1
|
Xu Y, Chen J, Wang P, Chen H, Zhao Y, Cao X, Wan C, Gu Y. Diagnostic and prognostic value of the gasdermins in gastric cancer. Braz J Med Biol Res 2024; 57:e13817. [PMID: 39607202 DOI: 10.1590/1414-431x2024e13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Pyroptosis has attracted attention due to its role in various cancers. Recently, gasdermins (GSDMs) involved in pyroptosis have been reported to be associated with several types of cancers. However, the role of GSDMs expression in the diagnosis and prognosis of gastric cancer (GC) is still not well understood. We analyzed the transcriptional and prognostic information and the role of GSDMs in patients with GC from TIMER, UALCAN, Human Protein Atlas (HPA), GEPIA, and Kaplan-Meier Plotter databases. The cBioPortal platform was used to discover the genetic alterations, significance, and networks of GSDMs. Furthermore, STRING, Cytoscape, and TIMER were used to explore functional enrichment and immunomodulation. GSDMB, GSDMC, GSDMD, and GSDME were more highly expressed in GC than in normal tissues in the TIMER database. Moreover, survival analyses in two databases showed that high expression of GSDME was related to shorter overall survival (OS) in patients with GC. Additionally, functional enrichment revealed that GSDMs may be involved in endopeptidase activity, peptidase regulatory activity, and cysteine peptidase activity. GSDMs correlated with infiltration levels of immune cells in GC, and GSDME correlated with the infiltrating level of CD4+ T, CD8+ T, neutrophils, macrophages, and dendritic cells. This study indicated the potential diagnostic and prognostic value of GSDMs in GC. Our results showed that GSDME could play a significant oncogenic role in GC diagnosis and prognosis. However, our bioinformatics analyses should be validated in further prospective studies.
Collapse
Affiliation(s)
- Yeqiong Xu
- Center Laboratory of Changshu Medical Examination Institute, Changshu, Jiangsu Province, China
| | - Jie Chen
- Center Laboratory of Changshu Medical Examination Institute, Changshu, Jiangsu Province, China
| | - Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Huanhuan Chen
- Center Laboratory of Changshu Medical Examination Institute, Changshu, Jiangsu Province, China
| | - Yilin Zhao
- Center Laboratory of Changshu Medical Examination Institute, Changshu, Jiangsu Province, China
| | - Xuexian Cao
- Department of Oncology, Affiliated Changshu Hospital of Nantong University, Suzhou, China
| | - Chuandan Wan
- Center Laboratory of Changshu Medical Examination Institute, Changshu, Jiangsu Province, China
| | - Yulan Gu
- Department of Oncology, Affiliated Changshu Hospital of Nantong University, Suzhou, China
| |
Collapse
|
2
|
Tian CF, Jing HY, Sinicrope FA, Wang JS, Gao BB, Sun XG, Yao ZG, Li LP, Saberzadeh-Ardestani B, Song W, Sha D. Tumor microenvironment characteristics association with clinical outcome in patients with resected intestinal-type gastric cancer. Oncologist 2024; 29:e1280-e1290. [PMID: 38907674 PMCID: PMC11448893 DOI: 10.1093/oncolo/oyae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Tumor microenvironment (TME) characteristics including tumor stroma ratio (TSR), tumor budding (TB), and tumor-infiltrating lymphocytes (TILs) were examined in resected gastric cancer. These TME features have been shown to indicate metastatic potential in colon cancer, and intestinal-type gastric cancer (IGC) has pathological similarities with that malignancy. METHODS TSR, TB, and TILs were quantified in routine histological sections from 493 patients with IGC who underwent radical resection at 2 university hospitals in China from 2010 to 2016. TME variables were dichotomized as follows: TSR (50%), TILs (median), TB per international guidelines (4 buds/0.785mm2), and platelet-lymphocyte ratio (PLR) per survival ROC. Association of TME features with patient clinicopathological characteristics, time-to-recurrence (TTR), and cancer-specific-survival (CSS) were examined using univariate and multivariate analysis, including a relative contribution analysis by Cox regression. RESULTS Patients whose tumors showed high TSR or high TB or low TILs were each significantly associated with increased T and N stage, higher histological grade, and poorer TTR and CSS at 5 years. Only TSR and N stage were independently associated with TTR and CSS after adjustment for covariates. PLR was only independently associated with TTR after adjustment for covariates. Among the variables examined, only TSR was significantly associated with both TTR (HR 1.72, 95% CI, 1.14-2.60, P = .01) and CSS (HR 1.62, 95% CI, 1.05-2.51, P = .03) multivariately. Relative contribution to TTR revealed that the top 3 contributors were N stage (45.1%), TSR (22.5%), and PLR (12.9%), while the top 3 contributors to CSS were N stage (59.9%), TSR (14.7%), and PLR (10.9%). CONCLUSIONS Among the examined TME features, TSR was the most robust for prognostication and was significantly associated with both TTR and CSS. Furthermore, the relative contribution of TSR to patient TTR and CSS was second only to nodal status.
Collapse
Affiliation(s)
- Chun-Fang Tian
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Hai-Yan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Frank A Sinicrope
- Department of Oncology, Mayo Clinic, Rochester, 55905, United States
| | - Jin-Shen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Bin-Bin Gao
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Xiao-Gang Sun
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Zhi-Gang Yao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Le-Ping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | | | - Wei Song
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Dan Sha
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| |
Collapse
|
3
|
El Beaino Z, Dupain C, Marret G, Paoletti X, Fuhrmann L, Martinat C, Allory Y, Halladjian M, Bièche I, Le Tourneau C, Kamal M, Vincent-Salomon A. Pan-cancer evaluation of tumor-infiltrating lymphocytes and programmed cell death protein ligand-1 in metastatic biopsies and matched primary tumors. J Pathol 2024; 264:186-196. [PMID: 39072750 DOI: 10.1002/path.6334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Tumor immunological characterization includes evaluation of tumor-infiltrating lymphocytes (TILs) and programmed cell death protein ligand-1 (PD-L1) expression. This study investigated TIL distribution, its prognostic value, and PD-L1 expression in metastatic and matched primary tumors (PTs). Specimens from 550 pan-cancer patients of the SHIVA01 trial (NCT01771458) with available metastatic biopsy and 111 matched PTs were evaluated for TILs and PD-L1. Combined positive score (CPS), tumor proportion score (TPS), and immune cell (IC) score were determined. TILs and PD-L1 were assessed according to PT organ of origin, histological subtype, and metastatic biopsy site. We found that TIL distribution in metastases did not vary according to PT organ of origin, histological subtype, or metastatic biopsy site, with a median of 10% (range: 0-70). TILs were decreased in metastases compared to PT (20% [5-60] versus 10% [0-40], p < 0.0001). CPS varied according to histological subtype (p = 0.02) and biopsy site (p < 0.02). TPS varied according to PT organ of origin (p = 0.003), histological subtype (p = 0.0004), and metastatic biopsy site (p = 0.00004). TPS was higher in metastases than in PT (p < 0.0001). TILs in metastases did not correlate with overall survival. In conclusion, metastases harbored fewer TILs than matched PT, regardless of PT organ of origin, histological subtype, and metastatic biopsy site. PD-L1 expression increased with disease progression. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zakhia El Beaino
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Célia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Grégoire Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Xavier Paoletti
- INSERM U900 Research Unit, Institut Curie, Saint-Cloud, France
- Department of Biostatistics, Institut Curie, Paris, France
| | - Laëtitia Fuhrmann
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Charlotte Martinat
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Yves Allory
- Department of Pathology, Institut Curie, Saint-Cloud, Versailles Saint-Quentin University, Paris-Saclay, France
| | - Maral Halladjian
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
- INSERM U1016 Research Unit, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris-Cité University, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Institut Curie, Saint-Cloud, France
- Paris-Saclay University, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | | |
Collapse
|
4
|
Ibrahim D, Simó C, Brown EL, Shmuel S, Panikar SS, Benton A, DeWeerd R, Dehdashti F, Park H, Pereira PMR. PD-L1 has a heterogeneous and dynamic expression in gastric cancer with implications for immunoPET. Front Immunol 2024; 15:1405485. [PMID: 38915392 PMCID: PMC11194338 DOI: 10.3389/fimmu.2024.1405485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This study aimed to investigate the dynamics of programmed death-ligand 1 (PD-L1) expression, spatial heterogeneity, and binding affinity of FDA-approved anti-PD-L1 antibodies (avelumab and atezolizumab) in gastric cancer. Additionally, we determined how PD-L1 glycosylation impacts antibody accumulation in gastric cancer cells. Methods Dynamic PD-L1 expression was examined in NCIN87 gastric cancer cells. Comparative binding studies of avelumab and atezolizumab were conducted in gastric cancer models, both in vitro and in vivo. Antibody uptake in tumors was visualized through positron emission tomography (PET) imaging. PD-L1 glycosylation status was determined via Western blot analyses before and after PNGase F treatment. Results Consistent findings revealed time-dependent PD-L1 induction in NCIN87 gastric cancer cells and spatial heterogeneity in tumors, as shown by PET imaging and immunofluorescence. Avelumab displayed superior binding affinity to NCIN87 cells compared to atezolizumab, confirmed by in vivo PET imaging and ex vivo biodistribution analyses. Notably, PD-L1 glycosylation at approximately 50 kDa was observed, with PNGase F treatment inducing a shift to 35 kDa in molecular weight. Tissue samples from patient-derived xenografts (PDXs) validated the presence of both glycosylated and deglycosylated PD-L1 (degPD-L1) forms in gastric cancer. Immunofluorescence microscopy and binding assays demonstrated enhanced avelumab binding post-deglycosylation. Discussion This study provides an understanding of dynamic and spatially heterogeneous PD-L1 expression in gastric cancer. Anti-PD-L1 immunoPET was able to visualize gastric tumors, and PD-L1 glycosylation has significant implications for antibody recognition. These insights contribute to demonstrating the complexities of PD-L1 in gastric cancer, holding relevance for refining PD-L1 imaging-based approaches.
