1
|
Bhakta S, Kodama H, Mimaki M, Tsukahara T. Restoration of Genetic Code in Macular Mouse Fibroblasts via APOBEC1-Mediated RNA Editing. Biomolecules 2025; 15:136. [PMID: 39858530 PMCID: PMC11762822 DOI: 10.3390/biom15010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
RNA editing is a significant mechanism underlying genetic variation and protein molecule alteration; C-to-U RNA editing, specifically, is important in the regulation of mammalian genetic diversity. The ability to define and limit accesses of enzymatic machinery to avoid the modification of unintended targets is key to the success of RNA editing. Identification of the core component of the apoB RNA editing holoenzyme, APOBEC, and investigation into new candidate genes encoding other elements of the complex could reveal further details regarding APOBEC-mediated mRNA editing. Menkes disease is a recessive X-chromosome-linked hereditary syndrome in humans, caused by defective copper metabolism due to mutations in the ATP7A gene, which encodes a copper transport protein. Here, we generated plasmids encoding the MS2 system and the APOBEC1 deaminase domain and used a guide RNA with flanking MS2 sites to restore mutated Atp7a in fibroblasts from a macular mouse model of Menkes disease withs T>C mutation. Around 35% of the mutated C nucleotide (nt) was restored to U, demonstrating that our RNA editing system is reliable and has potential for therapeutic clinical application. RNA base editing via human RNA-guided cytidine deaminases is a potentially attractive approach for in vivo therapeutic application and provides opportunities for new developments in this field.
Collapse
Affiliation(s)
- Sonali Bhakta
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan;
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hiroko Kodama
- General Medical Education and Research Center, Teikyo University School of Medicine, Tokyo 173-0003, Japan
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Toshifumi Tsukahara
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan;
- GeCoRT Co., Ltd., Nishi-ku, Yokohama 220-0011, Japan
| |
Collapse
|
2
|
Pottash AE, Levy D, Powsner EH, Pirolli NH, Kuo L, Solomon TJ, Nowak R, Wang J, Kronstadt SM, Jay SM. Enhanced Extracellular Vesicle Cargo Loading via microRNA Biogenesis Pathway Modulation. ACS Biomater Sci Eng 2024; 10:6286-6298. [PMID: 39305230 DOI: 10.1021/acsbiomaterials.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are physiological vectors for the intercellular transport of a variety of molecules. Among these, small RNAs, and especially microRNAs (miRNAs), have been identified as prevalent components, and there has thus been a robust investigation of EVs for therapeutic miRNAs delivery. However, intrinsic levels of EV-associated miRNAs are generally too low to enable efficient and effective therapeutic outcomes. We hypothesized that miRNA localization to EVs could be improved by limiting competing interactions that occur throughout the miRNA biogenesis process. Using miR-146a-5p as a model, modulation of transcription, nuclear export, and enzymatic cleavage steps of miRNA biogenesis were tested for impact on EV miRNA loading. Working in HEK293T cells, various alterations in the EV biogenesis pathway were shown to impact miRNA localization to EVs. The system was then applied in induced pluripotent stem cells (iPSCs), a more promising substrate for therapeutic EV production, and EVs were separated and assessed for anti-inflammatory efficacy in vitro and in a murine colitis model, where the preservation of function was validated. Overall, the results highlight necessary considerations when designing a cell culture system for the devoted production of miRNA-loaded EVs.
Collapse
Affiliation(s)
- Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Emily H Powsner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Leo Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Talia J Solomon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Raith Nowak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Hamar J, Cnaani A, Kültz D. Transcriptional upregulation of the myo-inositol biosynthesis pathway is enhanced by NFAT5 in hyperosmotically stressed tilapia cells. Am J Physiol Cell Physiol 2024; 327:C545-C556. [PMID: 38946247 DOI: 10.1152/ajpcell.00187.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia (Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species, the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyperosmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO-challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (P < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (P < 0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO-challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO-induced activation of the MIB pathway.NEW & NOTEWORTHY In our study, we use a multi-pronged synthetic biology approach to demonstrate that the fish homolog of the predominant mammalian osmotic stress transcription factor nuclear factor of activated T-cells (NFAT5) also contributes to the activation of hyperosmolality inducible genes in cells of extremely euryhaline fish. However, in addition to NFAT5 the presence of other strong osmotically inducible signaling mechanisms is required for full activation of osmoregulated tilapia genes.
