1
|
Huang FY, Wong DKH, Mak LY, Cheung TT, Zhang SS, Chau HT, Hui RWH, Seto WK, Yuen MF. FAT4 loss initiates hepatocarcinogenesis through the switching of canonical to noncanonical WNT signaling pathways. Hepatol Commun 2023; 7:e0338. [PMID: 38055646 PMCID: PMC10984662 DOI: 10.1097/hc9.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Mutation and downregulation of FAT atypical cadherin 4 (FAT4) are frequently detected in HCC, suggesting a tumor suppressor role of FAT4. However, the underlying molecular mechanism remains elusive. METHODS CRISPR-Cas9 system was used to knockout FAT4 (FAT4-KO) in a normal human hepatic cell line L02 to investigate the impact of FAT4 loss on the development of HCC. RNA-sequencing and xenograft mouse model were used to study gene expression and tumorigenesis, respectively. The mechanistic basis of FAT4 loss on hepatocarcinogenesis was elucidated using in vitro experiments. RESULTS We found that FAT4-KO disrupted cell-cell adhesion, induced epithelial-mesenchymal transition, and increased expression of extracellular matrix components. FAT4-KO is sufficient for tumor initiation in a xenograft mouse model. RNA-sequencing of FAT4-KO cells identified PAK6-mediated WNT/β-catenin signaling to promote tumor growth. Suppression of PAK6 led to β-catenin shuttling out of the nucleus for ubiquitin-dependent degradation and constrained tumor growth. Further, RNA-sequencing of amassed FAT4-KO cells identified activation of WNT5A and ROR2. The noncanonical WNT5A/ROR2 signaling has no effect on β-catenin and its target genes (CCND1 and c-Myc) expression. Instead, we observed downregulation of receptors for WNT/β-catenin signaling, suggesting the shifting of β-catenin-dependent to β-catenin-independent pathways as tumor progression depends on its receptor expression. Both PAK6 and WNT5A could induce the expression of extracellular matrix glycoprotein, laminin subunit alpha 4. Laminin subunit alpha 4 upregulation in HCC correlated with poor patient survival. CONCLUSIONS Our data show that FAT4 loss is sufficient to drive HCC development through the switching of canonical to noncanonical Wingless-type signaling pathways. The findings may provide a mechanistic basis for an in-depth study of the two pathways in the early and late stages of HCC for precise treatment.
Collapse
Affiliation(s)
- Fung-Yu Huang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Danny Ka-Ho Wong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Sai-Sai Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Hau-Tak Chau
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
2
|
Mao W, Zhou J, Hu J, Zhao K, Fu Z, Wang J, Mao K. A pan-cancer analysis of FAT atypical cadherin 4 (FAT4) in human tumors. Front Public Health 2022; 10:969070. [PMID: 36051999 PMCID: PMC9424548 DOI: 10.3389/fpubh.2022.969070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Objective We performed a pan-cancer analysis to explore the potential mechanisms of FAT4 in 33 different tumors. Methods In this study, we selected 33 types of cancers based on the datasets of TCGA (the cancer genome atlas). We analyzed the expression of FAT4 in tumor and normal tissues. Meanwhile, we analyzed the expression levels of FAT4 in tissues from tumors of different stages. Kaplan-Meier survival analysis, Tumor Mutational Burden (TMB), Microsatellite Instability (MSI), immune infiltration analysis, Gene set enrichment analysis (GSEA), and FAT4-related gene enrichment analysis were performed. Results FAT4 expression in most tumor tissues was lower than in corresponding control tissues. FAT4 expression was different in different stages of bladder cancer (BLCA), kidney clear cell carcinoma (KIRC), and breast cancer (BRCA). In addition, the expression level of FAT4 in different types of tumors has an important impact on the prognosis of patients. FAT4 might influence the efficacy of immunotherapy via tumor burden and microsatellite instability. We observed a statistically positive correlation between cancer-associated fibroblasts and FAT4 expression in most tumors. GSEA of BLCA indicated that low FAT4 expression groups were mainly enriched in calcium signaling pathway and chemokine signaling pathway. GSEA analysis of KIRC suggested low FAT4 expression groups were mainly involved in olfactory transduction and oxidative phosphorylation. Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the role of FAT4 in the pathogenesis of cancer may be related to human papillomavirus infection, Hippo signaling pathway, PI3K-Akt signaling pathway, etc. Gene Ontology (GO) enrichment analysis further showed that most of these genes were related to the pathways or cell biology, such as peptidyl-tyrosine phosphorylation, cell junction assembly, protein tyrosine kinase activity, etc. Conclusion Our study summarized and analyzed the antitumor effect of FAT4 in different tumors comprehensively, which aided in understanding the role of FAT4 in tumorigenesis from the perspective of clinical tumor samples. Pan-cancer analysis showed that FAT4 to be novel biomarkers for various cancers prognosis.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiajing Zhou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Jie Hu
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kui Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenling Fu