Collapse
Affiliation(s)
- Dina Ibrahim
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cristina Simó
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep Surendra Panikar
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Alex Benton
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel DeWeerd
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Farrokh Dehdashti
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Haeseong Park
- Gastrointestinal Cancer Center, Center for Cancer Therapeutic Innovation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Patrícia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Sun J, Li X, Wang Q, Chen P, Zhao L, Gao Y. Proteomic profiling and biomarker discovery for predicting the response to PD-1 inhibitor immunotherapy in gastric cancer patients. Front Pharmacol 2024; 15:1349459. [PMID: 38881867 PMCID: PMC11176556 DOI: 10.3389/fphar.2024.1349459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment; however, a significant proportion of gastric cancer (GC) patients do not respond to this therapy. Consequently, there is an urgent need to elucidate the mechanisms underlying resistance to ICIs and identify robust biomarkers capable of predicting the response to ICIs at treatment initiation. Methods: In this study, we collected GC tissues from 28 patients prior to the administration of anti-programmed death 1 (PD-1) immunotherapy and conducted protein quantification using high-resolution mass spectrometry (MS). Subsequently, we analyzed differences in protein expression, pathways, and the tumor microenvironment (TME) between responders and non-responders. Furthermore, we explored the potential of these differences as predictive indicators. Finally, using machine learning algorithms, we screened for biomarkers and constructed a predictive model. Results: Our proteomics-based analysis revealed that low activity in the complement and coagulation cascades pathway (CCCP) and a high abundance of activated CD8 T cells are positive signals corresponding to ICIs. By using machine learning, we successfully identified a set of 10 protein biomarkers, and the constructed model demonstrated excellent performance in predicting the response in an independent validation set (N = 14; area under the curve [AUC] = 0.959). Conclusion: In summary, our proteomic analyses unveiled unique potential biomarkers for predicting the response to PD-1 inhibitor immunotherapy in GC patients, which may provide the impetus for precision immunotherapy.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longfei Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Han Z, Zhang Z, Yang X, Li Z, Sang S, Islam MT, Guo AA, Li Z, Wang X, Wang J, Zhang T, Sun Z, Yu L, Wang W, Xiong W, Li G, Jiang Y. Development and interpretation of a pathomics-driven ensemble model for predicting the response to immunotherapy in gastric cancer. J Immunother Cancer 2024; 12:e008927. [PMID: 38749538 PMCID: PMC11097892 DOI: 10.1136/jitc-2024-008927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Only a subset of patients with gastric cancer experience long-term benefits from immune checkpoint inhibitors (ICIs). Currently, there is a deficiency in precise predictive biomarkers for ICI efficacy. The aim of this study was to develop and validate a pathomics-driven ensemble model for predicting the response to ICIs in gastric cancer, using H&E-stained whole slide images (WSI). METHODS This multicenter study retrospectively collected and analyzed H&E-stained WSIs and clinical data from 584 patients with gastric cancer. An ensemble model, integrating four classifiers: least absolute shrinkage and selection operator, k-nearest neighbors, decision trees, and random forests, was developed and validated using pathomics features, with the objective of predicting the therapeutic efficacy of immune checkpoint inhibition. Model performance was evaluated using metrics including the area under the curve (AUC), sensitivity, and specificity. Additionally, SHAP (SHapley Additive exPlanations) analysis was used to explain the model's predicted values as the sum of the attribution values for each input feature. Pathogenomics analysis was employed to explain the molecular mechanisms underlying the model's predictions. RESULTS Our pathomics-driven ensemble model effectively stratified the response to ICIs in training cohort (AUC 0.985 (95% CI 0.971 to 0.999)), which was further validated in internal validation cohort (AUC 0.921 (95% CI 0.839 to 0.999)), as well as in external validation cohort 1 (AUC 0.914 (95% CI 0.837 to 0.990)), and external validation cohort 2 (0.927 (95% CI 0.802 to 0.999)). The univariate Cox regression analysis revealed that the prediction signature of pathomics-driven ensemble model was a prognostic factor for progression-free survival in patients with gastric cancer who underwent immunotherapy (p<0.001, HR 0.35 (95% CI 0.24 to 0.50)), and remained an independent predictor after multivariable Cox regression adjusted for clinicopathological variables, (including sex, age, carcinoembryonic antigen, carbohydrate antigen 19-9, therapy regime, line of therapy, differentiation, location and programmed death ligand 1 (PD-L1) expression in all patients (p<0.001, HR 0.34 (95% CI 0.24 to 0.50)). Pathogenomics analysis suggested that the ensemble model is driven by molecular-level immune, cancer, metabolism-related pathways, and was correlated with the immune-related characteristics, including immune score, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data score, and tumor purity. CONCLUSIONS Our pathomics-driven ensemble model exhibited high accuracy and robustness in predicting the response to ICIs using WSIs. Therefore, it could serve as a novel and valuable tool to facilitate precision immunotherapy.
