1
|
Abstract
When individuals are exposed to stressful environmental challenges, the response varies widely in one or more of three components: psychology, behavior and physiology. This variability among individuals can be defined as temperament. In recent years, an increasing large body of evidence suggests that the dimensions of temperament, as well as personality, psychological disorders and behavioral traits, are influenced by genetic factors, and much of the variation appears to involve variation in genes or gene polymorphisms in the hypothalamic-pituitary-adrenocortical (HPA) axis and the behavior-controlling neurotransmitter networks. Here, we review our current understanding of the probabilistic impact of a number of candidate gene polymorphisms that control temperament, psychological disorders and behavioral traits in animals and human, including the gene polymorphisms related to corticotrophin-releasing hormone (CRH) production and adrenal cortisol production involved in the HPA axis, and a large number of gene polymorphisms in the dopaminergic and serotonergic neurotransmitter networks. It will very likely to assist in diagnosis and treatment of human relevant disorders, and provide useful contributions to our understanding of evolution, welfare and conservation, for animals in the wild and in production systems. Additionally, investigations of gene-gene and gene-environment complex interactions in humans and animals need further clear illustration.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- a College of Animal Science and Technology, Southwest University , Chong Qing , PR China.,b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| | - Graeme B Martin
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia.,c Nuffield Department of Obstetrics and Gynecology , University of Oxford , Oxford , UK
| | - Dominique Blache
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| |
Collapse
|
2
|
Palti Y, Gahr SA, Purcell MK, Hadidi S, Rexroad CE, Wiens GD. Identification, characterization and genetic mapping of TLR7, TLR8a1 and TLR8a2 genes in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:219-233. [PMID: 19825389 DOI: 10.1016/j.dci.2009.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Induction of the innate immune pathways is critical for early anti-viral defense but there is limited understanding of how teleost fish recognize viral molecules and activate these pathways. In mammals, Toll-like receptors (TLR) 7 and 8 bind single-stranded RNA of viral origin and are activated by synthetic anti-viral imidazoquinoline compounds. Herein, we identify and describe the rainbow trout (Oncorhynchus mykiss) TLR7 and TLR8 gene orthologs and their mRNA expression. Two TLR7/8 loci were identified from a rainbow trout bacterial artificial chromosome (BAC) library using DNA fingerprinting and genetic linkage analyses. Direct sequencing of two representative BACs revealed intact omTLR7 and omTLR8a1 open reading frames (ORFs) located on chromosome 3 and a second locus on chromosome 22 that contains an omTLR8a2 ORF and a putative TLR7 pseudogene. We used the omTLR8a1/2 nomenclature for the two trout TLR8 genes as phylogenetic analysis revealed that they and all the other teleost TLR8 genes sequenced to date are similar to the zebrafish TLR8a, but are distinct from the zebrafish TLR8b. The duplicated trout loci exhibit conserved synteny with other fish genomes extending beyond the tandem of TLR7/8 genes. The trout TLR7 and 8a1/2 genes are composed of a single large exon similar to all other described TLR7/8 genes. The omTLR7 ORF is predicted to encode a 1049 amino acid (aa) protein with 84% similarity to the Fugu TLR7 and a conserved pattern of predicted leucine-rich repeats (LRR). The omTLR8a1 and omTLR8a2 are predicted to encode 1035- and 1034-aa proteins, respectively, and have 86% similarity to each other. omTLR8a1 is likely the ortholog of the only Atlantic salmon TLR8 gene described to date as they have 95% aa sequence similarity. The tissue expression profiles of omTLR7, omTLR8a1 and omTLR8a2 in healthy trout were highest in spleen tissue followed by anterior and then posterior kidney tissues. Rainbow trout anterior kidney leukocytes produced elevated levels of pro-inflammatory and type I interferon cytokines mRNA in response to stimulation with the human TLR7/8 agonist R848 or the TLR3 agonist poly I:C. Only poly I:C-induced IFN2 transcription was significantly suppressed in the presence of chloroquine, a compound known to block endosomal acidification and inhibit endosomal maturation. The effect of chloroquine on R848-induced cytokine expression was equivocal and so it remains questionable whether rainbow trout recognition of R848 requires endosomal maturation. TLR7 and TLR8a1 expression levels in rainbow trout anterior kidney leukocytes were not affected by poly I:C or R848 treatments, but surprisingly, TLR8a2 expression was moderately down-regulated by R848. The down-regulation of omTLR8a2 may imply that this gene has evolved to a new or altered function in rainbow trout, as often occurs when the two duplicated genes remain active.