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jun Wang
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China,*Correspondence: Jun Wang
| | - Kaili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China,Kaili Mao
| |
Collapse
|
3
|
Duan JL, Nie RC, Xiang ZC, Chen JW, Deng MH, Liang H, Wang FW, Luo RZ, Xie D, Cai MY. Prognostic Model for the Risk Stratification of Early and Late Recurrence in Hepatitis B Virus-Related Small Hepatocellular Carcinoma Patients with Global Histone Modifications. J Hepatocell Carcinoma 2021; 8:493-505. [PMID: 34095004 PMCID: PMC8170593 DOI: 10.2147/jhc.s309451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 01/27/2023] Open
Abstract
Background and Aim To assess the profile of global histone modifications in small hepatocellular carcinoma (small HCC) and identify its prognostic value in predicting recurrence. Methods The expression profiles of global histone modifications, including H2AK5AC, H2BK20AC, H3K4me2, H3K9AC, H3K18AC, H4K12AC, and H4R3me2, were evaluated with immunohistochemistry in 335 HBV related small HCC patients. Two histone signature classifiers were then developed using least absolute shrinkage and selection operator Cox regression. A nomogram was built using the classifier and independent risk factors. The performances of the classifier and nomogram were assessed by receiver operating characteristic curves. Results Histone modifications were more pronounced in tumor tissues than in adjacent liver tissues. In tumor tissues, the risk score built based on the seven-histone signature exhibited satisfactory prediction efficiency, with an AUC = 0.71 (0.63–0.79) for 2-year survival in the training cohort. Patients with a high risk score had shorter recurrence-free survival than those with a low risk score (HR: 1.96, 95% CI: 1.24–3.08, p = 0.004; HR: 1.95, 95% CI: 1.12–3.42, p = 0.019; and HR: 1.97, 95% CI: 1.39–2.80, p < 0.001 for the training, validation and total cohorts, respectively). Furthermore, the statistical nomogram built using the histone classifier for early recurrence had a C-index = 0.68. In non-neoplastic liver tissues, the hepatic signature based on H3K4me2 and H4R3me2 was related to late recurrence (HR: 2.00, 95% CI: 1.15–3.48, p = 0.01). Conclusion Global histone modifications in tumor and adjacent liver tissues are novel predictors of early and late recurrence, respectively, in HBV-related small HCC patients.
Collapse
Affiliation(s)
- Jin-Ling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhi-Cheng Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jie-Wei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Rong-Zhen Luo
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
4
|
MiR-106b-5p regulates the migration and invasion of colorectal cancer cells by targeting FAT4. Biosci Rep 2021; 40:226683. [PMID: 33063118 PMCID: PMC7607192 DOI: 10.1042/bsr20200098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-106b-5p (miR-106b-5p) is involved in the development of many cancers including colorectal cancer (CRC), and FAT4 is correlated with regulation of growth and apoptosis of cancer cells. The present study aimed to investigate the relation between FAT4 and miR-106b-5p and the underlying mechanism of the two on the development of CRC. Quantitative real-time PCR (qRT-PCR) assay and Western blot (WB) analysis were performed to detect the expressions of messenger RNAs (mRNAs), microRNAs (miRNAs) and proteins. The viability of CRC cells was detected by cell counting kit-8 (CCK-8). Scratch test and transwell assay were performed to measure the migration and invasion of CRC cell. Tumor angiogenesis was simulated by in vitro angiogenesis experiment. Dual-luciferase reporter assay was performed to verify the targeting relation between miR-106b-5p and FAT4. The study found that the expression of FAT4 was down-regulated and that of miR-106b-5p was up-regulated in CRC tissues. Overexpression of FAT4 resulted in decreased proliferation, migration, invasion and angiogenesis of CRC cells, whereas silencing of FAT4 led to the opposite results. In rescue experiment, miR-106b-5p partially reversed the function of FAT4 in CRC cells, thus playing a carcinogenic role by targeting FAT4 in the CRC cells.
Collapse
|
5
|
Businello G, Galuppini F, Fassan M. The impact of recent next generation sequencing and the need for a new classification in gastric cancer. Best Pract Res Clin Gastroenterol 2021; 50-51:101730. [PMID: 33975684 DOI: 10.1016/j.bpg.2021.101730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
The phenotypical and molecular heterogeneity of gastric cancer has hampered the introduction in clinical practice of a unifying classification of the disease. However, as next generation sequencing (NGS) technologies enhanced the comprehension of the molecular landscape of gastric cancer, novel molecular classification systems have been proposed, allowing the dissection of molecular tumor heterogeneity and paving the way for the development of new targeted therapies. Moreover, the use of NGS analyses in the molecular profiling of formalin-fixed paraffin-embedded (FFPE) specimens will improve patient selection for the enrolment in novel clinical trials. In conclusion, the application of NGS in precision oncology will revolutionize the diagnosis and clinical management in gastric cancer patients.