Collapse
Affiliation(s)
- Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Zhicheng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
- JancsiLab, JancsiTech, Hongkong, China
| | - Xianqi Yang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhe Li
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shengtian Sang
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Alyssa A Guo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Zihan Li
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Xiaoyan Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Lequan Yu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
- School of Clinical Medicine, Tsinghua University, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Wang M, Peng M, Yang X, Zhang Y, Wu T, Wang Z, Wang K. Preoperative prediction of microsatellite instability status: development and validation of a pan-cancer PET/CT-based radiomics model. Nucl Med Commun 2024; 45:372-380. [PMID: 38312051 DOI: 10.1097/mnm.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The purpose of this study is to verify the feasibility of preoperative prediction of patients' microsatellite instability status by applying a PET/CT-based radiation model. METHODS This retrospective study ultimately included 142 patients. Three prediction models have been developed. The predictive performance of all models was evaluated by the receiver operating characteristic curve and area under the curve values. The PET/CT radiological histology score (Radscore) was calculated to evaluate the microsatellite instability status, and the corresponding nomogram was established. The correlation between clinical factors and radiological characteristics was analyzed to verify the value of radiological characteristics in predicting microsatellite instability status. RESULTS Twelve features were retained to establish a comprehensive prediction model of radiological and clinical features. M phase of the tumor has been proven to be an independent predictor of microsatellite instability status. The receiver operating characteristic results showed that the area under the curve values of the training set and the validation set of the radiomics model were 0.82 and 0.75, respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the training set were 0.72, 0.78, 0.83 and 0.66, respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the validation set were 1.00, 0.50, 0.76 and 1.00, respectively. The risk of patients with microsatellite instability was calculated by Radscore and nomograph, and the cutoff value was -0.4385. The validity of the results was confirmed by the decision and calibration curves. CONCLUSION Radiological models based on PET/CT can provide clinical and practical noninvasive prediction of microsatellite instability status of several different cancer types, reducing or avoiding unnecessary biopsy to a certain extent.
Collapse
Affiliation(s)
- Menglu Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Mengye Peng
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Xinyue Yang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Ying Zhang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Tingting Wu
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Zeyu Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kezheng Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| |
Collapse
|
9
|
Dokanei S, Minai‐Tehrani D, Moghoofei M, Rostamian M. Investigating the relationship between Epstein-Barr virus infection and gastric cancer: A systematic review and meta-analysis. Health Sci Rep 2024; 7:e1976. [PMID: 38505684 PMCID: PMC10948593 DOI: 10.1002/hsr2.1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Background and Aims Gastric cancer (GC) is a common cancer type worldwide, and various factors can be involved in its occurrence. One of these factors is Epstein-Barr virus (EBV) infection. In this regard, a systematic review and meta-analysis was conducted to achieve a better understanding of the EBV prevalence in GC samples. Methods English databases were searched and studies that reported the prevalence and etiological factors of EBV related to GC from July 2007 to November 2022 were retrieved. The reported data were selected based on the inclusion and exclusion criteria. The pooled prevalence of EBV infection with 95% confidence intervals was calculated. Quality assessment, heterogeneity testing, and publication bias assessment were also performed. The literature search showed 953 studies, of which 87 studies met our inclusion criteria and were used for meta-analysis. Results The pooled prevalence of EBV infection related to GC was estimated to be 9.5% (95% confidence interval [CI]: 8.2%-11%) in the general population. The prevalence of EBV infection related to GC by gender was 13.5% (95% CI: 11.1%-16.3%) in males and 7.6% (95% CI: 5.4%-10.6%) in females. No significant differences were observed in terms of geographical region. Out of the 87 studies included in the meta-analysis, the most common diagnostic test was in situ hybridization (58 cases). Conclusions Altogether, the results indicated that EBV infection is one of the important factors in the development of GC. However, this does not necessarily mean that EBV infection directly causes GC since other factors may also be involved in the development of GC. Therefore, it is recommended to conduct extensive epidemiological studies on various aspects of the relationship between this virus and GC, which can provide valuable information for understanding the relationship between EBV and GC.
Collapse
Affiliation(s)
- Saman Dokanei
- Faculty of Life Sciences and BiotechnologyShahid Beheshti University (GC)TehranIran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health InstituteKermanshah University of Medical SciencesKermanshahIran
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
10
|
Noori M, Jafari-Raddani F, Davoodi-Moghaddam Z, Delshad M, Safiri S, Bashash D. Immune checkpoint inhibitors in gastrointestinal malignancies: an Umbrella review. Cancer Cell Int 2024; 24:10. [PMID: 38183112 PMCID: PMC10771001 DOI: 10.1186/s12935-023-03183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024] Open
Abstract
In the Modern era, immune checkpoint inhibitors (ICIs) have been the cornerstone of success in the treatment of several malignancies. Despite remarkable therapeutic advances, complex matrix together with significant molecular and immunological differences have led to conflicting outcomes of ICI therapy in gastrointestinal (GI) cancers. As far we are aware, to date, there has been no study to confirm the robustness of existing data, and this study is the first umbrella review to provide a more comprehensive picture about ICIs' efficacy and safety in GI malignancies. Systematic search on PubMed, Scopus, Web of Science, EMBASE, and Cochrane library identified 14 meta-analyses. The pooled analysis revealed that ICIs application, especially programmed death-1 (PD-1) inhibitors such as Camrelizumab and Sintilimab, could partially improve response rates in patients with GI cancers compared to conventional therapies. However, different GI cancer types did not experience the same efficacy; it seems that hepatocellular carcinoma (HCC) and esophageal cancer (EC) patients are likely better candidates for ICI therapy than GC and CRC patients. Furthermore, application of ICIs in a combined-modal strategy are perceived opportunity in GI cancers. We also assessed the correlation of PD-L1 expression as well as microsatellite status with the extent of the response to ICIs; overall, high expression of PD-L1 in GI cancers is associated with better response to ICIs, however, additional studies are required to precisely elaborate ICI responses with respect to microsatellite status in different GI tumors. Despite encouraging ICI efficacy in some GI cancers, a greater number of serious and fatal adverse events have been observed; further highlighting the fact that ICI therapy in GI cancers is not without cost, and further studies are required to utmost optimization of this approach in GI cancers.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeid Safiri
- Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Han Z, Wang N, Qiao Q, He X, Wang N. Association of PD-L1 Expression with Clinicopathologic Characters in Gastric Cancer: A Comprehensive Meta-analysis. Curr Med Chem 2024; 31:3198-3216. [PMID: 37921182 DOI: 10.2174/0109298673263784230922060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE The expression level of programmed death ligand-1(PD-L1) in patients with gastric cancer is the key to determining the use of immune drugs. The relationship between PD-L1 expression level and clinical characteristics is worth exploring. METHODS By setting the search terms correlated to PD-L1 and gastric cancer, a nearly comprehensive search was carried out in four major databases, and the deadline for searching was September 1, 2022. The retrieved documents were further screened by strict inclusion and exclusion criteria after removing the duplication. Next, the quality of the included studies was evaluated with the Newcastle-Ottawa Scale (NOS) scale. Finally, the STATA15.1 software was used to process data and draw plots, and the odds ratios (ORs) were adopted to assess the pooled effect size. RESULTS A total of 85 works of literature were included in this study through screening strictly, and detailed data were extracted after evaluating the quality of the literature. The process of analysis was conducted in the whole population, Asia-Africa population, European and American population, and Asian population with CPS≥1, amd all found that the expression of PD-L1 in gastric cancer was correlated with age, tumor size, EBV infection, Her-2 expression and microsatellite status. However, the subgroup of the region also found some differences in Asian and Western regions, which was interesting and worth studying further. The included research of this study did not have significant publish bias. CONCLUSION After careful analysis, this study found that age (>60 years), tumor size (>5cm), EBV infection (+), Her-2 expression (+), microsatellite status (MSI), and mismatch repair status (dMMR) were risk factors for positive expression of PD-L1 in gastric cancer.
