1
|
Duan Y, Yan Y, Fu H, Dong Y, Li K, Ye Z, Dou Y, Huang B, Kang W, Wei GH, Cai Q, Xu D, Zhou D. SNHG15-mediated feedback loop interplays with HNRNPA1/SLC7A11/GPX4 pathway to promote gastric cancer progression. Cancer Sci 2024; 115:2269-2285. [PMID: 38720175 PMCID: PMC11247605 DOI: 10.1111/cas.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghao Yan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Binhao Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center; MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Donglei Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
3
|
Liu T, Ma Y, Han S, Sun P. Genome-wide investigation of lncRNAs revealed their tight association with gastric cancer. J Cancer Res Clin Oncol 2024; 150:261. [PMID: 38761291 PMCID: PMC11102383 DOI: 10.1007/s00432-024-05790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a significant health issue globally, ranking as the fifth most common cancer with over 10,000 new cases reported annually. Long non-coding RNA (lncRNA) has emerged as a critical player in cellular functions, influencing GC's development, growth, metastasis, and prognosis. However, our understanding of lncRNA's role in the pathogenesis of GC remains limited. Therefore, it is particularly important to explore the relationship between lncRNA and gastric cancer. METHODS we conducted a comprehensive analysis of RNA sequencing data from the GEO database and stomach adenocarcinoma (STAD) data from the TCGA database to identify lncRNAs that exhibit altered expression levels in GC and the mechanisms underlying lncRNA-mediated transcription and post-transcriptional regulation were explored. RESULTS This study uncovered 94 lncRNAs with differential expression and, through co-expression analysis, linked these to 1508 differentially expressed genes (DEGs). GO functional enrichment analysis highlighted that these DEGs are involved in critical pathways, such as cell adhesion and the positive regulation of cell migration. By establishing a lncRNA-miRNA-mRNA regulatory network, we found that the ceRNA mechanism, particularly involving RP11-357H14.17 and CTD-2377D24.4, could play a role in GC progression. Experimental validation of selected differentially expressed lncRNAs and mRNAs (including RP11-357H14.17-CLDN1, BBOX1, TRPM2-AS, CLDN1, PLAU, HOXB7) confirmed the RNA-seq results. CONCLUSIONS Overall, our findings highlight the critical role of the lncRNA-mRNA regulatory network in the development and progression of GC, offering potential biomarkers for diagnosis and targets for innovative treatment strategies.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Yuedong Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Shuo Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
4
|
Ullah A, Zhao J, Li J, Singla RK, Shen B. Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules. Life Sci 2024; 336:122277. [PMID: 37995936 DOI: 10.1016/j.lfs.2023.122277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Zhao
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rajeev K Singla
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Kaviani E, Hajibabaie F, Abedpoor N, Safavi K, Ahmadi Z, Karimy A. System biology analysis to develop diagnostic biomarkers, monitoring pathological indexes, and novel therapeutic approaches for immune targeting based on maggot bioactive compounds and polyphenolic cocktails in mice with gastric cancer. ENVIRONMENTAL RESEARCH 2023; 238:117168. [PMID: 37742751 DOI: 10.1016/j.envres.2023.117168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Early diagnosis and prognosis are prerequisites for mitigating mortality in gastric cancer (GaCa). Identifying some causative or sensitive elements (coding RNA (cRNA)-non-cRNAs (ncRNAs)) can be very helpful in the early diagnosis of GaCa. Notably, despite significant development in the GaCa treatment, the outcome of patients does not remain satisfactory due to limitations such as multi-drug resistance and tumor relapse. Therefore, more attention has been drawn to complementary therapies and the use of supplements. In this regard, Polyphenol natural compounds (PNC) and maggot larvae (MaLa) alone or in combination were administered along with chemotherapy (paclitaxel) to N-methyl-N-nitrosourea (MNU)- induced murine tumor model. In addition, in order to identify potential diagnostic or prognostic biomarkers, transcriptomics analysis was performed through a bioinformatics approach. Then transcription profile of ncRNAs with their target hub genes was assessed through qPCR Real-Time, Western blot, and ELISA. According to the bioinformatics results, 17 hub genes (e.g., IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1β, SPP1, LOX, COL1A1, and IFN-γ) were explored that contribute towards inflammation and oxidative stress and ultimately GaCa development. Upstream of the mentioned hub genes, regulatory factors (lncRNA XIST and NEAT1) were also identified and introduced as prognosis and diagnosis biomarkers for GaCa. Our results showed that PNC alone and in combination with MaLa was able to reduce the size and number of tumors, which is related to the reduction of genes expression levels (including IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1β, SPP1, LOX, COL1A1, IFN-γ, NEAT1, and XIST). In conclusion, PNC and MaLa have the potential to be considered as complementary and improving chemotherapy due to their effective compounds. Also, the introduced hub gene and lncRNA in addition to diagnostic and prognostic biomarkers can be used as druggable proteins for novel therapeutic targeting of GaCa.
Collapse
Affiliation(s)
- Elina Kaviani
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Zahra Ahmadi
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Azadeh Karimy
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
6
|
Liu F, Liu J, Shi X, Hu X, Wei L, Huo B, Chang L, Han Y, Liu G, Yang L. Identification of INHBA as a potential biomarker for gastric cancer through a comprehensive analysis. Sci Rep 2023; 13:12494. [PMID: 37528145 PMCID: PMC10394090 DOI: 10.1038/s41598-023-39784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
Inhibin subunit beta A (INHBA) is a member of the transforming growth factor-beta (TGF-β) superfamily that plays a fundamental role in various cancers. However, a systematic analysis of the exact role of INHBA in patients with gastric cancer (GC) has not yet been conducted. We evaluated the expression levels of INHBA and the correlation between INHBA and GC prognosis in GC. The relationship between INHBA expression, immune infiltration levels, and type markers of immune cells in GC was also explored. In addition, we studied INHBA mutations, promoter methylation, and functional enrichment analysis. Besides, high expression levels of INHBA in GC were significantly related to unfavorable prognosis. INHBA was negatively correlated with B cell infiltration, but positively correlated with macrophage and most anticancer immunity steps. INHBA expression was positively correlated with the type markers of CD8+ T cells, neutrophils, macrophages, and dendritic cells. INHBA has a weak significant methylation level change between tumor and normal tissues and mainly enriched in cancer-related signaling pathways. The present study implies that INHBA may serve as a potential biomarker for predicting the prognosis of patients with GC. INHBA is a promising predictor of immunotherapy response, with higher levels of INHBA indicating greater sensitivity.
