolet A, Mohamed EA, Seliem MK, Komarneni S. Experimental and Theoretical Studies of Methyl Orange Uptake by Mn-Rich Synthetic Mica: Insights into Manganese Role in Adsorption and Selectivity. NANOMATERIALS 2020; 10:nano10081464. [PMID: 32722597 PMCID: PMC7466402 DOI: 10.3390/nano10081464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022]
Abstract
Manganese–containing mica (Mn–mica) was synthesized at 200 °C/96 h using Mn–carbonate, Al–nitrate, silicic acid, and high KOH concentration under hydrothermal conditions. Mn–mica was characterized and tested as a new adsorbent for the removal of methyl orange (MO) dye from aqueous solutions. Compared to naturally occurring mica, the Mn–mica with manganese in the octahedral sheet resulted in enhanced MO uptake by four times at pH 3.0 and 25 °C. The pseudo–second order equation for kinetics and Freundlich equation for adsorption isotherm fitted well to the experimental data at all adsorption temperatures (i.e., 25, 40 and 55 °C). The decrease of Langmuir uptake capacity from 107.3 to 92.76 mg·g−1 within the temperature range of 25–55 °C suggested that MO adsorption is an exothermic process. The role of manganese in MO selectivity and the adsorption mechanism was analyzed via the physicochemical parameters of a multilayer adsorption model. The aggregated number of MO ions per Mn–mica active site (n) was superior to unity at all temperatures signifying a vertical geometry and a mechanism of multi–interactions. The active sites number (DM) of Mn–mica and the total removed MO layers (Nt) slightly changed with temperature. The decrease in the MO adsorption capacities (Qsat = n·DM·Nt) from 190.44 to 140.33 mg·g−1 in the temperature range of 25–55 °C was mainly controlled by the n parameter. The results of adsorption energies revealed that MO uptake was an exothermic (i.e., negative ΔE values) and a physisorption process (ΔE < 40 kJ mol −1). Accordingly, the adsorption of MO onto Mn–mica was governed by the number of active sites and the adsorption energy. This study offers insights into the manganese control of the interactions between MO ions and Mn–mica active sites.
Collapse
Affiliation(s)
- Mohamed A. Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.B.); (R.K.)
- Central Metallurgical R & D Institute, Cairo 11421, Egypt
| | - Ali Q. Selim
- Faculty of Earth Science, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.B.); (R.K.)
| | - Ioannis Anastopoulos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia Cy-1678, Cyprus;
| | - Dimitrios Giannakoudakis
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Adrián Bonilla-Petriciolet
- Departamento de Ingeniería Química, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico;
| | - Essam A. Mohamed
- Faculty of Earth Science, Beni-Suef University, Beni Suef 62511, Egypt;
- Correspondence: (E.A.M.); (M.K.S.)
| | - Moaaz K. Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef 62511, Egypt;
- Correspondence: (E.A.M.); (M.K.S.)
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
23
|
Preparation of Porous Carbon Nanofibers with Tailored Porosity for Electrochemical Capacitor Electrodes. MATERIALS 2020; 13:ma13030729. [PMID: 32033458 PMCID: PMC7040907 DOI: 10.3390/ma13030729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 01/26/2023]
Abstract
Porous carbon electrodes that accumulate charges at the electrode/electrolyte interface have been extensively investigated for use as electrochemical capacitor (EC) electrodes because of their great attributes for driving high-performance energy storage. Here, we report porous carbon nanofibers (p-CNFs) for EC electrodes made by the formation of a composite of monodisperse silica nanoparticles and polyacrylonitrile (PAN), oxidation/carbonization of the composite, and then silica etching. The pore features are controlled by changing the weight ratio of PAN to silica nanoparticles. The electrochemical performances of p-CNF as an electrode are estimated by measuring cyclic voltammetry and galvanostatic charge/discharge. Particularly, the p-CNF electrode shows exceptional areal capacitance (13 mF cm-2 at a current of 0.5 mA cm-2), good rate-retention capability (~98% retention of low-current capacitance), and long-term cycle stability for at least 5000 charge/discharge cycles. Based on the results, we believe that this electrode has potential for use as high-performance EC electrodes.