Collapse
Affiliation(s)
- Gianluca Businello
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Francesca Galuppini
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Malgundkar SH, Burney I, Al Moundhri M, Al Kalbani M, Lakhtakia R, Okamoto A, Tamimi Y. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer. BMC Cancer 2020; 20:374. [PMID: 32366234 PMCID: PMC7197128 DOI: 10.1186/s12885-020-06900-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background The adhesion molecule, FAT4, has a tumor suppressor function with a critical role in the epithelial-to-mesenchymal-transition (EMT) and anti-malignant growth in several cancers. No study has investigated yet its role in epithelial ovarian cancer (EOC) progression. In the present study, we examined the role of FAT4 in proliferation and metastasis, and its mechanisms of interaction in these processes. Methods We have performed cell viability, colony formation, and invasion assays in ovarian cancer cells treated with siRNA to knockdown FAT4 gene expression. The regulatory effects of FAT4 on proteins involved in apoptotic, Wnt, Hippo, and retinoblastoma signaling pathways were evaluated by Western blotting following FAT4 repression. Also, 426 ovarian tumor samples and 88 non-tumor samples from the Gene Expression Profiling Interactive Analysis (GEPIA) database were analyzed for the expression of FAT4. Pearson’s correlation was performed to determine the correlation between FAT4 and the E2F5, cyclin D1, cdk4, and caspase 9 expressions. Results Lower expression of FAT4 was observed in ovarian cancer cell lines and human samples as compared to non-malignant tissues. This down-regulation seems to enhance cell viability, invasion, and colony formation. Silencing FAT4 resulted in the upregulation of E2F5, vimentin, YAP, β-catenin, cyclin D1, cdk4, and Bcl2, and in the downregulation of GSK-3-β, and caspase 9 when compared to control. Furthermore, regulatory effects of FAT4 on the EMT and aggressive phenotype seem to occur through Hippo, Wnt, and cell cycle pathways. Conclusion FAT4 downregulation promotes increased growth and invasion through the activation of Hippo and Wnt-β-catenin pathways.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Departments of Biochemistry, Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Ikram Burney
- Departments ofMedicine, and Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Mansour Al Moundhri
- Departments ofMedicine, and Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Moza Al Kalbani
- Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Ritu Lakhtakia
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yahya Tamimi
- Departments of Biochemistry, Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman.
| |
Collapse
|
7
|
Kawachi A, Yamashita S, Okochi-Takada E, Hirakawa A, Tsuda H, Shimomura A, Kojima Y, Yonemori K, Fujiwara Y, Kinoshita T, Ushijima T, Tamura K. BRCA1 promoter methylation in breast cancer patients is associated with response to olaparib/eribulin combination therapy. Breast Cancer Res Treat 2020; 181:323-329. [PMID: 32314111 DOI: 10.1007/s10549-020-05647-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/15/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND A PARP inhibitor is effective in breast cancer patients with BRCA1/2 germline mutations, and in cell lines with BRCA1 promoter methylation. However, its efficacy in breast cancer patients with BRCA1 promoter methylation is still unknown. METHODS Biopsy samples were obtained from 32 triple-negative breast cancer (TNBC) patients treated with eribulin/olaparib combination therapy in a clinical trial (UMINID: 000009498) and analyzed for their mutations by FoundationOne CDx. DNA methylation was evaluated by quantitative methylation-specific PCR and bisulfite sequencing, and its level was adjusted for tumor cell fraction. RESULTS Among 20 TNBC patients evaluable for both methylation and mutations, one (5%) and five (25%) patients had a high (> 80%) and low (30-80%) BRCA1 promoter methylation levels, respectively. One patient with a high methylation level, also having a BRCA2 mutation of unknown significance, displayed complete response. Among the 5 patients with low methylation levels, only one patient with a BRCA2 mutation of unknown significance displayed long-lasting disease control (24 weeks). Patients with a BRCA1 or BRCA2 mutation, or high BRCA1 promoter methylation showed better 6-month progression-free survival (PFS) compared with the other patients (P = 0.009). CONCLUSION Quantitative methylation analysis suggested that addition of homozygous BRCA1 promoter methylation to mutations may more accurately identify TNBC patients who would benefit from olaparib/eribulin combination therapy. (209 words).