Collapse
Affiliation(s)
- Yniv Palti
- United States Department of Agriculture, Agriculture Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Rexroad CE, Vallejo RL. Estimates of linkage disequilibrium and effective population size in rainbow trout. BMC Genet 2009; 10:83. [PMID: 20003428 PMCID: PMC2800115 DOI: 10.1186/1471-2156-10-83] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/14/2009] [Indexed: 12/19/2022] Open
Abstract
Background The use of molecular genetic technologies for broodstock management and selective breeding of aquaculture species is becoming increasingly more common with the continued development of genome tools and reagents. Several laboratories have produced genetic maps for rainbow trout to aid in the identification of loci affecting phenotypes of interest. These maps have resulted in the identification of many quantitative/qualitative trait loci affecting phenotypic variation in traits associated with albinism, disease resistance, temperature tolerance, sex determination, embryonic development rate, spawning date, condition factor and growth. Unfortunately, the elucidation of the precise allelic variation and/or genes underlying phenotypic diversity has yet to be achieved in this species having low marker densities and lacking a whole genome reference sequence. Experimental designs which integrate segregation analyses with linkage disequilibrium (LD) approaches facilitate the discovery of genes affecting important traits. To date the extent of LD has been characterized for humans and several agriculturally important livestock species but not for rainbow trout. Results We observed that the level of LD between syntenic loci decayed rapidly at distances greater than 2 cM which is similar to observations of LD in other agriculturally important species including cattle, sheep, pigs and chickens. However, in some cases significant LD was also observed up to 50 cM. Our estimate of effective population size based on genome wide estimates of LD for the NCCCWA broodstock population was 145, indicating that this population will respond well to high selection intensity. However, the range of effective population size based on individual chromosomes was 75.51 - 203.35, possibly indicating that suites of genes on each chromosome are disproportionately under selection pressures. Conclusions Our results indicate that large numbers of markers, more than are currently available for this species, will be required to enable the use of genome-wide integrated mapping approaches aimed at identifying genes of interest in rainbow trout.
Collapse
Affiliation(s)
- Caird E Rexroad
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Leetown, West Virginia 25430, USA.
| | | |
Collapse
|
4
|
Palti Y, Luo MC, Hu Y, Genet C, You FM, Vallejo RL, Thorgaard GH, Wheeler PA, Rexroad CE. A first generation BAC-based physical map of the rainbow trout genome. BMC Genomics 2009; 10:462. [PMID: 19814815 PMCID: PMC2763887 DOI: 10.1186/1471-2164-10-462] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/08/2009] [Indexed: 01/09/2023] Open
Abstract
Background Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species. Results The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring large contigs to the microsatellite-based genetic linkage map. Conclusion The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional candidate genes for economically important traits and the incorporation of MAS into rainbow trout breeding programs.
Collapse
Affiliation(s)
- Yniv Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rexroad CE, Palti Y, Gahr SA, Vallejo RL. A second generation genetic map for rainbow trout (Oncorhynchus mykiss). BMC Genet 2008; 9:74. [PMID: 19019240 PMCID: PMC2605456 DOI: 10.1186/1471-2156-9-74] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 11/19/2008] [Indexed: 11/14/2022] Open
Abstract
Background Genetic maps characterizing the inheritance patterns of traits and markers have been developed for a wide range of species and used to study questions in biomedicine, agriculture, ecology and evolutionary biology. The status of rainbow trout genetic maps has progressed significantly over the last decade due to interest in this species in aquaculture and sport fisheries, and as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. We constructed a second generation genetic map for rainbow trout using microsatellite markers to facilitate the identification of quantitative trait loci for traits affecting aquaculture production efficiency and the extraction of comparative information from the genome sequences of model fish species. Results A genetic map ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM (Kosambi) and having 2.6 cM resolution was constructed by genotyping 10 parents and 150 offspring from the National Center for Cool and Cold Water Aquaculture (NCCCWA) reference family mapping panel. Microsatellite markers, representing pairs of loci resulting from an evolutionarily recent whole genome duplication event, identified 180 duplicated regions within the rainbow trout genome. Microsatellites associated with genes through expressed sequence tags or bacterial artificial chromosomes produced comparative assignments with tetraodon, zebrafish, fugu, and medaka resulting in assignments of homology for 199 loci. Conclusion The second generation NCCCWA genetic map provides an increased microsatellite marker density and quantifies differences in recombination rate between the sexes in outbred populations. It has the potential to integrate with cytogenetic and other physical maps, identifying paralogous regions of the rainbow trout genome arising from the evolutionarily recent genome duplication event, and anchoring a comparative map with the zebrafish, medaka, tetraodon, and fugu genomes. This resource will facilitate the identification of genes affecting traits of interest through fine mapping and positional cloning of candidate genes.
