1
|
Xiong NX, Ou J, Fan LF, Kuang XY, Fang ZX, Luo SW, Mao ZW, Liu SJ, Wang S, Wen M, Luo KK, Hu FZ, Wu C, Liu QF. Blood cell characterization and transcriptome analysis reveal distinct immune response and host resistance of different ploidy cyprinid fish following Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:547-559. [PMID: 34923115 DOI: 10.1016/j.fsi.2021.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1β (IL-1β) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1β secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
2
|
Xiong NX, Luo SW, Fan LF, Mao ZW, Luo KK, Liu SJ, Wu C, Hu FZ, Wang S, Wen M, Liu QF. Comparative analysis of erythrocyte hemolysis, plasma parameters and metabolic features in red crucian carp (Carassius auratus red var) and triploid hybrid fish following Aeromonas hydrophila challenge. FISH & SHELLFISH IMMUNOLOGY 2021; 118:369-384. [PMID: 34571155 DOI: 10.1016/j.fsi.2021.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila challenge could promote the erythrocyte hemolysis, increase free hemoglobin (FHB) level and generate malondialdehyde (MDA) production in plasma but decrease the levels of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (ALP) and lysozyme (LZM) of red crucian carp (RCC, 2 N = 100) and triploid hybrid fish (3 N fish, 3 N = 150) following A. hydrophila challenge. Elevated expression levels of heat shock protein 90 alpha (HSP90α), matrix metalloproteinase 9 (MMP-9), free fatty acid receptor 3 (FFAR3), paraoxonase 2 (PON2) and cytosolic phospholipase A2 (cPLA2) were observed in A. hydrophila-infected fish. In addition, A. hydrophila challenge could significantly increase expressions of cortisol, leucine, isoleucine, glutamate and polyunsaturated fatty acids (PUFAs) in RCC and 3 N, while glycolysis and tricarboxylic acid cycle appeared to be inactive. We identified differential fatty acid derivatives and their metabolic networks as crucial biomarkers from metabolic profiles of different ploidy cyprinid fish subjected to A. hydrophila infection. These results highlighted the comparative metabolic strategy of different ploidy cyprinid fish against bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
3
|
Ren L, Cui J, Wang J, Tan H, Li W, Tang C, Qin Q, Liu S. Analyzing homoeolog expression provides insights into the rediploidization event in gynogenetic hybrids of Carassius auratus red var. × Cyprinus carpio. Sci Rep 2017; 7:13679. [PMID: 29057976 PMCID: PMC5651915 DOI: 10.1038/s41598-017-14084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/18/2017] [Indexed: 11/28/2022] Open
Abstract
Rediploidization is considered to be a part of the evolutionary history of allotetraploids, and resulted in the emergence of novel epigenetic regulatory activities. To study the changing patterns of gene expression following the reduction of a genome by 50%, we used RNA-seq and quantitative real-time PCR (qPCR) to investigate total gene expression and homoeolog expression in three hybrids of a C. auratus red var. (2n = 100, ♀) (R) and C. carpio (2n = 100, ♂) (C) (i.e., F1, F18, and G4) and their original parents. A comparison of homoeolog expression between G4 and F18 identified 7 genes (0.22%) that exhibited novel R/C homoeolog expression patterns in G4, while 4 genes (0.12%) were affected by R/C homoeolog silencing. We determined the direction and extent of the homoeolog expression bias (HEB). The C-HEB genes (i.e., nrp1a and igf1) and R-HEB genes (i.e., fgf23 and esm1) provided insights into the effects of the dominance of one parental homoeolog expression on growth regulation. This dominance may contribute to the rapid growth of G4 fish. Our findings may be relevant for clarifying the relationship between growth heterosis and differences in homoeolog expression patterns.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
4
|
First report on the successful hybridization ofPangasianodon hypophthalmus(Sauvage, 1878) andClarias gariepinus(Burchell, 1822). ZYGOTE 2017. [DOI: 10.1017/s0967199417000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryBreeding and larval performance of novel hybrids from reciprocal crosses of Asian catfishPangasianodon hypophthalmus(Sauvage, 1878) and African catfishClarias gariepinus(Burchell, 1822) were investigated in this study. Spawning was by hormonal injection of brood fish, artificial fertilization, and incubation in triplicate aquarium tanks (0.5 × 0.5 × 0.5 m3) with continuous aeration. Reciprocal crosses (♀C. gariepinus× ♂P. hypophthalmusand ♀P. hypophthalmus× ♂C. gariepinus) had lower hatchability (≤50%) than their pure siblings (≥75%). Fish from all crosses survived until the juvenile stage but survival at 35 days post hatching (dph) was higher for pureC. gariepinussib. ♀C. gariepinus× ♂P. hypophthalmuswas observed to be less resistant to degradation of water quality than the other crosses, however it had higher body weight compared with the other crosses that showed similar performance. Morphological comparison of surviving juvenile at 35 dph, showed that all ♀P. hypophthalmus× ♂C. gariepinusand 13% of the ♀C. gariepinus× ♂P. hypophthalmusexhibited the very same morphology as that of their maternal parent species, while the other portion of the ♀C. gariepinus× ♂P. hypophthalmuscross exhibited morphological traits that were intermediate between those of both parent species. This study been the first successful attempt to hybridize both species and therefore, laid the groundwork for further studies on the aquaculture potentials of the novel hybrids.
