1
|
Xu Y, Lu S, Wei Z, Feng S. Supramolecular Elastomers with Excellent Dielectric Properties and High Recyclability Based on the Coordinative Bond. Macromol Rapid Commun 2023; 44:e2200766. [PMID: 36377472 DOI: 10.1002/marc.202200766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/22/2022] [Indexed: 11/16/2022]
Abstract
The enhancement in dielectric properties and self-healing ability for dielectric materials has been a challenging subject these years. Herein, a series of self-healed dielectric elastomers by combining the ferric ions and carboxyl-containing poly(sulfone siloxane)s is reported. Experimental results indicate the excellent dielectric properties of obtained elastomers, as the dielectric constant up to 12.8. SEM micrographs exhibit that carboxyl groups and ferric ions can aggregate together to generate clusters, which further result in interfacial polarization. Besides, high polarity dipole units including sulfonyl units and carboxyl groups contribute to dipole polarization. The overlay of the two mentioned polarization eventually results in the high dielectric property. The dielectric constant obviously increases with the contents of carboxyl groups and ferric ions. Moreover, the samples are feasible for recycling and reprocessing with high self-healing efficiency, owing to the reversibility of the coordination bond. A self-healing efficiency of 92.1% in tensile strength of the obtained samples can be reached after 2 h treatment at 60 °C. And the elastomers can also conveniently recover most mechanical properties after solution treatment. This work may offer a promising method for preparing dielectric elastomers with high dielectric properties and self-healing ability.
Collapse
Affiliation(s)
- Yunfan Xu
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Shilong Lu
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Zengyue Wei
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| |
Collapse
|
2
|
Gao BR, Wu YJ, Xu L, Zou H, Zhou L, Liu N, Wu ZQ. Synthesis of Optically Active Helical Polycarbenes through Helix-Sense-Selective Polymerization Strategy and Their Application in Chiral Separation. ACS Macro Lett 2022; 11:785-791. [PMID: 35653295 DOI: 10.1021/acsmacrolett.2c00212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, helical polycarbenes with optical activity were designed and facilely synthesized through the helix-sense-selective polymerization (HSSP) of the diazoacetate monomer with a dimethylbenzyl ester pendant catalyzed by π-allylPdCl with chiral phosphine ligands at room temperature. The polymerization was carried out in a living and controlled style, and a range of helical polycarbenes with the desired number-average molecular weights and narrow molecular weight distributions were obtained. Circular dichroism and UV-vis analyses revealed that these polycarbenes exhibited a stable helical conformation with a preferred handedness, and their helical directions were dependent on the chirality of the chiral phosphine ligands. Further studies showed that the helical conformation of the obtained polycarbenes was from the polymeric backbone rather than the intermolecular aggregation in the solutions. Moreover, the prepared, optically active, helical polycarbenes possessed excellent enantioselective crystallization ability for threonine racemates. The enantiomeric excess (e.e.) of the induced crystals could be up to 83% via utilizing the prepared helical polycarbenes as a chiral separation agent.
Collapse
Affiliation(s)
- Bao-Rui Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Yong-Jie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Abuaf M, Mastai Y. Electrospinning of polymer nanofibers based on chiral polymeric nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meir Abuaf
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| |
Collapse
|
4
|
Zhou L, He K, Liu N, Wu ZQ. Recent advances in asymmetric organocatalysis based on helical polymers. Polym Chem 2022. [DOI: 10.1039/d2py00483f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The significant research progress (from 2011 to 2021) in artificial helical polymers, such as polyacetylenes, polyisocyanides, polycarbenes, etc., in the fields of asymmetric organocatalysis is described.