Collapse
Affiliation(s)
- Fang Liu
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Jiayi Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xinrui Shi
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xiaojie Hu
- Department of General Surgery, Hebei Provincial People's Hospital, Shijiazhuang, 050055, Hebei, People's Republic of China
| | - Lai Wei
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Bingjie Huo
- Department of Chinese Medicine, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Liang Chang
- Department of Pathology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Yaqing Han
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Guangjie Liu
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China.
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
7
|
Hua Z, Shi R, Han X, Li G, Lv L, Jianimuhan N, Ma D, Cai L, Hu F, Yang J. miR-1273h-5p protects the human corneal epithelium against UVR-induced oxidative stress and apoptosis: Role of miR-1273h-5p in climatic droplet keratopathy. Exp Eye Res 2023:109536. [PMID: 37336468 DOI: 10.1016/j.exer.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Climatic droplet keratopathy (CDK) is characterized by an increased number of oil-like deposits on the most anterior corneal layers, which affect vision and can cause blindness. Environmental ultraviolet radiation (UVR) exposure is a major risk factor, but the underlying mechanism of CDK pathogenesis is unclear. Increasing evidence has demonstrated that miRNAs participate in the cross-talk with oxidative stress. We aimed to explore whether certain miRNAs are involved in the pathogenesis of CDK. We performed miRNA sequencing of tears from patients with CDK and healthy individuals from Tacheng region of Xinjiang and conducted bioinformatic analysis of key miRNAs. We also evaluated viability, migration, and apoptosis of human corneal epithelial cells (HCECs) subjected to UVR treatment. miR-1273h-5p expression was abnormally downregulated in the tears of patients with CDK. miR-1273h-5p promoted cell proliferation and migration and inhibited UVR-induced mitochondrial apoptosis. miR-1273h-5p protected HCECs against UVR-induced oxidative damage by reducing the accumulation of reactive oxygen species and inhibiting mitochondrial apoptosis via the activation of the Nrf2 pathway. Thus, our results suggest that miR-1273h-5p protects the corneal epithelium against UVR-induced oxidative stress damage.
Collapse
Affiliation(s)
- Zhixiang Hua
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Runhan Shi
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Han
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Guoqing Li
- Ninth Division Hospital of Xinjiang Production and Construction Corps, Xinjiang, China
| | - Li Lv
- Emin County People's Hospital, Xinjiang, China
| | | | - Dongmei Ma
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lei Cai
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Fangyuan Hu
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jin Yang
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; Ninth Division Hospital of Xinjiang Production and Construction Corps, Xinjiang, China.
| |
Collapse
|
8
|
Meng F, Shen F, Chu X, Ling H, Qiao Y, Liu D. Hsa_circ_0008500 inhibits apoptosis of adipose-derived stem cells under high glucose through hsa-miR-1273h-5p/ELK1 axis. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37014014 DOI: 10.1002/tox.23801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Preliminary researches have confirmed that the number of apoptosis of adipose tissue-derived stem cells (ADSCs) in patients with diabetes is significantly increased, leading to a difficult healing wound. Increasing researches revealed that circular RNAs (circRNAs) can control apoptosis. However, it is still unclear whether and how circRNAs are critical for regulating ADSCs apoptosis. In this study, we utilized in vitro model in which ADSCs were cultivated with normal glucose (NG) (5.5 mM) or high glucose (HG) (25 mM) medium, respectively, and found that more apoptotic ADSCs were observed in HG medium comparing to ADSCs in NG medium. Furthermore, we found that hsa_circ_0008500 attenuated HG-mediated ADSCs apoptosis. In addition, Hsa_circ_0008500 could directly interact with hsa-miR-1273h-5p, acting as a miRNA sponge, which subsequently suppressed Ets-like protein-1(ELK1) expression, the downstream target of hsa-miR-1273h-5p. Thus, these results indicated that targeting the hsa_circ_0008500/hsa-miR-1273h-5p/ELK1 signaling pathway in ADSCs may be a potential target for repairing diabetic wounds.
Collapse
Affiliation(s)
- Fandong Meng
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Fengjie Shen
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xuan Chu
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Hongwei Ling
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
9
|
Yan W, Chen Y, Hu G, Shi T, Liu X, Li J, Sun L, Qian F, Chen W. MiR-200/183 family-mediated module biomarker for gastric cancer progression: an AI-assisted bioinformatics method with experimental functional survey. J Transl Med 2023; 21:163. [PMID: 36864416 PMCID: PMC9983275 DOI: 10.1186/s12967-023-04010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major cancer burden throughout the world with a high mortality rate. The performance of current predictive and prognostic factors is still limited. Integrated analysis is required for accurate cancer progression predictive biomarker and prognostic biomarkers that help to guide therapy. METHODS An AI-assisted bioinformatics method that combines transcriptomic data and microRNA regulations were used to identify a key miRNA-mediated network module in GC progression. To reveal the module's function, we performed the gene expression analysis in 20 clinical samples by qRT-PCR, prognosis analysis by multi-variable Cox regression model, progression prediction by support vector machine, and in vitro studies to elaborate the roles in GC cells migration and invasion. RESULTS A robust microRNA regulated network module was identified to characterize GC progression, which consisted of seven miR-200/183 family members, five mRNAs and two long non-coding RNAs H19 and CLLU1. Their expression patterns and expression correlation patterns were consistent in public dataset and our cohort. Our findings suggest a two-fold biological potential of the module: GC patients with high-risk score exhibited a poor prognosis (p-value < 0.05) and the model achieved AUCs of 0.90 to predict GC progression in our cohort. In vitro cellular analyses shown that the module could influence the invasion and migration of GC cells. CONCLUSIONS Our strategy which combines AI-assisted bioinformatics method with experimental and clinical validation suggested that the miR-200/183 family-mediated network module as a "pluripotent module", which could be potential marker for GC progression.