Collapse
Affiliation(s)
- Caird E Rexroad
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Leetown, West Virginia, USA.
| | | | | | | |
Collapse
|
6
|
Johnson NA, Vallejo RL, Silverstein JT, Welch TJ, Wiens GD, Hallerman EM, Palti Y. Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial cold water disease in rainbow trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:429-437. [PMID: 18274824 DOI: 10.1007/s10126-007-9080-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/30/2007] [Accepted: 12/18/2007] [Indexed: 05/25/2023]
Abstract
Genes within the major histocompatibility complex (MHC) are important for both innate and adaptive immune responses in mammals; however, much less is known regarding their contribution in teleost fishes. We examined the involvement of four major histocompatibility (MH) genomic regions in rainbow trout in resistance to the causative agent of bacterial coldwater disease (BCWD), Flavobacterium psychrophilum. Fish from the 2005 NCCCWA brood-year (71 full-sib families) were challenged with F. psychrophilum strain CSF 259-93. The overall mortality rate was 70%, with large variation in mortality between families. Disease resistance was quantified as post-challenge days to death. Phenotypic variation and additive genetic variation were estimated using mixed models of survival analysis. To examine association, eight microsatellite markers were isolated from MH gene-containing BAC clones and mapped onto the rainbow trout genetic linkage map. The parents and grandparents of the 2005 brood-year families were genotyped with these eight markers and another two markers tightly linked to the MH-IB region to assess the extent of linkage disequilibrium (LD) of MH genomic regions MH-IA, MH-IB, TAP1, and MH-II with survival post-challenge. MH-IB and MH-II markers were linked to BCWD survivability when data were analyzed by family. Tests for disease association at the population level substantiated the involvement of MH-IB, but not MH-II, with disease resistance. The impact of selective breeding for disease resistance on MH sequence variation is discussed in the context of aquaculture production.
Collapse
Affiliation(s)
- Nathan A Johnson
- National Center for Cool and Cold Water Aquaculture USDA-ARS, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Wang S, Xu P, Thorsen J, Zhu B, de Jong PJ, Waldbieser G, Kucuktas H, Liu Z. Characterization of a BAC library from channel catfish Ictalurus punctatus: indications of high levels of chromosomal reshuffling among teleost genomes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:701-11. [PMID: 17671813 DOI: 10.1007/s10126-007-9021-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
The CHORI-212 bacterial artificial chromosome (BAC) library was constructed by cloning EcoRI/EcoRI partially digested DNA into the pTARBAC2.1 vector. The library has an average insert size of 161 kb, and provides 10.6-fold coverage of the channel catfish haploid genome. Screening of 32 genes using overgo or cDNA probes indicated that this library had a good representation of the genome as all tested genes existed in the library. We previously reported sequencing of approximately 25,000 BAC ends that generated 20,366 high-quality BAC end sequences (BES) and identified a large number of sequences similar to known genes using BLASTX searches. In this work, particular attention was given to identification of BAC mate pairs with known genes from both ends. When identified, comparative genome analysis was conducted to determine syntenic regions of the catfish genome with the genomes of zebrafish and Tetraodon. Of the 141 mate pairs with known genes from channel catfish, conserved syntenies were identified in 34 (24.1%), with 30 conserved in the zebrafish genome and 14 conserved in the Tetraodon genome. Additional analysis of three of the 34 conserved syntenic groups by direct sequencing indicated conserved gene contents in all three species. This indicates that comparative genome analysis may provide shortcuts to genome analysis in catfish, especially for short genomic regions once the conserved syntenies are identified.
Collapse
Affiliation(s)
- Shaolin Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Y Palti
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Leetown, WV 25430, USA.
| | | | | | | |
Collapse
|