1
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2024; 14:jkae072. [PMID: 38560781 PMCID: PMC11152069 DOI: 10.1093/g3journal/jkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573138. [PMID: 38187743 PMCID: PMC10769413 DOI: 10.1101/2023.12.22.573138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK-pathway dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay, and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and RGA1, which encodes a GTPase activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1 and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, presumably identifying an inhibitory domain in the C-terminus of the protein. We also show that a wide variety of filamentous growth phenotypes result from mutations in different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N. Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| |
Collapse
|
4
|
Alejandre-Castañeda V, Patiño-Medina JA, Valle-Maldonado MI, García A, Ortiz-Alvarado R, Ruíz-Herrera LF, Castro-Cerritos KV, Ramírez-Emiliano J, Ramírez-Díaz MI, Garre V, Lee SC, Meza-Carmen V. Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism. J Microbiol 2023; 61:1043-1062. [PMID: 38114662 DOI: 10.1007/s12275-023-00096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.
Collapse
Affiliation(s)
- Viridiana Alejandre-Castañeda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - J Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | | | - Alexis García
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, 78249, USA
| | - Rafael Ortiz-Alvarado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - León F Ruíz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | | | | | - Martha I Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Soo Chan Lee
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, 78249, USA
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico.
| |
Collapse
|
5
|
Romo JA, Tomihiro M, Kumamoto CA. Pre-colonization with the fungus Candida glabrata exacerbates infection by the bacterial pathogen Clostridioides difficile in a murine model. mSphere 2023; 8:e0012223. [PMID: 37358292 PMCID: PMC10449511 DOI: 10.1128/msphere.00122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 06/27/2023] Open
Abstract
The contributions of commensal fungi to human health and disease are not well understood. Candida species such as C. albicans and C. glabrata are opportunistic pathogenic fungi and common colonizers of the human intestinal tract. They have been shown to affect the host immune system and interact with the gut microbiome and pathogenic microorganisms. Therefore, Candida species could be expected to play important ecological roles in the host gastrointestinal tract. Previously, our group demonstrated that pre-colonization of mice with C. albicans protected them against lethal C. difficile infection (CDI). Here, we show that mice pre-colonized with C. glabrata succumbed to CDI more rapidly than mice that were not pre-colonized suggesting an enhancement in C. difficile pathogenesis. Further, when C. difficile was added to pre-formed C. glabrata biofilms, an increase in matrix and overall biomass was observed. These effects were also shown with C. glabrata clinical isolates. Interestingly, the presence of C. difficile increased C. glabrata biofilm susceptibility to caspofungin, indicating potential effects on the fungal cell wall. Defining this intricate and intimate relationship will lead to an understanding of the role of Candida species in the context of CDI and novel aspects of Candida biology. IMPORTANCE Most microbiome studies have only considered the bacterial populations while ignoring other members of the microbiome such as fungi, other eukaryotic microorganisms, and viruses. Therefore, the role of fungi in human health and disease has been significantly understudied compared to their bacterial counterparts. This has generated a significant gap in knowledge that has negatively impacted disease diagnosis, understanding, and the development of therapeutics. With the development of novel technologies, we now have an understanding of mycobiome composition, but we do not understand the roles of fungi in the host. Here, we present findings showing that Candida glabrata, an opportunistic pathogenic yeast that colonizes the mammalian gastrointestinal tract, can impact the severity and outcome of a Clostridioides difficile infection (CDI) in a murine model. These findings bring attention to fungal colonizers during CDI, a bacterial infection of the gastrointestinal tract.
Collapse
Affiliation(s)
- Jesús A. Romo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Makenzie Tomihiro
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lyu X, Wang Q, Liu A, Liu F, Meng L, Wang P, Zhang Y, Wang L, Li Z, Wang W. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of Flammulina filiformis. Front Microbiol 2023; 14:1139679. [PMID: 37213522 PMCID: PMC10192742 DOI: 10.3389/fmicb.2023.1139679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Flammulina filiformis is one of the most commercially important edible fungi worldwide, with its nutritional value and medicinal properties. It becomes a good model species to study the tolerance of abiotic stress during mycelia growth in edible mushroom cultivation. Transcription factor Ste12 has been reported to be involved in the regulation of stress tolerance and sexual reproduction in fungi. Methods In this study, identification and phylogenetic analysis of ste12-like was performed by bioinformatics methods. Four ste12-like overexpression transformants of F. filiformis were constructed by Agrobacterium tumefaciens-mediated transformation. Results and Discussion Phylogenetic analysis showed that Ste12-like contained conserved amino acid sequences. All the overexpression transformants were more tolerant to salt stress, cold stress and oxidative stress than wild-type strains. In the fruiting experiment, the number of fruiting bodies of overexpression transformants increased compared with wild-type strains, but the growth rate of stipes slowed down. It suggested that gene ste12-like was involved in the regulation of abiotic stress tolerance and fruiting body development in F. filiformis.
Collapse
Affiliation(s)
- Xiaomeng Lyu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ao Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Panmeng Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Li Wang,
| | - Zhuang Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Zhuang Li,
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Wei Wang,
| |
Collapse
|
7
|
Costa PDS, Prado A, Bagon NP, Negri M, Svidzinski TIE. Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms 2022; 10:microorganisms10091721. [PMID: 36144323 PMCID: PMC9506030 DOI: 10.3390/microorganisms10091721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.
Collapse
|