Collapse
Affiliation(s)
- Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Kai He
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Huang D, Peng J. Correlating crystalline structure with charge mobility in conjugated statistical copolymers for field-effect transistors. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Recyclable Helical Poly(phenyl isocyanide)-Supported l-Proline Catalyst for Direct Asymmetric Aldol Reaction in Brine. Catal Letters 2021. [DOI: 10.1007/s10562-020-03369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04410-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Fan L, Wang X, Wu D. Polyhedral Oligomeric Silsesquioxanes (
POSS
)‐based Hybrid Materials: Molecular Design, Solution
Self‐Assembly
and Biomedical Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000536] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Fan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
9
|
Synthesis, properties, and degradation behaviors of novel polysulfone-polysiloxane multi-block copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Lin M, Wu Q, Li Q, Hou X, Zou H. Synthesis of Dendrimer‐Like Helical Poly(Phenyl Isocyanide)s Using Air‐Stable Palladium Complexes with Double Arms. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Min Lin
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Qi‐Liang Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Qian‐Wei Li
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Xiao‐Hua Hou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Hui Zou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| |
Collapse
|
11
|
Abuaf M, Mastai Y. Synthesis of Multi Amino Acid Chiral Polymeric Microparticles for Enantioselective Chemistry. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Meir Abuaf
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan 52900 Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan 52900 Israel
| |
Collapse
|
12
|
Liu H, Zhang S, Yan X, Song C, Chen J, Dong Y, Li X. Silylium cation initiated sergeants-and-soldiers type chiral amplification of helical aryl isocyanide copolymers. Polym Chem 2020. [DOI: 10.1039/d0py00808g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Silylium cations act as new highly efficient metal-free single-component cationic initiators for the cationic polymerization and copolymerization of chiral or achiral aryl isocyanides, preparing optically active polymers and copolymers obeying “sergeants-and-soldiers” rule.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xiangqian Yan
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chuang Song
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Jupeng Chen
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
13
|
Li X, Mu B, Chen C, Chen J, Liu J, Liu F, Chen D. Significantly Enhanced Thermotropic Liquid Crystalline Columnar Mesophases in Stereoregular Polymethylenes with Discotic Triphenylene Side Groups. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Mu
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jian Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiang Liu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Tai HT, Lin YC, Ma JY, Lo CT. Hydrogen Bonding-Induced Assembled Structures and Photoresponsive Behavior of Azobenzene Molecule/Polyethylene Glycol Complexes. Polymers (Basel) 2019; 11:E1360. [PMID: 31426429 PMCID: PMC6723479 DOI: 10.3390/polym11081360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
We investigated the self-assembled structures and photoresponsive and crystallization behaviors of supramolecules composed of 4-methoxy-4'-hydroxyazobenzene (Azo) molecules and polyethylene glycol (PEG) that were formed through hydrogen-bonding interactions. The Azo/PEG complexes exhibited the characteristics of photoresponse and crystallization, which originated from Azo and PEG, respectively. When Azo/PEG complexes were dissolved in solvents, hydrogen-bonding interaction hindered the rotation and inversion of mesogens, causing a reduction in the photoisomerization rate compared with the photoisomerization rate of the neat Azo. The confinement of Azo/PEG complexes in thin films further resulted in a substantial decrease in the photoisomerization rate but an increase in the amounts of H-aggregated and J-aggregated mesogens. Regarding PEG crystallization, ultraviolet irradiation of Azo/PEG complexes increased the quantity of high-polarity cis isomers, which improved the compatibility between mesogens and PEG, subsequently increasing the crystallization temperature of PEG. Moreover, the complexation of Azo and PEG induced microphase separation, forming a lamellar morphology. Within the Azo-rich microphases, mesogens aggregated to form tilted monosmectic layers. By contrast, PEG crystallization within the PEG-rich microphases was hard confined, indicating that the domain size of the lamellar morphology was unchanged during PEG crystallization.