Collapse
Affiliation(s)
- Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China. .,Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Yuqi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Guang Hu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.,Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215021, China
| | - Xingyi Liu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Linqing Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Fuliang Qian
- Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China. .,Medical Center of Soochow University, Suzhou, 215000, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China. .,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
10
|
Chen C, Xu YJ, Zhang SR, Wang XH, Hu Y, Guo DH, Zhou XJ, Zhu WY, Wen AD, Tan QR, Dong XZ, Liu P. MiR-1281 is involved in depression disorder and the antidepressant effects of Kai-Xin-San by targeting ADCY1 and DVL1. Heliyon 2023; 9:e14265. [PMID: 36938448 PMCID: PMC10020002 DOI: 10.1016/j.heliyon.2023.e14265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Kai-Xin-San (KXS) is a Chinese medicine formulation that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. Recent studies indicated that miRNAs were involved in the pathophysiology of depression. However, there have been few studies on the mechanism underlying the miRNAs directly mediating antidepressant at clinical level, especially in nature drugs and TCM compound. In this study, we identified circulating miRNAs defferentially expressed among the depression patients (DPs), DPs who underwent 8weeks of KXS treatment and health controls (HCs). A total of 45 miRNAs (17 were up-regulated and 28 were down-regulated) were significantly differentially expressed among three groups. Subsequently, qRT-PCR was used to verify 10 differentially expressed candidate miRNAs in more serum samples, and the results showed that 6 miRNAs (miR-1281, miR-365a-3p, miR-2861, miR-16-5p, miR-1202 and miR-451a) were consistent with the results of microarray. Among them, miR-1281, was the novel dynamically altered and appeared to be specifically related to depression and antidepressant effects of KXS. MicroRNA-gene-pathway-net analysis showed that miR-1281-regulated genes are mostly key nodes in the classical signaling pathway related to depression. Additionally, our data suggest that ADCY1 and DVL1 were the targets of miR-1281. Thus, based on the discovery of miRNA expression profiles in vivo, our findings suggest a new role for miR-1281 related to depression and demonstrated in vitro that KXS may activate cAMP/PKA/ERK/CREB and Wnt/β-catenin signal transduction pathways by down-regulating miR-1281 that targets ADCY1 and DVL1 to achieve its role in neuronal cell protection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yuan-jie Xu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Shang-rong Zhang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Xiao-hui Wang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Dai-hong Guo
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiao-jiang Zhou
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Wei-yu Zhu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, People's Republic of China
- Corresponding author. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing 100053, China.
| | - Ping Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
- Corresponding author.Department of Pharmacy, the General Hospital of the People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
11
|
Abozaid OAR, Rashed LA, El-Sonbaty SM, Abu-Elftouh AI, Ahmed ESA. Mesenchymal Stem Cells and Selenium Nanoparticles Synergize with Low Dose of Gamma Radiation to Suppress Mammary Gland Carcinogenesis via Regulation of Tumor Microenvironment. Biol Trace Elem Res 2023; 201:338-352. [PMID: 35138531 PMCID: PMC9823077 DOI: 10.1007/s12011-022-03146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023]
Abstract
Breast cancer is one of the most prevalent and deadliest cancers among women in the world because of its aggressive behavior and inadequate response to conventional therapies. Mesenchymal stem cells (MSCs) combined with green nanomaterials could be an efficient tool in cell cancer therapy. This study examined the curative effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) with selenium nanoparticles (SeNPs) coated with fermented soymilk and a low dose of gamma radiation (LDR) in DMBA-induced mammary gland carcinoma in female rats. DMBA-induced mammary gland carcinoma as marked by an elevation of mRNA level of cancer promoter genes (Serpin and MIF, LOX-1, and COL1A1) and serum level of VEGF, TNF-α, TGF-β, CA15-3, and caspase-3 with the reduction in mRNA level of suppressor gene (FST and ADRP). These deleterious effects were hampered after treatment with BM-MSCs (1 × 106 cells/rat) once and daily administration of SeNPs (20 mg/kg body weight) and exposure once to (0.25 Gy) LDR. Finally, MSCs, SeNPs, and LDR notably modulated the expression of multiple tumor promoters and suppressor genes playing a role in breast cancer induction and suppression.
Collapse
Affiliation(s)
- Omayma A. R. Abozaid
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Laila A. Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sawsan M. El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Esraa S. A. Ahmed
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787 Egypt
| |
Collapse
|
12
|
KDM6B promotes gastric carcinogenesis and metastasis via upregulation of CXCR4 expression. Cell Death Dis 2022; 13:1068. [PMID: 36564369 PMCID: PMC9789124 DOI: 10.1038/s41419-022-05458-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
KDM6B (Lysine-specific demethylase 6B) is a histone lysine demethyltransferase that plays a key role in many types of cancers. However, its potential role in gastric cancer (GC) remains unclear. Here, we focused on the clinical significance and potential role of KDM6B in GC. We found that the KDM6B expression is upregulated in GC tissues and that its high expression in patients is related to poor prognosis. KDM6B ectopic expression promotes GC cells' proliferation and metastasis, while its inhibition has opposite effects in vitro and in vivo. Mechanistically, KDM6B promotes GC cells proliferation and metastasis through its enzymatic activity through the induction of H3K27me3 demethylation near the CXCR4 (C-X-C chemokine receptor type 4) promoter region, resulting in the upregulation of CXCR4 expression. Furthermore, H. pylori was found to induce KDM6B expression. In conclusion, our results suggest that KDM6B is aberrantly expressed in GC and plays a key role in gastric carcinogenesis and metastasis through CXCR4 upregulation. Our work also suggests that KDM6B may be a potential oncogenic factor and a therapeutic target for GC.