Collapse
Affiliation(s)
- Zhuo Han
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| |
Collapse
|
12
|
van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023; 23:193-215. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
13
|
Venkatasamy A, Guerin E, Reichardt W, Devignot V, Chenard MP, Miguet L, Romain B, Jung AC, Gross I, Gaiddon C, Mellitzer G. Morpho-functional analysis of patient-derived xenografts reveals differential impact of gastric cancer and chemotherapy on the tumor ecosystem, affecting immune check point, metabolism, and sarcopenia. Gastric Cancer 2023; 26:220-233. [PMID: 36536236 PMCID: PMC9950243 DOI: 10.1007/s10120-022-01359-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Gastric cancer (GC) is an aggressive disease due to late diagnosis resulting from the lack of easy diagnostic tools, resistances toward immunotherapy (due to low PD-L1 expression), or chemotherapies (due to p53 mutations), and comorbidity factors, notably muscle atrophy. To improve our understanding of this complex pathology, we established patient-derived xenograft (PDX) models and characterized the tumor ecosystem using a morpho-functional approach combining high-resolution imaging with molecular analyses, regarding the expression of relevant therapeutic biomarkers and the presence of muscle atrophy. MATERIALS AND METHODS GC tissues samples were implanted in nude mice. Established PDX, treated with cisplatin or not, were imaged by magnetic resonance imaging (MRI) and analyzed for the expression of relevant biomarkers (p53, PD-L1, PD-1, HER-2, CDX2, CAIX, CD31, a-SAM) and by transcriptomics. RESULTS Three well-differentiated, one moderately and one poorly differentiated adenocarcinomas were established. All retained the architectural and histological features of their primary tumors. MRI allowed in-real-time evaluation of differences between PDX, in terms of substructure, post-therapeutic changes, and muscle atrophy. Immunohistochemistry showed differential expression of p53, HER-2, CDX2, a-SAM, PD-L1, PD-1, CAIX, and CD31 between models and upon cisplatin treatment. Transcriptomics revealed treatment-induced hypoxia and metabolic reprograming in the tumor microenvironment. CONCLUSION Our PDX models are representative for the heterogeneity and complexity of human tumors, with differences in structure, histology, muscle atrophy, and the different biomarkers making them valuable for the analyses of the impact of platinum drugs or new therapies on the tumor and its microenvironment.
Collapse
Affiliation(s)
- A Venkatasamy
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67200, Strasbourg, France
- Medizin Physik, Universitätsklinikum Freiburg, Kilianstr. 5a, 70106, Freiburg, Germany
| | - E Guerin
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - W Reichardt
- Medizin Physik, Universitätsklinikum Freiburg, Kilianstr. 5a, 70106, Freiburg, Germany
| | - V Devignot
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - M P Chenard
- Pathology Department, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67098, Strasbourg Cedex, France
| | - L Miguet
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - B Romain
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
- Digestive Surgery Department, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67098, Strasbourg Cedex, France
| | - A C Jung
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - I Gross
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - C Gaiddon
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - G Mellitzer
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France.
| |
Collapse
|
14
|
Kawatoko S, Kohashi K, Torisu T, Sasaki T, Umekita S, Oki E, Nakamura M, Kitazono T, Oda Y. Solid-type poorly differentiated adenocarcinoma of the stomach: A characteristic morphology reveals a distinctive immunoregulatory tumor microenvironment. Pathol Res Pract 2022; 238:154124. [PMID: 36137397 DOI: 10.1016/j.prp.2022.154124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 12/12/2022]
Abstract
Solid-type poorly differentiated adenocarcinoma (solid-type-PDA) of the stomach is a unique histological subtype of "tubular adenocarcinoma", but little is known about its clinicopathological features, molecular pathological characteristics and immunoregulatory tumor microenvironment. Herein, we examined the immunohistochemical expressions of mismatch repair (MMR) proteins (MLH1, PMS2, MSH2, MSH6) in 57 cases of solid-type-PDA and classified them as either MMR-deficient or -proficient (dMMR, N = 23; pMMR, N = 34), and additionally identified 18 dMMR-well-differentiated adenocarcinoma (WDA) and 34 pMMR-WDA as control groups. We analyzed and compared solid-type-PDA with WDA by evaluating the immunoexpressions of key immune pathway proteins (programmed death ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1)) and tumor-infiltrating lymphocytes (TILs) (CD8, Foxp3 and PD-1). The results reveled IDO1 was significantly more frequent in dMMR-solid-type-PDA than in dMMR-WDA (P = 0.0046). Moreover, dMMR-solid-type-PDA tended to have higher mean CD8+ and Foxp3+ TILs compared with dMMR-WDA [P = 0.0006 (CD8+) and P = 0.1061 (Foxp3+)], and IDO1-positive tended to be associated with a large number of CD8+, Foxp3+ or PD-1+ TILs in almost all tumor subtypes. PD-L1 was significantly observed in 44 % (15/34) of pMMR-solid-type-PDA compared with 18 % (6/34) of pMMR-WDA (P = 0.0344). Although they are molecularly and morphologically classified as the same chromosomal instability subtype, overall survival (OS) and disease-free-survival (DFS) in pMMR-solid-type-PDA were significantly worse than those in pMMR-WDA [P = 0.0216 (OS) and P = 0.0160 (DFS)]. Our study demonstrates that immunoexpressions of several immunoregulatory proteins and TILs are more prevalent in dMMR-solid-type-PDA, potentially a useful discovery for designing tumor treatments with immune checkpoint inhibitors or combination therapies with a PD-1/PD-L1-inhibitor and IDO1-inhibitor.
Collapse
Affiliation(s)
- Shinichiro Kawatoko
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taisuke Sasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Umekita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
15
|
Gastric Cancer Subtypes in Tumour and Nontumour Tissues by Immunologic and Hallmark Gene Sets. JOURNAL OF ONCOLOGY 2022; 2022:7887711. [PMID: 36065314 PMCID: PMC9440817 DOI: 10.1155/2022/7887711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
A previous research study on differentiating gastric cancer (GC) into distinct subtypes or prognostic models was mostly based on GC tissues, which neglected the role of nontumour tissues in GC subtypes. The purpose of the research was to identify GC subtypes on the basis of tumour and adjacent nontumour tissues to assess the prognosis of GC patients. We characterized three GC subtypes on the basis of the immunologic and hallmark gene sets in GC and adjacent nontumour tissues: among them, the GC patients with subtype I had the longest survival time compared to patients with other subtypes. The classification was closely associated with T stage and pathological stage of GC patients. A prognostic model containing two gene sets was constructed by LASSO analysis. Kaplan–Meier analysis showed that patients in the high-risk group survived longer than those in the low-risk group and the two prognostic genes sets in the model were strongly correlated with survival status. Then, GO and KEGG analyses and PPI network show that nontumour and tumour tissues are influencing the prognosis of GC patients in separate manners. In summary, we emphasized the prognostic value of nontumour tissue in GC patients and proposed a novel insight that both changes in tumour and nontumour tissues should be taken into account when selecting a treatment strategy for GC.
Collapse
|
16
|
Predicting response to immunotherapy in gastric cancer via multi-dimensional analyses of the tumour immune microenvironment. Nat Commun 2022; 13:4851. [PMID: 35982052 PMCID: PMC9388563 DOI: 10.1038/s41467-022-32570-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/06/2022] [Indexed: 11/09/2022] Open
Abstract
A single biomarker is not adequate to identify patients with gastric cancer (GC) who have the potential to benefit from anti-PD-1/PD-L1 therapy, presumably owing to the complexity of the tumour microenvironment. The predictive value of tumour-infiltrating immune cells (TIICs) has not been definitively established with regard to their density and spatial organisation. Here, multiplex immunohistochemistry is used to quantify in situ biomarkers at sub-cellular resolution in 80 patients with GC. To predict the response to immunotherapy, we establish a multi-dimensional TIIC signature by considering the density of CD4+FoxP3−PD-L1+, CD8+PD-1−LAG3−, and CD68+STING+ cells and the spatial organisation of CD8+PD-1+LAG3− T cells. The TIIC signature enables prediction of the response of patients with GC to anti-PD-1/PD-L1 immunotherapy and patient survival. Our findings demonstrate that a multi-dimensional TIIC signature may be relevant for the selection of patients who could benefit the most from anti-PD-1/PD-L1 immunotherapy. Predictive methods for gastric cancer to try and differentiate between potential treatment response are required. Here the authors use a multiplexed immunohistochemistry method to propose the proximity of tumour infiltrating immune cells as an indicator of likely therapeutic response.