Collapse
|
24
|
Yan Y, Huang P, Zhang H. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1827-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Xu T, Jiang Q, Ghim D, Liu KK, Sun H, Derami HG, Wang Z, Tadepalli S, Jun YS, Zhang Q, Singamaneni S. Catalytically Active Bacterial Nanocellulose-Based Ultrafiltration Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704006. [PMID: 29516638 DOI: 10.1002/smll.201704006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/14/2018] [Indexed: 05/23/2023]
Abstract
Large quantities of highly toxic organic dyes in industrial wastewater is a persistent challenge in wastewater treatment processes. Here, for highly efficient wastewater treatment, a novel membrane based on bacterial nanocellulose (BNC) loaded with graphene oxide (GO) and palladium (Pd) nanoparticles is demonstrated. This Pd/GO/BNC membrane is realized through the in situ incorporation of GO flakes into BNC matrix during its growth followed by the in situ formation of palladium nanoparticles. The Pd/GO/BNC membrane exhibits highly efficient methylene orange (MO) degradation during filtration (up to 99.3% over a wide range of MO concentrations, pH, and multiple cycles of reuse). Multiple contaminants (a cocktail of 4-nitrophenol, methylene blue, and rhodamine 6G) can also be effectively treated by Pd/GO/BNC membrane simultaneously during filtration. Furthermore, the Pd/GO/BNC membrane demonstrates stable flux (33.1 L m-2 h-1 ) under 58 psi over long duration. The novel and robust membrane demonstrated here is highly scalable and holds a great promise for wastewater treatment.
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qisheng Jiang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Keng-Ku Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Hongcheng Sun
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Hamed Gholami Derami
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Qinghua Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| |
Collapse
|
26
|
Zhong J, Talebi S, Xu Y, Pang Y, Mostowfi F, Sinton D. Fluorescence in sub-10 nm channels with an optical enhancement layer. LAB ON A CHIP 2018; 18:568-573. [PMID: 29372196 DOI: 10.1039/c7lc01193h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fluorescence microscopy uniquely enables physical and biological research in micro- and nanofluidic systems. However, in channels with depths below 10 nm, the limited number of fluorophores results in fluorescence intensity below the detection limit of optical microscopes. To overcome this barrier, we applied Fabry-Pérot interference to enhance fluorescence intensity with a silicon nitride layer below the sub-10 nm channel. A silicon nitride layer of suitable thickness can selectively enhance both absorption and emission wavelengths, leading to a fluorescent signal that is enhanced 20-fold and readily imaged with traditional microscopes. To demonstrate this method, we studied the mass transport of a binary solution of ethanol and Rhodamin B in 8 nm nanochannels. The large molecular size of Rhodamin B (∼1.8 nm) relative to the channel depth results in both separation and reduced diffusivity, deviating from behavior at larger scales. This method extends the widely available suite of fluorescence analysis tools and infrastructure to unprecedented sub-10 nm scale with relevance to a wide variety of biomolecular interactions.
Collapse
Affiliation(s)
- Junjie Zhong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Li J, Wang S, Peng J, Lin G, Hu T, Zhang L. Selective Adsorption of Anionic Dye from Solutions by Modified Activated Carbon. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-3006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
28
|
Liu C, Cheng L, Zhao Y, Zhu L. Interfacially crosslinked composite porous membranes for ultrafast removal of anionic dyes from water through permeating adsorption. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:217-225. [PMID: 28525882 DOI: 10.1016/j.jhazmat.2017.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 05/27/2023]
Abstract
The dye wastewater is one of the most difficult industrial wastewaters to treat. It keeps a big challenge to realize fast removal of dyes from water by membrane filtration due to the trade-off between separation selectivity and permeation flux for ultrafiltration or nanofiltration (NF) process. Here we report novel composite porous membranes which can remove anionic dyes from water by ultrafast permeating adsorption. A crosslinked polyethyleneimine (PEI) polymer with strong adsorption ability was incorporated onto a nylon microfiltration membrane by the interfacial amidation reaction between PEI and trimesoyl chloride. The obtained composite membranes were used for the decolorization of dye solution by permeation mode. It was shown that the composite membranes were able to nearly completely remove anionic dyes in acidic conditions with high permeation fluxes. In an optimized case, the adsorption capacity of Sunset Yellow for the composite membranes reached 0.7mg/cm2 with a high flux of 85L/m2h under a ultralow pressure of 0.01bar. This flux was far much higher than that of NF membranes, about 10L/m2hbar. The pH-dependent electrostatic interaction between PEI and anionic dyes was responsible for the rapid dye removal. The adsorption saturated membranes could be effectively regenerated by a simple alkaline washing.
Collapse
Affiliation(s)
- Cuijing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Liang Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yifan Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
29
|
Polysulfone membranes via thermally induced phase separation. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1943-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Feng X, Kawabata K, Kaufman G, Elimelech M, Osuji CO. Highly Selective Vertically Aligned Nanopores in Sustainably Derived Polymer Membranes by Molecular Templating. ACS NANO 2017; 11:3911-3921. [PMID: 28301721 DOI: 10.1021/acsnano.7b00304] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a combination of molecular templating and directed self-assembly to realize highly selective vertically aligned nanopores in polymer membranes using sustainably derived materials. The approach exploits a structure-directing molecule to template the assembly of plant-derived fatty acids into highly ordered columnar mesophases. Directed self-assembly using physical confinement and magnetic fields provides vertical alignment of the columnar nanostructures in large area (several cm2) thin films. Chemically cross-linking the mesophase with added conventional vinyl comonomers and removing the molecular template results in a mechanically robust polymer film with vertically aligned 1.2-1.5 nm diameter nanopores with a large specific surface area of ∼670 m2/g. The nanoporous polymer films display exceptional size and charge selectivity as demonstrated by adsorption experiments using model penetrant molecules. These materials have significant potential to function as high-performance nanofiltration membranes and as nanoporous thin films for high-density lithographic pattern transfer. The scalability of the fabrication process suggests that practical applications can be reasonably anticipated.