Collapse
|
13
|
Lee S, Lee GS, Moon JH, Jung J. Policosanol suppresses tumor progression in a gastric cancer xenograft model. Toxicol Res 2022; 38:567-575. [PMID: 36277362 PMCID: PMC9532484 DOI: 10.1007/s43188-022-00139-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the most common cancer worldwide and the third leading cause of cancer death, with the fifth highest incidence. The development of effective chemotherapeutic agents is needed to decrease GC mortality. Policosanol (PC) extracted from Cuban sugar cane wax is a healthy functional food ingredient that helps improve blood cholesterol levels and blood pressure. Its various physiological activities, such as antioxidant, anti-inflammatory, and anticancer activities, have been reported recently. Nevertheless, the therapeutic efficacy of PC in gastric xenograft models is unclear. We aimed to investigate the anticancer effect of PC on human GC SNU-16 cells and a xenograft mouse model. PC significantly inhibited GC cell viability and delayed tumor growth without toxicity in the SNU-16-derived xenograft model. Therefore, we investigated protein expression levels in tumor tissues; the expression levels of Ki-67, a proliferation marker, and cdc2 were decreased. In addition, we performed proteomic analysis and found thirteen differentially expressed proteins. Our results suggested that PC inhibited GC progression via cdc2 suppression and extracellular matrix protein regulation. Notably, our findings might contribute to the development of novel and effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Ga Seul Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
- College of Pharmacy, Duksung Women’s University, 33, Samyang-ro 144-gil, Dobong-gu, Seoul, 01369 Korea
| |
Collapse
|
14
|
Interplays between non-coding RNAs and chemokines in digestive system cancers. Biomed Pharmacother 2022; 152:113237. [PMID: 35716438 DOI: 10.1016/j.biopha.2022.113237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Within tumors, chemokines and their cognate receptors are expressed by infiltrated leukocytes, cancerous cells, and related cells of stroma, like tumor-associated fibroblasts and tumor-associated macrophages. In malignancies, the altered expression of chemokines/chemokine receptors governs leukocyte infiltration and activation, epithelial-mesenchymal transition (EMT), cancer cell proliferation, angiogenesis, and metastasis. Non-coding RNAs (ncRNAs) contribute to multiple physiological and pathophysiological processes. Some miRNAs can exert anti-tumorigenic activity in digestive system malignancies by repressing the expression of tumor-promoting chemokines/chemokine receptors or by upregulating tumor-suppressing chemokines/chemokine receptors. However, many miRNAs exert pro-tumorigenic activity by suppressing the expression of chemokines/chemokine receptors or by upregulating tumor-promoting chemokines/chemokine receptors. LncRNA and circRNAs also exert pro- and anti-tumorigenic effects by targeting downstream miRNAs influencing the expression of tumor-promoting and tumor-suppressor chemokines/chemokine receptors. On the other side, some chemokines influence the expression of ncRNAs affecting tumor formation. The current review explains the communications between ncRNAs and chemokines/chemokine receptors in certain digestive system malignancies, such as gastric, colorectal, and pancreatic cancers and hepatocellular carcinoma to gain better insights into their basic crosstalk as well as possible therapeutic modalities.
Collapse
|
15
|
Wang YC, Lu S, Zhou XJ, Yang L, Liu P, Zhang L, Hu Y, Dong XZ. miR-1273h-5p suppresses CXCL12 expression and inhibits gastric cancer cell invasion and metastasis. Open Med (Wars) 2022; 17:930-946. [PMID: 35647303 PMCID: PMC9113083 DOI: 10.1515/med-2022-0486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to verify the biological function of miR-1273h-5p in gastric cancer (GC) and its underlying mechanisms. The differential expression of microRNAs between GC and tumor-adjacent normal tissues was detected using microarrays, miR-1273h-5p, and chemokine (C-X-C motif) ligand 12 (CXCL12) mRNA, and protein levels were evaluated using polymerase chain reaction and Western blotting methods, cell proliferation, apoptosis, migration, and invasion were determined by CCK-8, flow cytometry, and transwell assay. Compared to tumor-adjacent normal tissue and gastric epithelial mucosa cell line cells, miR-1273h-5p was significantly downregulated in tissues and cells of GC. The overexpression of miR-1273h-5p could inhibit cell proliferation, migration, invasion, and promote cell apoptosis; in contrast, inhibition of miR-1273h-5p expression could reverse this process. Moreover, a significant upregulation of CXCL12 was observed when the miR-1273h-5p was downregulated in GC cells. Additionally, miR-1273h-5p significantly reduces tumor volume and weight. Thus, this study suggests that miR-1273h-5p regulates cell proliferation, migration, invasion, and apoptosis during GC progression by directly binding to CXCL12 mRNA 3′-untranslational regions, which may be a novel diagnostic and therapeutic target in GC.