Collapse
Affiliation(s)
- Asuka Kawachi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Eriko Okochi-Takada
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Kojima
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takayuki Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Yamashita S, Nanjo S, Rehnberg E, Iida N, Takeshima H, Ando T, Maekita T, Sugiyama T, Ushijima T. Distinct DNA methylation targets by aging and chronic inflammation: a pilot study using gastric mucosa infected with Helicobacter pylori. Clin Epigenetics 2019; 11:191. [PMID: 31829249 PMCID: PMC6907118 DOI: 10.1186/s13148-019-0789-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Aberrant DNA methylation is induced by aging and chronic inflammation in normal tissues. The induction by inflammation is widely recognized as acceleration of age-related methylation. However, few studies addressed target genomic regions and the responsible factors in a genome-wide manner. Here, we analyzed methylation targets by aging and inflammation, taking advantage of the potent methylation induction in human gastric mucosa by Helicobacter pylori infection-triggered inflammation. Results DNA methylation microarray analysis of 482,421 CpG probes, grouped into 270,249 genomic blocks, revealed that high levels of methylation were induced in 44,461 (16.5%) genomic blocks by inflammation, even after correction of the influence of leukocyte infiltration. A total of 61.8% of the hypermethylation was acceleration of age-related methylation while 21.6% was specific to inflammation. Regions with H3K27me3 were frequently hypermethylated both by aging and inflammation. Basal methylation levels were essential for age-related hypermethylation while even regions with little basal methylation were hypermethylated by inflammation. When limited to promoter CpG islands, being a microRNA gene and high basal methylation levels strongly enhanced hypermethylation while H3K27me3 strongly enhanced inflammation-induced hypermethylation. Inflammation was capable of overriding active transcription. In young gastric mucosae, genes with high expression and frequent mutations in gastric cancers were more frequently methylated than in old ones. Conclusions Methylation by inflammation was not simple acceleration of age-related methylation. Targets of aberrant DNA methylation were different between young and old gastric mucosae, and driver genes were preferentially methylated in young gastric mucosa.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Sohachi Nanjo
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Emil Rehnberg
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoko Iida
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Takao Maekita
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshiro Sugiyama
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
9
|
Pereira A, Moreira F, Vinasco-Sandoval T, Cunha A, Vidal A, Ribeiro-dos-Santos AM, Pinto P, Magalhães L, Assumpção M, Demachki S, Santos S, Assumpção P, Ribeiro-dos-Santos Â. miRNome Reveals New Insights Into the Molecular Biology of Field Cancerization in Gastric Cancer. Front Genet 2019; 10:592. [PMID: 31275362 PMCID: PMC6593062 DOI: 10.3389/fgene.2019.00592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in gastric carcinogenesis and have been associated with gastric field cancerization; however, their role is not fully understood in this process. We performed the miRNome sequencing of non-cancerous, adjacent to tumor and gastric cancer samples to understand the involvement of these small RNAs in gastric field cancerization. METHODS We analyzed samples of patients without cancer as control (non-cancerous gastric samples) and adjacent to cancer and gastric cancer paired samples, and considered miRNAs with |log2(fold change)| > 2 and Padj < 0.05 to be statistically significant. The identification of target genes, functional analysis and enrichment in KEGG pathways were realized in the TargetCompare, miRTargetLink, and DAVID tools. We also performed receiver operating characteristic (ROC) curves and miRNAs that had an AUC > 0.85 were considered to be potential biomarkers. RESULTS We found 14 miRNAs exclusively deregulated in gastric cancer, of which six have potential diagnostic value for advanced disease. Nine miRNAs with known tumor suppressor activities (TS-miRs) were deregulated exclusively in adjacent tissue. Of these, five have potential diagnostic value for the early stages of gastric cancer. Functional analysis of these TS-miRs revealed that they regulate important cellular signaling pathways (PI3K-Akt, HIF-1, Ras, Rap1, ErbB, and MAPK signaling pathways), that are involved in gastric carcinogenesis. Seven miRNAs were differentially expressed in both gastric cancer and adjacent regarding to non-cancerous tissues; among them, hsa-miR-200a-3p and hsa-miR-873-5p have potential diagnostic value for early and advanced