Collapse
Affiliation(s)
- Xunda Feng
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
| | - Kohsuke Kawabata
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
| | - Gilad Kaufman
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
| | - Chinedum O Osuji
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
31
|
Hvid MS, Lamagni P, Lock N. Light absorption engineering of a hybrid (Sn 3S 72-) n based semiconductor - from violet to red light absorption. Sci Rep 2017; 7:45822. [PMID: 28374765 PMCID: PMC5379188 DOI: 10.1038/srep45822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/06/2017] [Indexed: 11/17/2022] Open
Abstract
The crystalline two-dimensional thiostannate Sn3S7(trenH)2 [tren = tris(2-aminoethyl)amine] consists of negatively charged (Sn3S72−)n polymeric sheets with trenH+ molecular species embedded in-between. The semiconducting compound is a violet light absorber with a band gap of 3.0 eV. In this study the compound was synthesized and functionalized by introducing the cationic dyes Methylene Blue (MB) or Safranin T (ST) into the crystal structure by ion exchange. Dye capacities up to approximately 45 mg/g were obtained, leading to major changes of the light absorption properties of the dye stained material. Light absorption was observed in the entire visible light region from red to violet, the red light absorption becoming more substantial with increasing dye content. The ion exchange reaction was followed in detail by variation of solvent, temperature and dye concentration. Time-resolved studies show that the ion exchange follows pseudo-second order kinetics and a Langmuir adsorption mechanism. The pristine and dye stained compounds were characterized by powder X-ray diffraction and scanning electron microscopy revealing that the honeycomb hexagonal pore structure of the host material was maintained by performing the ion exchange in the polar organic solvent acetonitrile, while reactions in water caused a break-down of the long-range ordered structure.
Collapse
Affiliation(s)
- Mathias Salomon Hvid
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Paolo Lamagni
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO); Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Nina Lock
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO); Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
32
|
Guo X, Yin P, Lei W, Yang H. Preparation of a macroporous CuAl2O4 spinel monolith and its rapid selective adsorption towards some anionic dyes. NEW J CHEM 2017. [DOI: 10.1039/c7nj02279d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macroporous CuAl2O4 spinel, which was first synthesized, showed excellent selective adsorption performance towards some anionic dyes.
Collapse
Affiliation(s)
- Xingzhong Guo
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Pengan Yin
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Wei Lei
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Hui Yang
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
33
|
Liang HQ, Wan LS, Xu ZK. Poly(vinylidene fluoride) separators with dual-asymmetric structure for high-performance lithium ion batteries. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1860-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Yu Y, Wu QY, Liang HQ, Gu L, Xu ZK. Preparation and characterization of cellulose triacetate membranes via thermally induced phase separation. J Appl Polym Sci 2016. [DOI: 10.1002/app.44454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Yu
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Qing-Yun Wu
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Hong-Qing Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Lin Gu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; People's Republic of China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
35
|
Zhang L, Fan W, Liu T. Flexible hierarchical membranes of WS 2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage. NANOSCALE 2016; 8:16387-16394. [PMID: 27714049 DOI: 10.1039/c6nr04241d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is still very challenging to achieve effective combination of carbon nanofibers and graphene sheets. In this study, a novel and facile method is developed to prepare flexible graphene/carbon nanofiber (GCNF) membranes with every carbon nanofiber wrapped by conductive graphene sheets, resulting in a remarkable improvement of their electrical conductivity. This method only entails a moderate process of soaking the pre-oxidized electrospun polyacrylonitrile (oPAN) nanofiber membranes in graphene oxide (GO) aqueous dispersion, and subsequent carbonization of the GO/oPAN hybrid membranes. By using the highly conductive GCNF membrane as a template, hierarchical WS2/GCNF hybrid membranes with few-layer WS2 nanosheets uniformly grown on GCNF nanofibers were fabricated as high-performance anodes for lithium ion batteries. Benefiting from the synergistic effects of GCNF nanofibers and WS2 nanosheets, the resulting WS2/GCNF hybrid membranes possessed a porous structure, large specific surface area, high electrical conductivity and good structural integrity, which are favorable for the rapid diffusion of lithium ions, fast transfer of electrons and overall electrochemical stability. As a result, the optimized WS2/GCNF hybrid membrane exhibited a high initial charge capacity of 1128.2 mA h g-1 at a current density of 0.1 A g-1 and outstanding cycling stability with 95% capacity retention after 100 cycles.
Collapse
Affiliation(s)
- Longsheng Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Wei Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China.
| | - Tianxi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China. and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China.
| |
Collapse
|