Collapse
Affiliation(s)
- Yi-Chen Wang
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Song Lu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Jiang Zhou
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ping Liu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, No. 28 FuXing Road, Haidian District, Beijing 100853, China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing 100053, China
| |
Collapse
|
16
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
17
|
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic Regulation of CXCR4 Signaling in Cancer Pathogenesis and Progression. Semin Cancer Biol 2022; 86:697-708. [PMID: 35346802 DOI: 10.1016/j.semcancer.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
18
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
19
|
Wan H, Huang X, Cong P, He M, Chen A, Wu T, Dai D, Li W, Gao X, Tian L, Liang H, Xiong L. Identification of Hub Genes and Pathways Associated With Idiopathic Pulmonary Fibrosis via Bioinformatics Analysis. Front Mol Biosci 2021; 8:711239. [PMID: 34476240 PMCID: PMC8406749 DOI: 10.3389/fmolb.2021.711239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease whose etiology remains unknown. The purpose of this study was to explore hub genes and pathways related to IPF development and prognosis. Multiple gene expression datasets were downloaded from the Gene Expression Omnibus database. Weighted correlation network analysis (WGCNA) was performed and differentially expressed genes (DEGs) identified to investigate Hub modules and genes correlated with IPF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were performed on selected key genes. In the PPI network and cytoHubba plugin, 11 hub genes were identified, including ASPN, CDH2, COL1A1, COL1A2, COL3A1, COL14A1, CTSK, MMP1, MMP7, POSTN, and SPP1. Correlation between hub genes was displayed and validated. Expression levels of hub genes were verified using quantitative real-time PCR (qRT-PCR). Dysregulated expression of these genes and their crosstalk might impact the development of IPF through modulating IPF-related biological processes and signaling pathways. Among these genes, expression levels of COL1A1, COL3A1, CTSK, MMP1, MMP7, POSTN, and SPP1 were positively correlated with IPF prognosis. The present study provides further insights into individualized treatment and prognosis for IPF.
Collapse
Affiliation(s)
- Hanxi Wan
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xinwei Huang
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Peilin Cong
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Mengfan He
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Tingmei Wu
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Danqing Dai
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Wanrong Li
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xiaofei Gao
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Li Tian
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Huazheng Liang
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Hou L, Lin T, Wang Y, Liu B, Wang M. Collagen type 1 alpha 1 chain is a novel predictive biomarker of poor progression-free survival and chemoresistance in metastatic lung cancer. J Cancer 2021; 12:5723-5731. [PMID: 34475986 PMCID: PMC8408119 DOI: 10.7150/jca.59723] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Collagen type 1 alpha 1 chain (COL1A1) is an extracellular matrix protein comprising two alpha 1 chains and one alpha 2 chain. Our previous study identified that COL1A1 is the key gene during the development and progression of lung adenocarcinoma by multi-omics analysis. However, the clinical significance of COL1A1 expression in lung cancer samples remains largely unknown. Here, we aimed to evaluate the level of COL1A1 in lung cancer samples and correlate its level with the clinical outcome. Methods:COL1A1 gene expression in lung cancer samples was analyzed using the Oncomine database (www.oncomine.org). A total of 308 lung cancer samples (208 formalin-fixed paraffin-embedded tissues and 100 blood samples) were assessed for protein expression of COL1A1. Immunohistochemistry staining and enzyme-linked immunosorbent assay were used to detect COL1A1 expression in tissues and serum, respectively. Results: We identified an elevation of COL1A1 in mRNA level and gene amplification in lung cancer tissues compared with normal lung tissues. High COL1A1 expression was observed in lung cancer tissues and serum (P < 0.05), it was significantly correlated with the peripheral type tumor, the larger diameter of the tumor, the occurrence of lymph node metastases and distant metastases, a higher TNM stage, and smoking (P < 0.05). High COL1A1 expression was associated with poor progression-free survival (PFS) and chemoresistance in lung cancer patients (P < 0.05). Multivariable Cox-regression analysis showed that COL1A1 expression was an independent prognostic factor (P < 0.05). Furthermore, the area under the receiver operating characteristic (AUC) curve was 0.909 for the combined COL1A1 and carcinoembryonic antigen (CEA) measurement. Conclusion: Our findings revealed that COL1A1 could be used as a novel diagnostic, prognostic, and chemoresistance biomarker of human lung cancer, and these results provide a potential therapeutic strategy for lung cancer patients.
Collapse
Affiliation(s)
- Lingjie Hou
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin 150081, China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Jilin 130041, Changchun, China
| | - Bao Liu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin 150081, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin 150081, China
| |
Collapse
|
21
|
Ye J, Li J, Zhao P. Roles of ncRNAs as ceRNAs in Gastric Cancer. Genes (Basel) 2021; 12:genes12071036. [PMID: 34356052 PMCID: PMC8305186 DOI: 10.3390/genes12071036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
Although ignored in the past, with the recent deepening of research, significant progress has been made in the field of non-coding RNAs (ncRNAs). Accumulating evidence has revealed that microRNA (miRNA) response elements regulate RNA. Long ncRNAs, circular RNAs, pseudogenes, miRNAs, and messenger RNAs (mRNAs) form a competitive endogenous RNA (ceRNA) network that plays an essential role in cancer and cardiovascular, neurodegenerative, and autoimmune diseases. Gastric cancer (GC) is one of the most common cancers, with a high degree of malignancy. Considerable progress has been made in understanding the molecular mechanism and treatment of GC, but GC’s mortality rate is still high. Studies have shown a complex ceRNA crosstalk mechanism in GC. lncRNAs, circRNAs, and pseudogenes can interact with miRNAs to affect mRNA transcription. The study of the involvement of ceRNA in GC could improve our understanding of GC and lead to the identification of potential effective therapeutic targets. The research strategy for ceRNA is mainly to screen the different miRNAs, lncRNAs, circRNAs, pseudogenes, and mRNAs in each sample through microarray or sequencing technology, predict the ceRNA regulatory network, and, finally, conduct functional research on ceRNA. In this review, we briefly discuss the proposal and development of the ceRNA hypothesis and the biological function and principle of ceRNAs in GC, and briefly introduce the role of ncRNAs in the GC’s ceRNA network.