Collapse
Affiliation(s)
- Jens Hamar
- Department of Animal Sciences and Genome Center, University of California Davis, Davis, California, United States
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California Davis, Davis, California, United States
| |
Collapse
|
4
|
Nishizaki SS, McDonald TL, Farnum GA, Holmes MJ, Drexel ML, Switzenberg JA, Boyle AP. The Inducible lac Operator-Repressor System Is Functional in Zebrafish Cells. Front Genet 2021; 12:683394. [PMID: 34220959 PMCID: PMC8249864 DOI: 10.3389/fgene.2021.683394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Zebrafish are a foundational model organism for studying the spatio-temporal activity of genes and their regulatory sequences. A variety of approaches are currently available for editing genes and modifying gene expression in zebrafish, including RNAi, Cre/lox, and CRISPR-Cas9. However, the lac operator-repressor system, an E. coli lac operon component which has been adapted for use in many other species and is a valuable, flexible tool for inducible modulation of gene expression studies, has not been previously tested in zebrafish. Results Here we demonstrate that the lac operator-repressor system robustly decreases expression of firefly luciferase in cultured zebrafish fibroblast cells. Our work establishes the lac operator-repressor system as a promising tool for the manipulation of gene expression in whole zebrafish. Conclusion Our results lay the groundwork for the development of lac-based reporter assays in zebrafish, and adds to the tools available for investigating dynamic gene expression in embryogenesis. We believe this work will catalyze the development of new reporter assay systems to investigate uncharacterized regulatory elements and their cell-type specific activities.
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Torrin L McDonald
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Gregory A Farnum
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Monica J Holmes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Melissa L Drexel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Fu Z, Zhang X, Zhou X, Ur-Rehman U, Yu M, Liang H, Guo H, Guo X, Kong Y, Su Y, Ye Y, Hu X, Cheng W, Wu J, Wang Y, Gu Y, Lu SF, Wu D, Zen K, Li J, Yan C, Zhang CY, Chen X. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics. Cell Res 2021; 31:631-648. [PMID: 33782530 PMCID: PMC8169669 DOI: 10.1038/s41422-021-00491-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023] Open
Abstract
RNAi therapy has undergone two stages of development, direct injection of synthetic siRNAs and delivery with artificial vehicles or conjugated ligands; both have not solved the problem of efficient in vivo siRNA delivery. Here, we present a proof-of-principle strategy that reprogrammes host liver with genetic circuits to direct the synthesis and self-assembly of siRNAs into secretory exosomes and facilitate the in vivo delivery of siRNAs through circulating exosomes. By combination of different genetic circuit modules, in vivo assembled siRNAs are systematically distributed to multiple tissues or targeted to specific tissues (e.g., brain), inducing potent target gene silencing in these tissues. The therapeutic value of our strategy is demonstrated by programmed silencing of critical targets associated with various diseases, including EGFR/KRAS in lung cancer, EGFR/TNC in glioblastoma and PTP1B in obesity. Overall, our strategy represents a next generation RNAi therapeutics, which makes RNAi therapy feasible.
Collapse
Affiliation(s)
- Zheng Fu
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XChemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, China ,grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Zhang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xinyan Zhou
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Uzair Ur-Rehman
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Mengchao Yu
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.412521.1Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hongwei Liang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Hongyuan Guo
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xu Guo
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yan Kong
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yuanyuan Su
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yangyang Ye
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xiuting Hu
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Wei Cheng
- grid.410745.30000 0004 1765 1045Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinrong Wu
- grid.440259.e0000 0001 0115 7868Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yanbo Wang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yayun Gu
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng-feng Lu
- grid.410745.30000 0004 1765 1045Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dianqing Wu
- grid.47100.320000000419368710Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT USA
| | - Ke Zen
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Jing Li
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Chao Yan
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XChemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, China ,grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xi Chen
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XChemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, China ,grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Norheim F, Chella Krishnan K, Bjellaas T, Vergnes L, Pan C, Parks BW, Meng Y, Lang J, Ward JA, Reue K, Mehrabian M, Gundersen TE, Péterfy M, Dalen KT, Drevon CA, Hui ST, Lusis AJ, Seldin MM. Genetic regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Mol Syst Biol 2021; 17:e9684. [PMID: 33417276 PMCID: PMC7792507 DOI: 10.15252/msb.20209684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/31/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.