Collapse
|
17
|
Lima Á, Sousa H, Medeiros R, Nobre A, Machado M. PD-L1 expression in EBV associated gastric cancer: a systematic review and meta-analysis. Discov Oncol 2022; 13:19. [PMID: 35318527 PMCID: PMC8941030 DOI: 10.1007/s12672-022-00479-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to the summarize the evidence on programmed cell death protein ligand 1 (PD-L1) in Epstein-Barr virus associated gastric cancer (EBVaGC) and to estimate the expression rate of PD-L1 among this subtype of Gastric Cancer (GC). MATERIALS AND METHODS For this study, PubMed®, EMBASE® and Web of Science® databases were searched for articles published until 1st November 2021. A total of 43 eligible publications with a total of 11,327 patients were included analysis based on inclusion and exclusion criteria. A total of 41 publications present data for proportion estimation and 33 for comparison of PD-L1 between EBV positive and negative GC. DerSimonian-Laird random-effects model was used for meta-analysis. RESULTS The analysis showed that in EBVaGC the pooled positivity rate for PD-L1 was 54.6% (p < 0.001), with a high heterogeneity between the included studies, which was associated with variation on positivity criteria for PD-L1 expression. Overall, the study reveals an increased association between PD-L1 and EBVaGC (OR = 6.36, 95% CI 3.91-10.3, p < 0.001). Furthermore, the study revealed that GC with lymphoid stroma (GCLS) is highly associated with EBV (OR = 17.4, 95% CI 6.83-44.1, p < 0.001), with a pooled EBV positivity rate of 52.9% (p < 0.001). CONCLUSIONS Patients with EBVaGC tend to show higher PD-L1 expression, which enhances EBV positivity as a promising marker for patient selection for immunotherapy targeted agents. A uniform criteria for PD-L1 positivity in tumor cells is needed, as well as further prospective studies to validate our findings and their prognostic significance.
Collapse
Affiliation(s)
- Áurea Lima
- Serviço de Oncologia Médica do Centro Hospitalar de Entre o Douro e Vouga, Unidade de Santa Maria da Feira, Rua Dr. Cândido Pinho 5, 4520-211, Santa Maria da Feira, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal.
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Serviço de Virologia, Instituto Português de Oncologia do Porto FG EPE (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Early Phase Clinical Trials Unit - Clinical Research Unit &/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Serviço de Virologia, Instituto Português de Oncologia do Porto FG EPE (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Amanda Nobre
- Serviço de Oncologia Médica do Centro Hospitalar de Entre o Douro e Vouga, Unidade de Santa Maria da Feira, Rua Dr. Cândido Pinho 5, 4520-211, Santa Maria da Feira, Portugal
| | - Manuela Machado
- Serviço de Oncologia Médica do Centro Hospitalar de Entre o Douro e Vouga, Unidade de Santa Maria da Feira, Rua Dr. Cândido Pinho 5, 4520-211, Santa Maria da Feira, Portugal
| |
Collapse
|
18
|
Wang B, Du C, Li L, Xie Y, Hu C, Li Z, Zhu Y, Yuan Y, Liu X, Lu N, Xue L. New substituted molecular classifications of advanced gastric adenocarcinoma: characteristics and probable treatment strategies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:50-59. [PMID: 39035211 PMCID: PMC11256717 DOI: 10.1016/j.jncc.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Gastric adenocarcinoma (GA) is a heterogeneous tumor, and the accurate classification of GA is important. Previous classifications are based on molecular analysis and have not focused on GA with the primitive enterocyte phenotype (GAPEP), a unique subtype with a poor prognosis and frequent liver metastases. New substituted molecular (SM) classifications based on immunohistochemistry (IHC) are needed. Methods According to the IHC staining results, we divided 582 cases into six types: mismatch repair deficient (dMMR), Epstein-Barr virus associated (EBVa), the primitive enterocyte phenotype (PEP), the epithelial mesenchymal transition (EMT) phenotype, not otherwise specified/P53 mutated (NOS/P53m) and not otherwise specified/P53 wild-type (NOS/P53w). We analyzed the clinicopathological features, the immune microenvironment (PD-L1, CD8) and expression of HER2 and VEGFR2 of those types. Results There were 31 (5.3%) cases of the dMMR type, 13 (2.2%) cases of the EBVa type, 44 (7.6%) cases of the PEP type, 122 (21.0%) cases of the EMT type, 127 (21.8%) cases of the NOS/P53m type and 245 (42.1%) cases of the NOS/P53w type. Patients with the dMMR type had the best survival (P < 0.001). Patients with the EBVa type were younger (P < 0.001) and had higher PD-L1 and CD8 expression (P < 0.001) than other patients. Patients with the EMT type exhibited poor differentiation and a higher rate of abdominal metastasis. Patients with the NOS/P53m and PEP types had the worst survival rates and the highest PD-L1/HER2/VEGFR2 expression levels among all patients (P < 0.001). Conclusion Different SM classifications have different clinicopathological features and expression patterns, which indicate the probable clinical treatment strategies for these subtypes.
Collapse
Affiliation(s)
- Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunxia Du
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yibin Xie
- Department of Abdominal Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunfang Hu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongjian Zhu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanling Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiuyun Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
19
|
Immunoarchitectural patterns as potential prognostic factors for invasive ductal breast cancer. NPJ Breast Cancer 2022; 8:26. [PMID: 35228530 PMCID: PMC8885796 DOI: 10.1038/s41523-022-00389-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Currently, tumor-infiltrating lymphocytes (TILs) in invasive breast cancers are assessed solely on the basis of their number, whereas their spatial distribution is rarely investigated. Therefore, we evaluated TILs in 579 patients with invasive breast cancer of no special type (IBC-NST) with a focus on their spatial distributions in tumor center (TC) and invasive margin (IM). We also assessed a new factor, namely para-tumor infiltrating lymphocytes (PILs) in the para-tumor lobular area (Para). Five immunoarchitectural patterns (IPs) were observed, which were significantly associated with clinicopathological features, especially molecular subtypes, histological grades, clinical stages, and programmed death-ligand 1 (PD-L1) expression. High-TIL density (IP1/2) correlated with favorable disease-free survival (DFS) in TNBC patients (p = 0.04), but opposite results were observed for luminal B subtype patients (both the lowest TIL and PIL densities (IP5) correlated with good DFS, p = 0.013). Luminal B patients with high TILs in the IM and low TILs in the TC (IP3) exhibited the worst DFS, whereas those with low TILs (similar to IP5) and high PILs (IP4) exhibited poor DFS. We also identified TIL subpopulations with significantly different IPs. Our findings suggest that IP can be a potential prognostic factor for tumor immunity in IBC.