Collapse
Affiliation(s)
- Junhong Ye
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Jifu Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China;
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
- Correspondence: ; Tel.: +86-23-6825-0885
| |
Collapse
|
22
|
LINC00221 suppresses the malignancy of children acute lymphoblastic leukemia. Biosci Rep 2021; 40:222665. [PMID: 32297639 PMCID: PMC7199449 DOI: 10.1042/bsr20194070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
As the most common malignant disease in childhood, children acute lymphoblastic leukemia (ALL) is a heterogeneous disease caused by the accumulated genetic alterations. Long non-coding RNAs (lncRNAs) are reported as critical regulators in diseases. GEPIA database indicated that long intergenic non-protein coding RNA 221 (LINC00221) was conspicuously down-regulated in acute myeloid leukemia. However, its expression pattern in ALL has not been revealed. This work was carried out to study the role of LINC00221 in ALL cells. Quantitative real-time PCR (qRT-PCR) quantified LINC00221 expression in ALL cells. The function of LINC00221 in ALL was determined by ki-67 immunofluorescence staining, EdU, TUNEL, JC-1, and caspase-3/8/9 activity assays. RNA pull down and Ago2-RNA immunoprecipitation (RIP) assays investigated the interaction between miR-152-3p and LINC00221 or ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (ATP2A2). Our study revealed the low expression of LINC00221 in ALL cells. Subsequently, LINC00221 was verified to bind with miR-152-3p. Moreover, functional assays pointed out that LINC00221 overexpression posed anti-proliferation and pro-apoptosis effects in ALL cells, and these effects could be separately reversed by miR-152-3p up-regulation. Afterward, LINC00221 was revealed to regulate ATP2A2 expression via sponging miR-152-3p. Additionally, ATP2A2 was verified to involve in regulating LINC00221-mediated ALL cell proliferation and apoptosis. In conclusion, LINC00221 suppressed ALL cell proliferation and boosted ALL cell apoptosis via sponging miR-152-3p to up-regulate ATP2A2.
Collapse
|
23
|
Fan F, Huang Z, Chen Y. Integrated analysis of immune-related long noncoding RNAs as diagnostic biomarkers in psoriasis. PeerJ 2021; 9:e11018. [PMID: 33732554 PMCID: PMC7950217 DOI: 10.7717/peerj.11018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory dermatosis. Long noncoding RNAs (lncRNAs) play an important role in immune-related diseases. This study aimed to identify potential immune-related lncRNA biomarkers for psoriasis. Methods We screened differentially expressed immune-related lncRNAs biomarkers using GSE13355 (skin biopsy samples of 180 cases) from Gene Expression Omnibus (GEO). Moreover, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) were performed to explore biological mechanisms in psoriasis. In addition, we performed LASSO logistic regression to identify potential diagnostic lncRNAs and further verify the diagnostic value and relationship with drug response using two validation sets: GSE30999 (skin biopsy samples of 170 cases) and GSE106992 (skin biopsy samples of 192 cases). Furthermore, we estimated the degree of infiltrated immune cells and investigated the correlation between infiltrated immune cells and diagnostic lncRNA biomarkers. Results A total of 394 differentially expressed genes (DEGs) were extracted from gene expression profile. GO and KEGG analysis of target genes found that immune-related lncRNAs were primarily associated with epidermis development, skin development, collagen-containing extracellular matrix, and glycosaminoglycan binding and mainly enriched in cytokine-cytokine receptor interaction and influenza A and chemokine signaling pathway. We found that LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1, CARMN, CCDC18-AS1, EPB41L4A-AS, and LINC01214 exhibited well diagnostic efficacy. The ROC and ROC CI were 0.944 (0.907–0.982), 0.953 (0.919–0.987), 0.822 (0.758–0.887), 0.854 (0.797–0.911), 0.957(0.929–0.985), 0.894 (0.846–0.942), and 0.964 (0.937–0.991) for LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1,CARMN, CCDC18-AS1, EPB41L4A-AS1, and LINC01214. LINC01137, LINC01215, and LINC01214 were correlated with drug response. LINC01137, CCDC18-AS1, and CARMN were positively correlated with activated memory CD4 T cell, activated myeloid dendritic cell (DC), neutrophils, macrophage M1, and T follicular helper (Tfh) cells, while negatively correlated with T regulatory cell (Treg). LINC01215, MAPKAPK5-AS1, TPT1-AS1, EPB41L4A-AS, and LINC01214 were negatively correlated with activated memory CD4 T cell, activated myeloid DC, neutrophils, macrophage M1, and Tfh, while positively correlated with Treg. Conclusions These findings indicated that these immune-related lncRNAs may be used as potential diagnostic and predictive biomarkers for psoriasis.
Collapse
Affiliation(s)
- Feixiang Fan
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhen Huang
- Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Ming H, Li B, Zhou L, Goel A, Huang C. Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochim Biophys Acta Rev Cancer 2021; 1875:188519. [PMID: 33548345 DOI: 10.1016/j.bbcan.2021.188519] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cancer metastasis, defined by the epithelial to mesenchymal transition (EMT) of tumor cells, disseminates from the primary site to progressively colonize in distant tissues, and accounts for most cancer-associated deaths. However, studies on the molecular basis of cancer metastasis are still in their infancy. Besides genetic mutations, accumulating evidence indicates that epigenetic alterations also contribute in a major way to the refractory nature of cancer metastasis. Considered as one of the essential epigenetic regulators, long non-coding RNAs (lncRNAs) can act as signaling regulators, decoys, guides and scaffolds, modulating key molecules in every step of cancer metastasis including dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Although still having limited clinical application, it is encouraging to witness that several lncRNAs, including CCAT1 and HOTAIR, are under clinical evaluation as potential biomarkers for cancer staging and assessment of metastatic potential. In this review, we focus on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis and discuss their clinical potential as novel therapeutic targets as well as their diagnostic and prognostic significance for cancer treatment. Gaining clear insights into the detailed molecular basis underlying lncRNA-modulated cancer metastasis may provide previously unrecognized diagnostic and therapeutic strategies for metastatic patients.