Collapse
Affiliation(s)
- Frode Norheim
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
- Department of NutritionInstitute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | | | | | - Laurent Vergnes
- Department of Human GeneticsUniversity of California at Los AngelesLos AngelesCAUSA
| | - Calvin Pan
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - Brian W Parks
- Department of Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yonghong Meng
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - Jennifer Lang
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - James A Ward
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - Karen Reue
- Department of Human GeneticsUniversity of California at Los AngelesLos AngelesCAUSA
| | - Margarete Mehrabian
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | | | - Miklós Péterfy
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
- Depatrment of Basic Medical SciencesWestern University of Health SciencesPomonaCAUSA
| | - Knut T Dalen
- Department of NutritionInstitute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - Christian A Drevon
- Department of NutritionInstitute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
- Vitas ASOsloNorway
| | - Simon T Hui
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - Aldons J Lusis
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
- Department of Human GeneticsUniversity of California at Los AngelesLos AngelesCAUSA
| | - Marcus M Seldin
- Division of CardiologyDepartment of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
- Department of Biological Chemistry and Center for Epigenetics and MetabolismUniversity of California, IrvineIrvineCAUSA
| |
Collapse
|
7
|
Wang G, Ren G, Cui X, Lu Z, Ma Y, Qi Y, Huang Y, Liu Z, Sun Z, Ruan Q. Human cytomegalovirus RL13 protein interacts with host NUDT14 protein affecting viral DNA replication. Mol Med Rep 2016; 13:2167-74. [PMID: 26781650 DOI: 10.3892/mmr.2016.4778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
Abstract
The interaction between the host and human cytomegalovirus (HCMV) is important in determining the outcome of a viral infection. The HCMV RL13 gene product exerts independent, inhibitory effects on viral growth in fibroblasts and epithelial cells. At present, there are few reports on the interactions between the HCMV RL13 protein and human host proteins. The present study provided direct evidence for the specific interaction between HCMV RL13 and host nucleoside diphosphate linked moiety X (nudix)‑type motif 14 (NUDT14), a UDP‑glucose pyrophosphatase, using two‑hybrid screening, an in vitro glutathione S‑transferase pull‑down assay, and co‑immunoprecipitation in human embryonic kidney HEK293 cells. Additionally, the RL13 protein was shown to co‑localize with the NUDT14 protein in the HEK293 cell membrane and cytoplasm, demonstrated using fluorescence confocal microscopy. Decreasing the expression level of NUDT14 via NUDT14‑specific small interfering RNAs increased the number of viral DNA copies in the HCMV‑infected cells. However, the overexpression of NUDT14 in a stably expressing cell line did not affect viral DNA levels significantly in the HCMV infected cells. Based on the known functions of NUDT14, the results of the present study suggested that the interaction between the RL13 protein and NUDT14 protein may be involved in HCMV DNA replication, and that NUDT14 may offer potential in the modulation of viral infection.
Collapse
Affiliation(s)
- Guili Wang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Gaowei Ren
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Cui
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhitao Lu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Qi
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yujing Huang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhongyang Liu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhengrong Sun
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qiang Ruan
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
8
|
Wu CJ, Huang WC, Chen LC, Shen CR, Kuo ML. Pseudotyped adeno-associated virus 2/9-delivered CCL11 shRNA alleviates lung inflammation in an allergen-sensitized mouse model. Hum Gene Ther 2012; 23:1156-65. [PMID: 22913580 DOI: 10.1089/hum.2012.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Airway infiltration by eosinophils is a major characteristic of chronic asthma. CCL11 (eotaxin-1) is secreted by lung epithelial cells and functions as the major chemokine for eosinophil recruitment. Pseudotyped adeno-associated virus (AAV) 2/9, composed by the AAV2 rep and AAV9 cap genes, can efficiently target lung epithelial cells and might carry gene sequences with therapeutic potential for asthma. This study aimed to determine whether pseudotyped AAV2/9 virus carrying the small hairpin RNA targeting CCL11 and expressed by CMV/U6 promoter could reduce eosinophilia and asthmatic responses in mite allergen-sensitized mice. Mice were sensitized by intraperitoneal and challenged by intratracheal injection with recombinant Dermatophagoides pteronyssinus group 2 allergen (rDp2). AAV2/9 viral vectors were intratracheally injected three days before the first challenge. AAV2/9 sh47 virus significantly reduced airway hyperresponsiveness, airway resistance, CCL11 levels, and eosinophilia in the lungs of sensitized mice. Th2 cytokines, including interleukins (IL)-4, IL-5, and IL-10, were also significantly reduced in the bronchoalveolar lavage fluid of AAV2/9 sh47 virus-treated mice. Th2 cytokine levels were also reduced in rDp2-stimulated mediastinal lymphocytes in treated mice. However, serum levels of rDp2-specific IgG1 and IgE, as well as Th2 cytokine levels in rDp2-stimulated splenocyte culture supernatants, were comparable to the sensitized control group. The results suggest that AAV2/9 sh47 virus relieved local instead of systemic inflammatory responses. Therefore, the CMV/U6 promoter with AAV2/9 viral vector, which is preferable to target lung epithelia cells, might be applied as a novel therapeutic approach for asthma.