Collapse
|
20
|
Wu D, Feng M, Shen H, Shen X, Hu J, Liu J, Yang Y, Li Y, Yang M, Wang W, Zhang Q, Song F, Liu B, Chen K, Li X. Prediction of Two Molecular Subtypes of Gastric Cancer Based on Immune Signature. Front Genet 2022; 12:793494. [PMID: 35111202 PMCID: PMC8802764 DOI: 10.3389/fgene.2021.793494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer is the fifth most common type of human cancer and the third leading cause of cancer-related death. The purpose of this study is to investigate the immune infiltration signatures of gastric cancer and their relation to prognosis. We identified two distinct subtypes of gastric cancer (C1/C2) characterized by different immune infiltration signatures. C1 is featured by immune resting, epithelial–mesenchymal transition, and angiogenesis pathways, while C2 is featured by enrichment of the MYC target, oxidative phosphorylation, and E2F target pathways. The C2 subtype has a better prognosis than the C1 subtype (HR = 0.61, 95% CI: 0.44–0.85; log-rank test, p = 0.0029). The association of C1/C2 with prognosis remained statistically significant (HR = 0.62, 95% CI: 0.44–0.87; p = 0.006) after controlling for age, gender, and stage. The prognosis prediction of C1/C2 was verified in four independent cohorts (including an internal cohort). In summary, our study is helpful for better understanding of the association between immune infiltration and the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Dan Wu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mengyao Feng
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Hongru Shen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xilin Shen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiani Hu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jilei Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yichen Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Meng Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Xiangchun Li, ; Kexin Chen,
| | - Xiangchun Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Xiangchun Li, ; Kexin Chen,
| |
Collapse
|
21
|
Xu P, Xu X, Wu X, Zhang L, Meng L, Chen Z, Han W, Yao J, Xu AM. CircTMC5 promotes gastric cancer progression and metastasis by targeting miR-361-3p/RABL6. Gastric Cancer 2022; 25:64-82. [PMID: 34296378 DOI: 10.1007/s10120-021-01220-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is common in East Asia, yet its molecular and pathogenic mechanisms remain unclear. Circular RNAs (circRNAs) are differentially expressed in GC and may be promising biomarkers. Here, we investigated the role and regulatory mechanism of circTMC5 in GC. METHODS CircTMC5 expression was detected in human GC and adjacent tissues using microarray assays and qRT-PCR, while the clinicopathological characteristics of patients with GC were used to assess its diagnostic and prognostic value. The circTMC5/miR-361-3p/RABL6 axis was examined in vitro and vivo, and the immune roles of RABL6 were evaluated using bioinformatics analyses and immunohistochemistry (IHC). RESULTS CircTMC5 was highly expressed in GC tissues, plasma, and cell lines, and was closely related to histological grade, pathological stage, and T classification in patients with GC. CircTMC5 expression was also an independent prognostic factor for GC and its combined detection with carcinoembryonic antigen may improve GC diagnosis. Low circTMC5 expression correlated with good prognosis, inhibited GC cell proliferation, and promoted apoptosis. Mechanistically, circTMC5 overexpression promoted GC cell proliferation, invasion, and metastasis but inhibited apoptosis by sponging miR-361-3p and up-regulating RABL6 in vitro and vivo, whereas miR-361-3p up-regulation had the opposite effects. RABL6 was highly expressed in GC and was involved in immune regulation and infiltration in GC. CONCLUSIONS CircTMC5 promotes GC and sponges miR-361-3p to up-regulate RABL6 expression, thus may have diagnostic and prognostic value in GC. RABL6 also displays therapeutic promise due to its role in the immune regulation of GC.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China
| | - XiaoLan Xu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xiao Wu
- Department of Pathophysiology, Basic Medical College of Anhui Medical University, Anhui Provincial Key Laboratory of Pathophysiology, Hefei, 230022, China
| | - LiXiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Lei Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - ZhangMing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - WenXiu Han
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China.
| | - AMan Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China. .,Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China.
| |
Collapse
|
22
|
Zhang Y, Wang H, Xu X, Liu H, Hao T, Yin S, Zhang C, He Y. Poor Prognosis and Therapeutic Responses in LILRB1-Expressing M2 Macrophages-Enriched Gastric Cancer Patients. Front Oncol 2021; 11:668707. [PMID: 34485116 PMCID: PMC8415088 DOI: 10.3389/fonc.2021.668707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Immunosuppressive molecules are valuable prognostic biomarkers across different cancer types. Leukocyte immunoglobulin like receptor subfamily B1 (LILRB1) is considered to be an immunosuppressive molecule, which is an important receptor of human leukocyte antigen G. However, the clinical significance of LILRB1 expression in gastric cancer remains unexplored. We analyzed the immunohistochemistry data of 166 gastric cancer patients to determine the clinicopathologic and survival significance of LILRB1. Immunofluorescence was conducted to detect the co-localization of LILRB1 with infiltrating immune cells. Additionally, we also assessed the immune contexture, immune cell functions and tumor microenvironment state related to LILRB1. We found that LILRB1 was mainly present in tumor stroma which was higher in tumor tissues compared with matched adjacent tissues. High-LILRB1 expression was associated with more advanced tumor stage, higher recurrence risk and worse survival. Immunohistochemistry and bioinformatic analysis showed that LILRB1 had a significant positive correlation with M2 tumor-associated macrophages (TAMs) infiltration. Immunofluorescence confirmed that M2 TAMs were the primary immune cells expressing LILRB1. Dense infiltration of LILRB1+ M2 TAMs yielded an immunosuppressive microenvironment manifested as enriched exhausted CD8+ T cells and increased immunosuppressive cytokines. Moreover, patients with high infiltration of both LILRB1+ cells and M2 TAMs indicated poor prognosis and inferior therapeutic responsiveness to adjuvant chemotherapy. In conclusion, LILRB1+ M2 TAMs were associated with a pro-tumor immune contexture and determine poor prognosis in gastric cancer. Further studies are essential to explore therapeutic targeting LILRB1+ M2 TAMs.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Han Wang
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Xu
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huifang Liu
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tengfei Hao
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Songcheng Yin
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Li J, Yang Z, Xin B, Hao Y, Wang L, Song S, Xu J, Wang X. Quantitative Prediction of Microsatellite Instability in Colorectal Cancer With Preoperative PET/CT-Based Radiomics. Front Oncol 2021; 11:702055. [PMID: 34367985 PMCID: PMC8339969 DOI: 10.3389/fonc.2021.702055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Microsatellite instability (MSI) status is an important hallmark for prognosis prediction and treatment recommendation of colorectal cancer (CRC). To address issues due to the invasiveness of clinical preoperative evaluation of microsatellite status, we investigated the value of preoperative 18F-FDG PET/CT radiomics with machine learning for predicting the microsatellite status of colorectal cancer patients. METHODS A total of 173 patients that underwent 18F-FDG PET/CT scans before operations were retrospectively analyzed in this study. The microsatellite status for each patient was identified as microsatellite instability-high (MSI-H) or microsatellite stable (MSS), according to the test for mismatch repair gene proteins with immunohistochemical staining methods. There were 2,492 radiomic features in total extracted from 18F-FDG PET/CT imaging. Then, radiomic features were selected through multivariate random forest selection and univariate relevancy tests after handling the imbalanced dataset through the random under-sampling method. Based on the selected features, we constructed a BalancedBagging model based on Adaboost classifiers to identify the MSI status in patients with CRC. The model performance was evaluated by the area under the curve (AUC), sensitivity, specificity, and accuracy on the validation dataset. RESULTS The ensemble model was constructed based on two radiomic features and achieved an 82.8% AUC for predicting the MSI status of colorectal cancer patients. The sensitivity, specificity, and accuracy were 83.3, 76.3, and 76.8%, respectively. The significant correlation of the selected two radiomic features with multiple effective clinical features was identified (p < 0.05). CONCLUSION 18F-FDG PET/CT radiomics analysis with the machine learning model provided a quantitative, efficient, and non-invasive mechanism for identifying the microsatellite status of colorectal cancer patients, which optimized the treatment decision support.
Collapse
Affiliation(s)
- Jiaru Li
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Ziyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bowen Xin
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Yichao Hao
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Lisheng Wang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyan Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
de Fátima Aquino Moreira-Nunes C, de Souza Almeida Titan Martins CN, Feio D, Lima IK, Lamarão LM, de Souza CRT, Costa IB, da Silva Maués JH, Soares PC, de Assumpção PP, Burbano RMR. PD-L1 Expression Associated with Epstein-Barr Virus Status and Patients' Survival in a Large Cohort of Gastric Cancer Patients in Northern Brazil. Cancers (Basel) 2021; 13:3107. [PMID: 34206307 PMCID: PMC8268941 DOI: 10.3390/cancers13133107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a worldwide health problem, making it one of the most common types of cancer, in fifth place of all tumor types, and the third highest cause of cancer deaths in the world. There is a subgroup of GC that consists of tumors infected with the Epstein-Barr virus (EBV) and is characterized mainly by the overexpression of programmed cell death protein-ligand-1 (PD-L1). In the present study, we present histopathological and survival data of a thousand GC patients, associated with EBV status and PD-L1 expression. Of the thousand tumors analyzed, 190 were EBV-positive and the vast majority (86.8%) had a high relative expression of mRNA and PD-L1 protein (p < 0.0001) in relation to non-neoplastic control. On the other hand, in EBV-negative samples, the majority had a low PD-L1 expression of RNA and protein (p < 0.0001). In the Kaplan-Meier analysis, the probability of survival and increased overall survival of EBV-positive GC patients was impacted by the PD-L1 overexpression (p < 0.0001 and p = 0.004, respectively). However, the PD-L1 low expression was correlated with low overall survival in those patients. Patients with GC positive for EBV, presenting PD-L1 overexpression can benefit from immunotherapy treatments and performing the quantification of PD-L1 in gastric neoplasms should be adopted as routine.