Collapse
Affiliation(s)
- Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, 1218 S. Fifth Avenue, Suite 2226, Biomedical Research Center, Monrovia, CA 91016, USA.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
25
|
Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis 2020; 11:723. [PMID: 32895368 PMCID: PMC7477231 DOI: 10.1038/s41419-020-02810-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) are associated with the progression of human cancers. However, the expression level and function of LINC01559 (long intergenic non-protein coding RNA 1559) in gastric cancer (GC) are rarely reported. Here we found that LINC01559 was upregulated in GC tissues based on GEPIA (Gene Expression Profiling Interactive Analysis) and TCGA (The Cancer Genome Atlas) databases. Also, LINC01559 was expressed at a lower level in GC cells than in mesenchymal stem cells (MSCs). In vitro experiments revealed that silencing LINC01559 remarkably hindered GC cell proliferation, migration and stemness. Then, we identified that LINC01559 was transmitted form MSCs to GC cells via the exosomes. Immunofluorescence staining and electron microscope validated the existence of exosomes in GC cells. Mechanistically, LINC01559 sponged miR-1343-3p to upregulate PGK1 (phosphoglycerate kinase 1), therefore activating PI3K/AKT pathway. Moreover, LINC01559 recruited EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) to PTEN (phosphatase and tensin homolog) promoter, inducing the methylation of PTEN promoter and finally resulting in PTEN repression. Of note, LINC01559 targeted both PGK1 and PTEN to promote GC progression by activating PI3K/AKT pathway. Taken together, our study demonstrated that LINC01559 accelerated GC progression via upregulating PGK1 and downregulating PTEN to trigger phosphatidylinositol 3-kinase/AKT serine/threonine kinase (PI3K/AKT) pathway, indicating LINC01559 as a potential biomarker for GC treatment.
Collapse
|
26
|
Zhang P, Cao M, Zhang Y, Xu L, Meng F, Wu X, Xia T, Chen Q, Shi G, Wu P, Chen L, Lu Z, Yin J, Cai B, Cao S, Miao Y, Jiang K. A novel antisense lncRNA NT5E promotes progression by modulating the expression of SYNCRIP and predicts a poor prognosis in pancreatic cancer. J Cell Mol Med 2020; 24:10898-10912. [PMID: 32770626 PMCID: PMC7521323 DOI: 10.1111/jcmm.15718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
A novel antisense lncRNA NT5E was identified in a previous microarray that was clearly up-regulated in pancreatic cancer (PC) tissues. However, its biological function remains unclear. Thus, we aimed to explore its function and clinical significance in PC. The lncNT5E expression was determined in PC specimens and cell lines. In vitro and in vivo studies detected the impact of lncNT5E depletion on PC cell proliferation, migration and invasion. Western blotting investigated the epithelial-mesenchymal transition (EMT) markers. The interaction between lncNT5E and the promoter region of SYNCRIP was detected by dual-luciferase reporter assay. The role of lncNT5E in modulating SYNCRIP was investigated in vitro. Our results showed that lncNT5E was significantly up-regulated in PC tissues and cell lines and associated with poor prognosis. LncNT5E depletion inhibited PC cell proliferation, migration, invasion and EMT in vitro and caused tumorigenesis arrest in vivo. Furthermore, SYNCRIP knockdown had effects similar to those of lncNT5E depletion. A significant positive relationship was observed between lncNT5E and SYNCRIP. Moreover, the dual-luciferase reporter assays indicated that lncNT5E depletion significantly inhibited SYNCRIP promoter activity. Importantly, the malignant phenotypes of lncNT5E depletion were rescued by overexpressing SYNCRIP. In conclusion, lncNT5E predicts poor prognosis and promotes PC progression by modulating SYNCRIP expression.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Division/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Reporter
- Heterogeneous-Nuclear Ribonucleoproteins/antagonists & inhibitors
- Heterogeneous-Nuclear Ribonucleoproteins/biosynthesis
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Heterografts
- Humans
- Kaplan-Meier Estimate
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- Promoter Regions, Genetic/genetics
- Proportional Hazards Models
- RNA Interference
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Pengbo Zhang
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Meng Cao
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yi Zhang
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Lei Xu
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Fanchao Meng
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Xinquan Wu
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Hepatopancreatobiliary SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Tianfang Xia
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of General SurgeryThe Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical UniversityHuai’anChina
| | - Qun Chen
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Guodong Shi
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Pengfei Wu
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Lei Chen
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Zipeng Lu
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Jie Yin
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Baobao Cai
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Shouji Cao
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Yi Miao
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| | - Kuirong Jiang
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Pancreas InstituteNanjing Medical UniversityNanjingChina
| |
Collapse
|
27
|
Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, Chen Y, An Y, Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Am J Cancer Res 2020; 10:8880-8902. [PMID: 32754285 PMCID: PMC7392009 DOI: 10.7150/thno.47548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.