Collapse
Affiliation(s)
- Hsin-Tzu Tai
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Yen-Chun Lin
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Jing-Yao Ma
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Chieh-Tsung Lo
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
15
|
Liu N, Lu H, Jiang Z, Lu Y, Zou H, Zhou L, Wu Z. Facile Synthesis of Helical Rod–Coil Block Polymers by the Combination of ATRP and Pd(II)‐Initiated Isocyanides Polymerizations. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Na Liu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology 193 Tunxi Road Hefei 230009 Anhui Province China
| | - Hao‐Jun Lu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology 193 Tunxi Road Hefei 230009 Anhui Province China
| | - Zhi‐Qiang Jiang
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology 193 Tunxi Road Hefei 230009 Anhui Province China
| | - Yu‐Bing Lu
- Lu'an Vocational Technical College 1 Zhengyang Road Lu'an City 237000 Anhui Province China
| | - Hui Zou
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology 193 Tunxi Road Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology 193 Tunxi Road Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology 193 Tunxi Road Hefei 230009 Anhui Province China
| |
Collapse
|
16
|
Shi N, Wang R, Wang X, Tan J, Guan Y, Li Z, Wan X, Zhang J. Surface plasmon resonance-assisted circularly polarized luminescent hybrid assemblies of Eu-containing polyoxometalates. Chem Commun (Camb) 2019; 55:1136-1139. [DOI: 10.1039/c8cc09154d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circularly polarized luminescence of achiral Eu-containing polyoxometalates was induced by chiral cationic polymers and enhanced by Ag nanoparticles.
Collapse
Affiliation(s)
- Nan Shi
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Rong Wang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xiaoshi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Junyan Tan
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yan Guan
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zhibo Li
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
17
|
Li X, Wang R, Wu C, Chen J, Zhang J, Cui D, Wan X. Effect of the tactic structure on the chiroptical properties of helical vinylbiphenyl polymers. Polym Chem 2019. [DOI: 10.1039/c9py00481e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of a tactic structure on the chiroptical properties of helical vinylbiphenyl polymers is systematically studied.
Collapse
Affiliation(s)
- Xiaofu Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Rong Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Chunji Wu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junxian Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
18
|
Li C, Xu X, Xu L, Liu N. A Facile Synthetic Route to Amphiphilic Poly( Meta-Phenylene Ethynylene) and Poly( Meta-Phenylene Ethynylene)- Block-Polyisocyanide Using a Single Catalyst. Polymers (Basel) 2018; 10:E936. [PMID: 30960861 PMCID: PMC6403950 DOI: 10.3390/polym10090936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 11/23/2022] Open
Abstract
An optically active, amphiphilic meta-phenylene ethynylene (m-PE) bearing a chiral amide pendant was designed and synthesized. Living polymerization of m-PE using alkyne-Pd(II) as the initiator afforded well-defined poly(meta-phenylene ethynylene) (m-PPE). These m-PPEs were found to have a stable helical conformation in THF, 1,4-dioxane, and CH₃CN and showed split Cotton effects over the range of 245⁻400 nm. The positive first Cotton effect was observed at a wavelength of approximately 308 nm, and the negative second Cotton effect was observed at a wavelength of approximately 289 nm. The m-PPEs exhibited helical conformational changes in different mixed solvents and showed effective solvent-dependent helix inversion in CHCl₃/THF solutions. The sign of the Cotton effect of m-PPE was inverted at 25 °C by varying the mixing ratio of THF and CHCl₃. Finally, amphiphilic poly(meta-phenylene ethynylene)-block-polyisocyanide containing hydrophilic PPE and hydrophobic PPI segments were facilely prepared using Pd(II)-terminated m-PPE as the macroinitiator. This block copolymer can self-assemble into well-defined spherical nanostructures in a selective THF/CH₃OH solution. This efficient polymerization will open up enormous opportunities for the preparation of functional amphiphilic block copolymers in a wide variety of fields.
Collapse
Affiliation(s)
- Chonglong Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
| | - Xunhui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
19
|
Huang J, Shen L, Zou H, Liu N. Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2136-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Shi G, Wang S, Guan X, Zhang J, Wan X. Synthesis and thermo-responsive behavior of helical polyacetylenes derived from proline. Chem Commun (Camb) 2018; 54:12081-12084. [DOI: 10.1039/c8cc05856c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structurally simple, biomass-based helical polyacetylene exhibits an unexpected lower critical solution temperature in an aqueous solution with a narrow phase-transition window and a small hysteresis.
Collapse
Affiliation(s)
- Ge Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
- Beijing
- China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
- Beijing
- China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
- Beijing
- China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
- Beijing
- China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
- Beijing
- China
| |
Collapse
|