Collapse
Affiliation(s)
- Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
- Laboratory of Pharmacogenetics, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, 60430-275 CE, Brazil
| | | | - Danielle Feio
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
| | - Isamu Komatsu Lima
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
| | - Leticia Martins Lamarão
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA), Department of Sorology, Belém, 66033-000 PA, Brazil;
| | | | - Igor Brasil Costa
- Department of Virology, Evandro Chagas Institute, Ananindeua, 67030-000 PA, Brazil;
| | - Jersey Heitor da Silva Maués
- Hematology and Transfusion Medicine Center, Laboratory of Molecular and Cell Biology, Department of Medicine, University of Campinas, Campinas, 13083-970 SP, Brazil;
| | - Paulo Cardoso Soares
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
| | - Paulo Pimentel de Assumpção
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém, 66073-005 PA, Brazil;
| | - Rommel Mário Rodríguez Burbano
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém, 66073-005 PA, Brazil;
| |
Collapse
|
25
|
Cui G, Geng L, Zhu L, Lin Z, Liu X, Miao Z, Jiang J, Feng X, Wei F. CFP is a prognostic biomarker and correlated with immune infiltrates in Gastric Cancer and Lung Cancer. J Cancer 2021; 12:3378-3390. [PMID: 33976747 PMCID: PMC8100816 DOI: 10.7150/jca.50832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/21/2021] [Indexed: 01/06/2023] Open
Abstract
Complement factor properdin (CFP), encodes plasma glycoprotein, is a critical gene that regulates the complement pathway of the innate immune system. However, correlations of CFP in cancers remain unclear. In this study, the expression pattern and prognostic value of CFP in pan-cancer were analyzed via the Oncomine, PrognoScan, GEPIA and Kaplan-Meier plotters. In addition, we used immunohistochemical staining to validate CFP expression in clinical tissue samples. Finally, we evaluated the correlations between CFP and cancer immune infiltrates particularly in stomach adenocarcinoma (STAD) and lung adenocarcinoma (LUAD) by using GEPIA and TIMER databases. The results of database analysis and immunohistochemistry showed that the expression level of CFP in STAD and LUAD was lower than that in normal tissues. Low expression level of CFP was associated with poorer overall survival (OS), first progression (FP), post progression survival (PPS) and was detrimental to the prognosis of STAD and LUAD, specifically in stage 3, stage T3, stage N2 and N3 of STAD (P<0.05). Moreover, expression of CFP had significant positive correlations with the infiltration levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells (DCs) in STAD and LUAD. Furthermore, gene markers of infiltrating immune cells exhibited different CFP-related immune infiltration patterns such as tumor-associated-macrophages (TAMs). These results suggest that CFP can serve as a prognostic biomarker for determining prognosis and immune infiltration in STAD and LUAD.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.,The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Le Geng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Li Zhu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Zhenyan Lin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jintao Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fei Wei
- Department of Physiology, School of medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
26
|
Kim SW, Roh J, Lee HS, Ryu MH, Park YS, Park CS. Expression of the immune checkpoint molecule V-set immunoglobulin domain-containing 4 is associated with poor prognosis in patients with advanced gastric cancer. Gastric Cancer 2021; 24:327-340. [PMID: 32924090 DOI: 10.1007/s10120-020-01120-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent clinical studies on immune checkpoint (IC) inhibitors in the context of advanced gastric cancer (AGC) have failed to show significant survival benefits but have suggested the possible role of IC inhibitors in anti-AGC immunity. Considering the low efficacy of targeted drugs in AGC, there is an urgent need for the discovery of new targets for the development of immunotherapeutics and prognostic markers for patient selection. This study aimed to investigate the expression of a new IC molecule, V-set Ig domain-containing 4 (VSIG4), and its clinical significance in AGC and other major cancers. METHODS We analyzed the expression of VSIG4 and its correlation with survival in various carcinomas, including 882 surgically resected samples from patients with stage II-III AGC (two academic hospitals). RESULTS VSIG4 positivity in AGC was significantly associated with overall survival (OS; Hazard ratio (HR) = 2.661, 95% confidence interval [CI] = 2.012-3.519, P < 0.001) and event-free survival (HR = 2.8, 95% CI = 2.18-3.72, P < 0.001). These findings were successfully validated in independent cohorts. VSIG4 expression was also significantly correlated with low intratumoral CD8 + T-cell infiltration (CD8i) (P = 0.029) and high Foxp3 + /CD8i ratio (P = 0.026), which is consistent with the previously reported immunological function of VSIG4. However, VSIG4 expression was not associated with survival in other cancers (colon, P = 0.459; lung, P = 0.275; kidney, P = 0.121; breast, P = 0.147). CONCLUSION Our results suggest that VSIG4 is an independent prognostic factor in AGC and also implies that VSIG4 is a second-tier IC molecule in AGC, thus, providing an important basis for the development of gastric cancer-specific immunotherapeutics.
Collapse
Affiliation(s)
- So-Woon Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Soo Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Chan-Sik Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
28
|
Practical prediction model of the clinical response to programmed death-ligand 1 inhibitors in advanced gastric cancer. Exp Mol Med 2021; 53:223-234. [PMID: 33547412 PMCID: PMC8080676 DOI: 10.1038/s12276-021-00559-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The identification of predictive biomarkers or models is necessary for the selection of patients who might benefit the most from immunotherapy. Seven histological features (signet ring cell [SRC], fibrous stroma, myxoid stroma, tumor-infiltrating lymphocytes [TILs], necrosis, tertiary lymphoid follicles, and ulceration) detected in surgically resected tissues (N = 44) were used to train a model. The presence of SRC became an optimal decision parameter for pathology alone (AUC = 0.78). Analysis of differentially expressed genes (DEGs) for the prediction of genomic markers showed that C-X-C motif chemokine ligand 11 (CXCL11) was high in responders (P < 0.001). Immunohistochemistry (IHC) was performed to verify its potential as a biomarker. IHC revealed that the expression of CXCL11 was associated with responsiveness (P = 0.003). The response prediction model was trained by integrating the results of the analysis of pathological factors and RNA sequencing (RNA-seq). When trained with the C5.0 decision tree model, the categorical level of the expression of CXCL11, a single variable, was shown to be the best model (AUC = 0.812). The AUC of the model trained with the random forest was 0.944. Survival analysis revealed that the C5.0-trained model (log-rank P = 0.01 for progression-free survival [PFS]; log-rank P = 0.012 for overall survival [OS]) and the random forest-trained model (log-rank P < 0.001 for PFS; log-rank P = 0.001 for OS) predicted prognosis more accurately than the PD-L1 test (log-rank P = 0.031 for PFS; log-rank P = 0.107 for OS). A prediction model that identifies patients with gastric cancer who are likely to respond well to immunotherapy has been developed by researchers in South Korea. Hansoo Park at the Gwangju Institute of Science and Technology and co-workers identified several biomarkers in gastric cancer tissues that were associated with how well patients may respond to immunotherapy treatment. They found that patients with malignant cells known as signet ring cells were least likely to respond well to immune checkpoint inhibitor drugs. Conversely, high expression levels of a gene called CXCL11 was associated with a strong positive response to the drugs. The researchers used these and other biomarker data to build a model for selecting appropriate candidates for immunotherapy. Further research will refine this initial biomarker list for gastric cancer and help improve the model.