Collapse
|
28
|
Song R, Liu Z, Lu L, Liu F, Zhang B. Long Noncoding RNA SCAMP1 Targets miR-137/CXCL12 Axis to Boost Cell Invasion and Angiogenesis in Ovarian Cancer. DNA Cell Biol 2020; 39:1041-1050. [PMID: 32401536 DOI: 10.1089/dna.2019.5312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is one of gynecological malignancies that seriously affects women's health. Mounting evidence demonstrated that long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) play important roles in various biological processes related to the pathogenesis of OC. This research aimed to investigate the regulatory mechanism of lncRNA SCAMP1/miR-137/CXCL12 (C-X-C motif chemokine ligand 12) axis on OC progression. In this study, we found that SCAMP1 was highly expressed in OC cells, which promoted OC cell invasion and angiogenesis. In addition, our research confirmed that SCAMP1 could bind with miR-137, and SCAMP1 sponged miR-137 to accelerate the progression of OC. We also observed that CXCL12 was a downstream target gene for miR-137, and miR-137 targeted CXCL12 to participate in the regulation of OC. Finally, through TCGA database, we found that SCAMP1 (or CXCL12) was upregulated as well as miR-137 was downregulated in OC tissues, and high (or low) level of them was associated with poor prognosis. miR-137 expression was negatively correlated with SCAMP1 (or CXCL12) expression, and SCAMP1 expression was positively correlated with CXCL12 expression in OC. In summary, our study clarified the role of SCAMP1/miR-137/CXCL12 axis in OC, and this finding may provide a potential therapeutic target of OC.
Collapse
Affiliation(s)
- Ran Song
- Department of Oncology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, P.R. China.,Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Zhihui Liu
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lijuan Lu
- Department of Gynecology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, P.R. China
| | - Fenglin Liu
- Department of Oncology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, P.R. China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, P.R. China
| |
Collapse
|
29
|
Guo Q, Zhang Q, Lu L, Xu Y. Long noncoding RNA RUSC1-AS1 promotes tumorigenesis in cervical cancer by acting as a competing endogenous RNA of microRNA-744 and consequently increasing Bcl-2 expression. Cell Cycle 2020; 19:1222-1235. [PMID: 32264732 DOI: 10.1080/15384101.2020.1749468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The expression of a long noncoding RNA termed RUSC1-AS1 is dysregulated in breast cancer and laryngeal squamous cell carcinoma, and this dysregulation affects various tumor-associated biological processes. To our knowledge, the expression status and detailed roles of RUSC1-AS1 in cervical cancer as well as its regulatory mechanisms of action remain unknown. Therefore, the objectives of this study were to measure RUSC1-AS1 expression in cervical cancer, investigate the effects of RUSC1-AS1 on cervical cancer cells, and identify the mechanism underlying these effects. Herein, RUSC1-AS1 was found to be highly expressed in cervical cancer tissues and cell lines. High RUSC1-AS1 expression significantly correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and shorter overall survival among the patients with cervical cancer. Functional assays revealed that interference with RUSC1-AS1 expression suppressed cervical cancer cell proliferation, migration, and invasion in vitro; induced apoptosis in vitro; and impeded tumor growth in vivo. In addition, RUSC1-AS1 was demonstrated to act as a competing endogenous RNA of microRNA-744 (miR-744) and consequently increase B-cell lymphoma 2 (Bcl-2 or BCL2) expression levels in cervical cancer cells. Furthermore, either inhibition of miR-744 or restoration of Bcl-2 expression neutralized the effects of the RUSC1-AS1 silencing on the malignant characteristics of cervical cancer cells. Thus, RUSC1-AS1 promotes the aggressiveness of cervical cancer in vitro and in vivo by upregulating miR-744-Bcl-2 axis output. The RUSC1-AS1-miR-744-Bcl-2 pathway may be involved in cervical cancer pathogenesis and could serve as a novel target for anticancer therapies.
Collapse
Affiliation(s)
- Qizhen Guo
- Department of Gynaecology and Obstetrics, Gaomi People's Hospital, Gaomi, Shandong, P.R. China
| | - Qin Zhang
- Department of Neurosurgery, Gaomi People's Hospital, Gaomi, Shandong, P.R. China
| | - Lianwei Lu
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, P.R. China
| | - Yanping Xu
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong, P.R. China
| |
Collapse
|
30
|
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. Renal fibrosis is considered to be closely related to various cell types, such as fibroblasts, myofibroblasts, T cells, and other inflammatory cells. Multiple types of cells regulate renal fibrosis through the recruitment, proliferation, and activation of fibroblasts, and the production of the extracellular matrix. Cell trafficking is orchestrated by a family of small proteins called chemokines. Chemokines are cytokines with chemotactic properties, which are classified into 4 groups: CXCL, CCL, CX3CL, and XCL. Similarly, chemokine receptors are G protein-coupled seven-transmembrane receptors classified into 4 groups: XCR, CCR, CXCR, and CX3CR. Chemokine receptors are also implicated in the infiltration, differentiation, and survival of functional cells, triggering inflammation that leads to fibrosis development. In this review, we summarize the different chemokine receptors involved in the processes of fibrosis in different cell types. Further studies are required to identify the molecular mechanisms of chemokine signaling that contribute to renal fibrosis.
Collapse
|
31
|
The Emerging Role of GC-MSCs in the Gastric Cancer Microenvironment: From Tumor to Tumor Immunity. Stem Cells Int 2019; 2019:8071842. [PMID: 31885627 PMCID: PMC6914970 DOI: 10.1155/2019/8071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been declared to not only participate in wound repair but also affect tumor progression. Tumor-associated MSCs, directly existing in the tumor microenvironment, play a critical role in tumor initiation, progression, and development. And different tumor-derived MSCs have their own unique characteristics. In this review, we mainly describe and discuss recent advances in our understanding of the emerging role of gastric cancer-derived MSC-like cells (GC-MSCs) in regulating gastric cancer progression and development, as well as the bidirectional influence between GC-MSCs and immune cells of the tumor microenvironment. Moreover, we also discuss the potential biomarker and therapeutic role of GC-MSCs. It is anticipated that new and deep insights into the functionality of GC-MSCs and the underlying mechanisms will promote the novel and promising therapeutic strategies against gastric cancer.
Collapse
|