stages of the disease. Only hsa-miR-196a-5p was differentially expressed between adjacent to cancer and gastric cancer tissues. In addition, the other miRNAs identified in this study were not differentially expressed between adjacent to cancer and gastric cancer, suggesting that these tissues are very similar and that share these molecular changes. CONCLUSION Our results show that gastric cancer and adjacent tissues have a similar miRNA expression profile, indicating that studied miRNAs are intimately associated with field cancerization in gastric cancer. The overexpression of TS-miRs in adjacent tissues may be a barrier against tumorigenesis within these pre-cancerous conditions prior to the eventual formation or relapse of a tumor. Additionally, these miRNAs have a great accuracy in discriminating non-cancerous from adjacent to tumor and cancer tissues and can be potentially useful as biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Adenilson Pereira
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, Brazil
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Fabiano Moreira
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, Brazil
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Tatiana Vinasco-Sandoval
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Adenard Cunha
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Amanda Vidal
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - André M. Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, Brazil
| | - Pablo Pinto
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, Brazil
| | - Mônica Assumpção
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Samia Demachki
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Sidney Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, Brazil
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Paulo Assumpção
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, Brazil
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém, Brazil
| |
Collapse
|
10
|
Pereira AL, Magalhães L, Moreira FC, Reis-das-Mercês L, Vidal AF, Ribeiro-Dos-Santos AM, Demachki S, Anaissi AKM, Burbano RMR, Albuquerque P, Dos Santos SEB, de Assumpção PP, Ribeiro-Dos-Santos ÂKC. Epigenetic Field Cancerization in Gastric Cancer: microRNAs as Promising Biomarkers. J Cancer 2019; 10:1560-1569. [PMID: 31031866 PMCID: PMC6485221 DOI: 10.7150/jca.27457] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Background: The biological role of microRNAs (miRNAs) in field cancerization is unknown. To investigate the involvement of miRNAs in gastric field cancerization, we evaluated the expression profile of ten miRNAs and their diagnostic value. Methods: We used three groups of FFPE gastric samples: non-cancer (NC), cancer adjacent (ADJ) and gastric cancer (GC). The expression profiles of hsa-miR-10a, -miR-21, -miR-29c, -miR-135b, -miR-148a, -miR-150, -miR-204, -miR-215, -miR-483 and -miR-664a were investigated using qRT-PCR. The results obtained by qRT-PCR were validated in Small RNA-Seq data from the TCGA database. The search for target genes of the studied miRNAs was performed in the miRTarBase public database and miRTargetLink tool, using experimentally validated interactions. In addition, we also performed the functional analysis of these genes using enrichment in KEGG pathways. The potential as biomarker was evaluated using a receiver operating characteristic (ROC) curve and the derived area under the curve (AUC>0.85) analysis. Results: The miRNAs hsa-miR-10a, -miR-21, -miR-135b, hsa-miR-148a, -miR-150, -miR-215, -miR-204, -miR-483 and -miR-664a were up-regulated in ADJ and GC compared to NC (P<0.03); and hsa-miR-21 and -miR-135b were up-regulated in GC compared to ADJ (P<0.01). Hsa-miR-148a, -miR-150, -miR-215, -miR-483 and -miR-664a were not differentially expressed between GC and ADJ, suggesting that both share similar changes (P>0.1). The TS-miR hsa-miR-29c was up-regulated in ADJ compared to NC and GC (P<0.01); we did not observe a significant difference in the expression of this miRNA between NC and GC. This feature may be an antitumor mechanism used by cancer-adjacent tissue because this miRNA regulates the BCL-2, CDC42 and DMNT3A oncogenes. The expression level of hsa-miR-204 was associated with Helicobacter pylori infection status (P<0.05). Functional analysis using the genes regulated by the studied miRNAs showed that they are involved in biological pathways and cellular processes that are critical for the establishment of H. pylori infection and for the onset, development and progression of GC. hsa-miR-10a, -miR-21, -miR-135b, -miR-148a, -miR-150, -miR-215, -miR-483 and -miR-664a were able to discriminate NC from other tissues with great accuracy (AUC>0.85). Conclusion: The studied miRNAs are closely related to field cancerization, regulate genes important for gastric carcinogenesis and can be potentially useful as biomarkers in GC.