Collapse
|
29
|
Tian C, Jing H, Wang C, Wang W, Cui Y, Chen J, Sha D. Prognostic role of tumour-infiltrating lymphocytes assessed by H&E-stained section in gastric cancer: a systematic review and meta-analysis. BMJ Open 2021; 11:e044163. [PMID: 33518526 PMCID: PMC7853025 DOI: 10.1136/bmjopen-2020-044163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Some studies have identified tumour-infiltrating lymphocytes (TILs) in H&E-stained sections of gastric cancer, but the prognostic and clinicopathological significance of this remains unclear. The objective of this study is to evaluate the associations between H&E-based TIL density and prognosis and clinicopathological characteristics of patients with gastric cancer. DESIGN Systematic review and meta-analysis. DATA SOURCES Cochrane Library, PubMed and Embase databases were searched through 25 February 2020. ELIGIBILITY CRITERIA Studies evaluating the correlations between TILs assessed by H&E-stained sections and prognosis and clinicopathological characteristics of gastric cancer were included. DATA EXTRACTION AND SYNTHESIS Relevant data were extracted and risks of bias were assessed independently by two reviewers. HR and relative risk (RR) with 95% CI were pooled by random-effect models to estimate the associations between TIL density and overall survival (OS) and clinicopathological characteristics, respectively. RESULTS We enrolled nine studies including 2835 cases for the present meta-analysis. High TILs were associated with superior OS (HR=0.68, 95% CI 0.52 to 0.87, p=0.003) compared with low TILs. High TILs were significantly associated with lower depth of invasion (T3-T4 vs T1-T2) (RR=0.58, 95% CI 0.50 to 0.66, p<0.001), less lymph node involvement (presence vs absence) (RR=0.68, 95% CI 0.56 to 0.81, p<0.001) and earlier TNM (tumour, node, metastasis) stage (III-IV vs I-II) (RR=0.68, 95% CI 0.55 to 0.83, p<0.001). TIL density was not associated with age, gender, Lauren classification or histological grade. The methodology for evaluating TIL and its cut-off value varied across different studies, which might affect the results of our meta-analysis. CONCLUSIONS Our meta-analysis suggests that H&E-based TIL density is a reliable biomarker to predict the clinical outcomes of patients with gastric cancer. Multicentre, prospective studies are needed to further confirm our findings. PROSPERO REGISTRATION NUMBER CRD42020169877.
Collapse
Affiliation(s)
- Chunfang Tian
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Caixia Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yangang Cui
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianpeng Chen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Sha
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
30
|
Lv K, Li R, Cao Y, Gu Y, Liu X, He X, Jin K, Fang H, Fei Y, Shi M, Liu H, Li H, He H, Lin C, Zhang H, Xu J. Lymphocyte-activation gene 3 expression associates with poor prognosis and immunoevasive contexture in Epstein-Barr virus-positive and MLH1-defective gastric cancer patients. Int J Cancer 2020; 148:759-768. [PMID: 33105024 DOI: 10.1002/ijc.33358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
Lymphocyte activation gene 3 (LAG-3) is a transmembrane immune checkpoint that facilitates immune escape via suppressing T-cell-mediated anti-tumor immunity. The role of LAG-3 in gastric cancer is little known. Consequently, we assessed the clinical significance of LAG-3 in gastric cancer. In our study, patients with gastric cancer from Zhongshan Hospital (n = 464) and data from the Asian Cancer Research Group (n = 300) were analyzed. LAG-3+ cell infiltration and other immune contexture in gastric cancer were detected by immunohistochemistry. Kaplan-Meier curves and log-rank test were used for survival analyses. Intratumoral LAG-3+ cells mainly accumulated in Epstein-Barr virus (EBV)-positive (EBV subtype) and MLH1-defective (dMLH1 subtype) gastric cancer. Furthermore, LAG-3+ cell infiltration was strongly associated with inferior clinical outcomes in patients with these two subtypes of gastric cancer. Moreover, we found intratumoral LAG-3+ cell high infiltration was associated with an immunoevasive contexture featured by decreased IFN-γ+ cells and perforin-1+ cells, but increased regulatory T cells and M2-like macrophages in EBV/dMLH1 subtype of gastric cancer. LAG-3 was a poor prognostic factor and might be a potential immunotherapeutic target in EBV-positive and MLH1-defective gastric cancer.
Collapse
Affiliation(s)
- Kunpeng Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xudong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanji Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuchao Fei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingsu Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Resende C, Gomes CP, Machado JC. Review: Gastric cancer: Basic aspects. Helicobacter 2020; 25 Suppl 1:e12739. [PMID: 32918356 DOI: 10.1111/hel.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Gastric cancer is still one of the most prevalent and deadliest cancers in the world. Although our knowledge about the disease has progressed extraordinarily, this has not been accompanied by our capacity to effectively treat the disease. In the last years, immunotherapy made its way into the cancer field and was responsible for major changes in the treatment success rates for several cancer types. Although gastric cancer was not among the first successful targets of this type of therapy, the relationship between this type of cancer, immunosurveillance and immunotherapy is now being actively researched. In this article, we review the literature of the past year regarding the relationship between gastric cancer, its immune microenvironment and response to immunotherapy. Published data indicate that the immune microenvironment influences the clinical behaviour of gastric cancer, and is correlated with its histologic and molecular subtypes with an emphasis on the microsatellite- and EBV-positive tumour subgroups. Although the literature regarding response to immunotherapy is scarce, there is good evidence that patient stratification for immunotherapy is going to become a reality in gastric cancer.
Collapse
Affiliation(s)
- Carlos Resende
- i3S - Institute for Research and Innovation in Health and IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Carla Pereira Gomes
- i3S - Institute for Research and Innovation in Health and IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Jose Carlos Machado
- i3S - Institute for Research and Innovation in Health and IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Gastric cancer: genome damaged by bugs. Oncogene 2020; 39:3427-3442. [PMID: 32123313 PMCID: PMC7176583 DOI: 10.1038/s41388-020-1241-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. The role of the microorganisms in gastric tumorigenesis attracts much attention in recent years. These microorganisms include bacteria, virus, and fungi. Among them, Helicobacter pylori (H. pylori) infection is by far the most important risk factor for GC development, with special reference to the early-onset cases. H. pylori targets multiple cellular components by utilizing various virulence factors to modulate the host proliferation, apoptosis, migration, and inflammatory response. Epstein–Barr virus (EBV) serves as another major risk factor in gastric carcinogenesis. The virus protein, EBER noncoding RNA, and EBV miRNAs contribute to the tumorigenesis by modulating host genome methylation and gene expression. In this review, we summarized the related reports about the colonized microorganism in the stomach and discussed their specific roles in gastric tumorigenesis. Meanwhile, we highlighted the therapeutic significance of eradicating the microorganisms in GC treatment.
Collapse
|
33
|
Kwak Y, Seo AN, Lee HE, Lee HS. Tumor immune response and immunotherapy in gastric cancer. J Pathol Transl Med 2019; 54:20-33. [PMID: 31674166 PMCID: PMC6986974 DOI: 10.4132/jptm.2019.10.08] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Remarkable developments in immuno-oncology have changed the landscape of gastric cancer (GC) treatment. Because immunotherapy intervenes with tumor immune response rather than directly targeting tumor cells, it is important to develop a greater understanding of tumor immunity. This review paper summarizes the tumor immune reaction and immune escape mechanisms while focusing on the role of T cells and their co-inhibitory signals, such as the immune checkpoint molecules programmed death-1 and programmed deathligand 1 (PD-L1). This paper also describes past clinical trials of immunotherapy for patients with GC and details their clinical implications. Strong predictive markers are essential to improve response to immunotherapy. Microsatellite instability, Epstein-Barr virus, PD-L1 expression, and tumor mutational burden are now regarded as potent predictive markers for immunotherapy in patients with GC. Novel immunotherapy and combination therapy targeting new immune checkpoint molecules such as lymphocyte-activation gene 3, T cell immunoglobulin, and mucin domain containing-3, and indoleamine 2,3-dioxygenase have been suggested, and trials are ongoing to evaluate their safety and efficacy. Immunotherapy is an important treatment option for patients with GC and has great potential for improving patient outcome, and further research in immuno-oncology should be carried out.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Hee Eun Lee
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|