Collapse
Affiliation(s)
- Chia-Jen Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Huang P, Zhu Z, Lin S, Zhang B. Reverse genetic approaches in zebrafish. J Genet Genomics 2012; 39:421-33. [PMID: 23021542 DOI: 10.1016/j.jgg.2012.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 12/14/2022]
Abstract
Zebrafish (Danio rerio) is a well-established vertebrate animal model. A comprehensive collection of reverse genetics tools has been developed for studying gene function in this useful organism. Morpholino is the most widely used reagent to knock down target gene expression post-transcriptionally. For a long time, targeted genome modification has been heavily relied on large-scale traditional forward genetic screens, such as ENU (N-ethyl-N-nitrosourea) mutagenesis derived TILLING (Targeting Induced Local Lesions IN Genomes) strategy and pseudo-typed retrovirus mediated insertional mutagenesis. Recently, engineered endonucleases, including ZFNs (zinc finger nucleases) and TALENs (transcription activator-like effector nucleases), provide new and efficient strategies to directly generate site-specific indel mutations by inducing double strand breaks in target genes. Here we summarize the major reverse genetic approaches for loss-of-function studies used and emerging in zebrafish, including strategies based on genome-wide mutagenesis and methods for site-specific gene targeting. Future directions and expectations will also be discussed.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | | | | | | |
Collapse
|
10
|
Wu GC, Chiu PC, Lin CJ, Lyu YS, Lan DS, Chang CF. Testicular dmrt1 Is Involved in the Sexual Fate of the Ovotestis in the Protandrous Black Porgy1. Biol Reprod 2012; 86:41. [DOI: 10.1095/biolreprod.111.095695] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
11
|
Shestopalov IA, Chen JK. Oligonucleotide-based tools for studying zebrafish development. Zebrafish 2010; 7:31-40. [PMID: 20392138 DOI: 10.1089/zeb.2010.0650] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Synthetic and nonnatural oligonucleotides have been used extensively to interrogate gene function in zebrafish. In this review, we survey the capabilities and limitations of various oligonucleotide-based technologies for perturbing RNA function and tracking RNA expression. We also examine recent strategies for achieving spatiotemporal control of oligonucleotide function, particularly light-gated technologies that exploit the optical transparency of zebrafish embryos.
Collapse
Affiliation(s)
- Ilya A Shestopalov
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
12
|
A significant increase of RNAi efficiency in human cells by the CMV enhancer with a tRNAlys promoter. J Biomed Biotechnol 2009; 2009:514287. [PMID: 19859553 PMCID: PMC2766573 DOI: 10.1155/2009/514287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/21/2009] [Accepted: 07/31/2009] [Indexed: 01/10/2023] Open
Abstract
RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys
and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene.
Collapse
|
13
|
Duan QJ, Tao R, Hu MF, Shang SQ. Efficient inhibition of human cytomegalovirus UL122 gene expression in cell by small interfering RNAs. J Basic Microbiol 2009; 49:531-7. [DOI: 10.1002/jobm.200800364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Development of siRNA expression vector utilizing rock bream β-actin promoter: a potential therapeutic tool against viral infection in fish. Appl Microbiol Biotechnol 2009; 85:679-90. [DOI: 10.1007/s00253-009-2177-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 01/20/2023]
|
15
|
Rhee SW, Stimers JR, Wang W, Pang L. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy. J Pharmacol Exp Ther 2009; 329:775-82. [PMID: 19244098 PMCID: PMC2672860 DOI: 10.1124/jpet.108.148866] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/23/2009] [Indexed: 01/11/2023] Open
Abstract
In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.
Collapse
Affiliation(s)
- Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
16
|
Novel fugu U6 promoter driven shRNA expression vector for efficient vector based RNAi in fish cell lines. Biochem Biophys Res Commun 2008; 371:480-3. [DOI: 10.1016/j.bbrc.2008.04.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 04/18/2008] [Indexed: 11/21/2022]
|