Collapse
Affiliation(s)
- Adenilson Leão Pereira
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Avenue, 66075-110, Belém, Pará, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Avenue, 66075-110, Belém, Pará, Brazil
| | - Fabiano Cordeiro Moreira
- Research Center on Oncology, Institute of Health Sciences, Federal University of Pará, Mundurucus Street, 66073-000, Belém, Pará, Brazil
| | - Laís Reis-das-Mercês
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Avenue, 66075-110, Belém, Pará, Brazil
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Avenue, 66075-110, Belém, Pará, Brazil
| | - André Maurício Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Avenue, 66075-110, Belém, Pará, Brazil
| | - Samia Demachki
- Research Center on Oncology, Institute of Health Sciences, Federal University of Pará, Mundurucus Street, 66073-000, Belém, Pará, Brazil
| | - Ana Karyssa Mendes Anaissi
- Research Center on Oncology, Institute of Health Sciences, Federal University of Pará, Mundurucus Street, 66073-000, Belém, Pará, Brazil
| | - Rommel Mario Rodríguez Burbano
- Research Center on Oncology, Institute of Health Sciences, Federal University of Pará, Mundurucus Street, 66073-000, Belém, Pará, Brazil
| | - Paulo Albuquerque
- São Camilo and São Luís Hospital, Dr. Marcello Cândia Street, 68901-901, Macapá, Amapá, Brazil
| | - Sidney Emanuel Batista Dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Avenue, 66075-110, Belém, Pará, Brazil.,Research Center on Oncology, Institute of Health Sciences, Federal University of Pará, Mundurucus Street, 66073-000, Belém, Pará, Brazil
| | - Paulo Pimentel de Assumpção
- Research Center on Oncology, Institute of Health Sciences, Federal University of Pará, Mundurucus Street, 66073-000, Belém, Pará, Brazil
| | - Ândrea Kely Campos Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Avenue, 66075-110, Belém, Pará, Brazil.,Research Center on Oncology, Institute of Health Sciences, Federal University of Pará, Mundurucus Street, 66073-000, Belém, Pará, Brazil
| |
Collapse
|
11
|
Matsuoka T, Yashiro M. Biomarkers of gastric cancer: Current topics and future perspective. World J Gastroenterol 2018; 24:2818-2832. [PMID: 30018477 PMCID: PMC6048430 DOI: 10.3748/wjg.v24.i26.2818] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignant types in the world and an aggressive disease with a poor 5-year survival. This cancer is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular level. Although the incidence is declining, the outcome of patients with GC remains dismal. Thus, the detection at an early stage utilizing useful screening approaches, selection of an appropriate treatment plan, and effective monitoring is pivotal to reduce GC mortalities. Identification of biomarkers in a basis of clinical information and comprehensive genome analysis could improve diagnosis, prognosis, prediction of recurrence and treatment response. This review summarized the current status and approaches in GC biomarker, which could be potentially used for early diagnosis, accurate prediction of therapeutic approaches and discussed the future perspective based on the molecular classification and profiling.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
12
|
Sawaki K, Kanda M, Kodera Y. Review of recent efforts to discover biomarkers for early detection, monitoring, prognosis, and prediction of treatment responses of patients with gastric cancer. Expert Rev Gastroenterol Hepatol 2018; 12:657-670. [PMID: 29902383 DOI: 10.1080/17474124.2018.1489233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide. Despite recent advances in diagnosis and therapy, the prognosis of patients with GC is poor. Many patients have inoperable disease upon diagnosis or experience recurrent disease after curative gastrectomy. Unfortunately, tumor markers for GC, such as serum carcinoembryonic antigen and carbohydrate antigen 19-9, lack sufficient sensitivity and specificity. Therefore, effective biomarkers are required to detect early GC and to predict tumor recurrence and chemosensitivity. Areas covered: Here we aimed to review recent developments in techniques that improve the detection of aberrant expression of GC-associated molecules, including protein coding genes, microRNAs, long noncoding RNAs, and methylated promoter DNAs. Expert commentary: Detection of genetic and epigenetic alterations in gastric tissue or in the circulation will likely improve the diagnosis and management of GC to achieve significantly improved outcomes.
Collapse
Affiliation(s)
- Koichi Sawaki
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
13
|
Sun H, Zhou H, Zhang Y, Chen J, Han X, Huang D, Ren X, Jia Y, Fan Q, Tian W, Zhao Y. Aberrant methylation of FAT4 and SOX11 in peripheral blood leukocytes and their association with gastric cancer risk. J Cancer 2018; 9:2275-2283. [PMID: 30026822 PMCID: PMC6036714 DOI: 10.7150/jca.24797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/31/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Aberrant DNA methylation, especially tumor suppressor gene hypermethylation, is a well-recognized biomarker of initial tumorogenesis stages. FAT4 and SOX11 are putative tumor suppressor genes and can be down-regulated by hypermethylation in various cancers tissues. However, in peripheral blood leukocytes, the association between these two genes methylation status, as well as the effects of gene-environment interactions, and gastric cancer (GC) risk remain unclear. Methods: A hospital-based case-control study including 375 cases and 394 controls was conducted. Peripheral blood leukocytes DNA methylation status were detected by methylation-sensitive high-resolution melting (MS-HRM) assay. Logistic regression was adopted to analyze the relationship of FAT4 and SOX11 methylation with GC susceptibility. Results: Positive methylation (Pm) and total positive methylation (Tpm) of FAT4 were significantly increased the risk of GC (OR = 2.204, 95% CI: 1.168-4.159, P = 0.015; OR = 1.583, 95% CI: 1.031-2.430, P = 0.036, respectively). Compared with controls, cases exhibited higher SOX11 Pm frequencies with OR of 2.530 (95% CI: 1.289-4.969, P = 0.007). Nonetheless, no statistically significant association between SOX11 Tpm and GC risk was observed. Additionally, interactions between FAT4 Tpm and increased consumption of freshwater fish (≥1 times/week) displayed an antagonistic effect on GC (OR = 0.328, 95% CI: 0.142-0.762, P = 0.009), and high salt intake interacted with SOX11 Tpm also showed statistically significant (OR = 0.490, 95% CI: 0.242-0.995, P = 0.048). Conclusions:FAT4 aberrant methylation in peripheral blood leukocytes and gene-environment interactions were associated with the risk of GC, while SOX11 was controversial and needed to be more investigated.
Collapse
Affiliation(s)
- Hongxu Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yan Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Jie Chen
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Di Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xiyun Ren
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yunhe Jia
- Department of Colorectal Cancer Surgery, The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Qing Fan
- Xiangfang Center for Disease Control and Prevention, Harbin 150081, Heilongjiang Province, P. R. China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
14
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Abstract
To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.
Collapse
Affiliation(s)
- Seth Blair
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
| |
Collapse
|
16
|
Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc Natl Acad Sci U S A 2018; 115:1328-1333. [PMID: 29358395 DOI: 10.1073/pnas.1717340115] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic and epigenetic alterations are both involved in carcinogenesis, and their low-level accumulation in normal tissues constitutes cancer risk. However, their relative importance has never been examined, as measurement of low-level mutations has been difficult. Here, we measured low-level accumulations of genetic and epigenetic alterations in normal tissues with low, intermediate, and high cancer risk and analyzed their relative effects on cancer risk in the esophagus and stomach. Accumulation of genetic alterations, estimated as a frequency of rare base substitution mutations, significantly increased according to cancer risk in esophageal mucosae, but not in gastric mucosae. The mutation patterns reflected the exposure to lifestyle risk factors. In contrast, the accumulation of epigenetic alterations, measured as DNA methylation levels of marker genes, significantly increased according to cancer risk in both tissues. Patients with cancer (high-risk individuals) were precisely discriminated from healthy individuals with exposure to risk factors (intermediate-risk individuals) by a combination of alterations in the esophagus (odds ratio, 18.2; 95% confidence interval, 3.69-89.9) and by only epigenetic alterations in the stomach (odds ratio, 7.67; 95% confidence interval, 2.52-23.3). The relative importance of epigenetic alterations upon genetic alterations was 1.04 in the esophagus and 2.31 in the stomach. The differential impacts among tissues will be critically important for effective cancer prevention and precision cancer risk diagnosis.
Collapse
|
17
|
Jiang X, Liu Z, Xia Y, Luo J, Xu J, He X, Tao H. Low FAT4 expression is associated with a poor prognosis in gastric cancer patients. Oncotarget 2017; 9:5137-5154. [PMID: 29435168 PMCID: PMC5797039 DOI: 10.18632/oncotarget.23702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the role of Fat atypical cadherin 4 (FAT4) in gastric cancer (GC) progression. Immunohistochemical analysis showed lower FAT4 expression in tumor tissues from GC patients than in normal gastric epithelium. Lower FAT4 expression was associated with poor prognosis, tumor size and invasion, and lymph node and distant metastases. Multivariate analysis showed that TNM stage, lymph node and distant metastases, Lauren classification, and FAT4 expression were independent prognostic factors in GC. Methylation-specific PCR analysis showed increased FAT4 promoter methylation in GC tumor tissues and cell lines. Higher FAT4 promoter methylation was associated with low FAT4 expression and a poor prognosis. BGC-823 cells showed increased FAT4 expression upon treatment with 5-azacytidine, demethylating agent. FAT4 knockdown in BGC-823 cells led to increased cell proliferation, migration and invasiveness. Moreover, xenografts of BGC-823 cells with FAT4 knockdown showed enhanced tumor growth and metastasis in nude mice. These findings demonstrate that low FAT4 expression is associated with a poor prognosis in GC patients.
Collapse
Affiliation(s)
- Xiaoting Jiang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Yingjie Xia
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Jungang Luo
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Ji Xu
- Department of Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.,Department of Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
18
|
Song Y, Wang Y, Tong C, Xi H, Zhao X, Wang Y, Chen L. A unified model of the hierarchical and stochastic theories of gastric cancer. Br J Cancer 2017; 116:973-989. [PMID: 28301871 PMCID: PMC5396111 DOI: 10.1038/bjc.2017.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a life-threatening disease worldwide. Despite remarkable advances in treatments for GC, it is still fatal to many patients due to cancer progression, recurrence and metastasis. Regarding the development of novel therapeutic techniques, many studies have focused on the biological mechanisms that initiate tumours and cause treatment resistance. Tumours have traditionally been considered to result from somatic mutations, either via clonal evolution or through a stochastic model. However, emerging evidence has characterised tumours using a hierarchical organisational structure, with cancer stem cells (CSCs) at the apex. Both stochastic and hierarchical models are reasonable systems that have been hypothesised to describe tumour heterogeneity. Although each model alone inadequately explains tumour diversity, the two models can be integrated to provide a more comprehensive explanation. In this review, we discuss existing evidence supporting a unified model of gastric CSCs, including the regulatory mechanisms of this unified model in addition to the current status of stemness-related targeted therapy in GC patients.
Collapse
Affiliation(s)
- Yanjing Song
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Wang
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xudong Zhao
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
19
|
Zhang X, Liu J, Liang X, Chen J, Hong J, Li L, He Q, Cai X. History and progression of Fat cadherins in health and disease. Onco Targets Ther 2016; 9:7337-7343. [PMID: 27942226 PMCID: PMC5138043 DOI: 10.2147/ott.s111176] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intercellular adhesions are vital hubs for signaling pathways during multicellular development and animal morphogenesis. In eukaryotes, under aberrant intracellular conditions, cadherins are abnormally regulated, which can result in cellular pathologies such as carcinoma, kidney disease, and autoimmune diseases. As a member of the Ca2+-dependent adhesion super-family, Fat proteins were first described in the 1920s as an inheritable lethal mutant phenotype in Drosophila, consisting of four member proteins, FAT1, FAT2, FAT3, and FAT4, all of which are highly conserved in structure. Functionally, FAT1 was found to regulate cell migration and growth control through specific protein–protein interactions of its cytoplasmic tail. FAT2 and FAT3 are relatively less studied and are thought to participate in the development of human cancer through a pathway similar to that of the Ena/VASP proteins. In contrast, FAT4 has been widely studied in the context of biological functions and tumor mechanisms and has been shown to regulate the planar cell polarity pathway, the Hippo signaling pathway, the canonical Wnt signaling cascade, and the expression of YAP1. Overall, Fat cadherins may be useful as emerging disease biomarkers and as novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of General Surgery; Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xiao Liang
- Department of General Surgery; Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang
| | - Jiang Chen
- Department of General Surgery; Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang
| | - Junjie Hong
- Department of General Surgery; Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang
| | - Libo Li
- Department of General Surgery
| | - Qiang He
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xiujun Cai
- Department of General Surgery; Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang
| |
Collapse
|
20
|
Pilehchian Langroudi M, Nikbakhsh N, Samadani AA, Fattahi S, Taheri H, Shafaei S, Amirbozorgi G, Pilehchian Langroudi R, Akhavan-Niaki H. FAT4 hypermethylation and grade dependent downregulation in gastric adenocarcinoma. J Cell Commun Signal 2016; 11:69-75. [PMID: 27696226 DOI: 10.1007/s12079-016-0355-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/10/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the major causes of death due to cancer in the world. It is a multi-factorial disease with epigenetic factors being also involved in its development. FAT4 is a tumor suppressor gene exerting an important role in cell adhesion. This study aimed at analyzing FAT4 expression and promoter methylation in gastric cancer. FAT4 expression was studied in 30 tumoral tissues and their non-tumoral counterparts using Taqman real time PCR method. Promoter methylation was assessed using bisulfite conversion method followed by sequencing. Tumor tissues showed reduced FAT4 expression (P = 0.04). FAT4 downregulation was associated with tumor grade, with higher repression at advanced grades. Significant increase of promoter methylation was observed in tumoral tissues. Reduced expression of FAT4 and increased methylation of its promoter may be one of the effective processes in turning a healthy stomach tissue into a tumor tissue.
Collapse
Affiliation(s)
- Maryam Pilehchian Langroudi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Novin Nikbakhsh
- Department of Surgery, Rouhani hospital, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Samadani
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sadegh Fattahi
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hassan Taheri
- Department of Internal Medicine, Rouhani hospital, Babol University of Medical Sciences, Babol, Iran
| | - Shahryar Shafaei
- Department of Pathology, Rouhani hospital, Babol University of Medical Sciences, Babol, Iran
| | | | - Reza Pilehchian Langroudi
- Department of Anaerobic Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran. .,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
21
|
Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer. Sci Rep 2016; 6:31690. [PMID: 27528092 PMCID: PMC4985659 DOI: 10.1038/srep31690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/25/2016] [Indexed: 12/29/2022] Open
Abstract
While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.
Collapse
|
22
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|