Collapse
|
5
|
Homoeologue expression insights into the basis of growth heterosis at the intersection of ploidy and hybridity in Cyprinidae. Sci Rep 2016; 6:27040. [PMID: 27265401 PMCID: PMC4893626 DOI: 10.1038/srep27040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/12/2016] [Indexed: 11/09/2022] Open
Abstract
Hybridization and polyploidization are considered important driving forces that form new epigenetic regulations. To study the changing patterns of expression accompanying hybridization and polyploidization, we used RNA-seq and qRT-PCR to investigate global expression and homoeologue expression in diploid and tetraploid hybrids of Carassius auratus red var. (♀) (R) and Cyprinus carpio (♂) (C). By comparing the relative expression levels between the hybrids and their parents, we defined the expression level dominance (ELD) and homoeologue expression bias (HEB) in liver tissue. The results showed that polyploidization contributed to the conversion of homoeologue ELD. In addition, hybridization had more effect on the change in HEB than polyploidization, while polyploidization had more effect on the change of global gene expression than hybridization. Meanwhile, similar expression patterns were found in growth-related genes. The results suggested that hybridization and polyploidization result in differential degrees of maternal HEB in three tissues (liver, muscle and ovary) tested. The results of this study will increase our understanding of the underlying regulation mechanism of rapid growth in diploid hybrids and allotetraploids. The differential degrees of global expression and homoeologue expression contribute to growth heterosis in newly formed hybrids, ensuring the on-going success of allotetraploid speciation.
Collapse
|
6
|
Xiao Y, Zhou Y, Xiong Z, Zou L, Jiang M, Luo Z, Wen S, Liu W, Liu S, Li W. Involvement of JNK in the embryonic development and organogenesis in zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:716-725. [PMID: 23884438 DOI: 10.1007/s10126-013-9520-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
c-Jun N-terminal kinase (JNK) is one of the mitogen-activated protein kinases. Previous studies showed that the JNK is involved in signaling pathways initiating cell cycle, and eventually, causing apoptosis through persistent activation in mammals. In this article, it is further revealed that the jnk1 gene is closely related with the embryonic development and organogenesis in zebrafish. RT-PCR and Western blot analysis show that there were distinct expression patterns of JNK at the different developmental stages as well as in the various tissues in zebrafish. Knockdown of jnk1 by RNA interference (RNAi) resulted in high lethal, serious retardation and malformations of embryos in zebrafish. SP600125, a JNK-specific inhibitor, gives rise to high mortality in zebrafish, similar to that caused by the jnk1 RNA interference. SP600125 is also responsible for the severe abnormality of organs, especially the skeletal system, such as skull, mandible deficiency, and cyrtosis heterauxesis. The results also indicate that the inhibition of JNK by SP600125 suppresses the ovarian differentiation during the embryo development in zebrafish. Overall, our study demonstrates that the jnk1 gene is required for ovary differentiation and development in the zebrafish, and down-regulated JNK directly inhibits ovary differentiation during early ontogenetic stages.
Collapse
Affiliation(s)
- Yamei Xiao
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A dense genetic linkage map for common carp and its integration with a BAC-based physical map. PLoS One 2013; 8:e63928. [PMID: 23704958 PMCID: PMC3660343 DOI: 10.1371/journal.pone.0063928] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/09/2013] [Indexed: 12/27/2022] Open
Abstract
Background Common carp (Cyprinus carpio) is one of the most important aquaculture species with an annual global production of 3.4 million metric tons. It is also an important ornamental species as well as an important model species for aquaculture research. To improve the economically important traits of this fish, a number of genomic resources and genetic tools have been developed, including several genetic maps and a bacterial artificial chromosome (BAC)-based physical map. However, integrated genetic and physical maps are not available to study quantitative trait loci (QTL) and assist with fine mapping, positional cloning and whole genome sequencing and assembly. The objective of this study was to integrate the currently available BAC-based physical and genetic maps. Results The genetic map was updated with 592 novel markers, including 312 BAC-anchored microsatellites and 130 SNP markers, and contained 1,209 genetic markers on 50 linkage groups, spanning 3,565.9 cM in the common carp genome. An integrated genetic and physical map of the common carp genome was then constructed, which was composed of 463 physical map contigs and 88 single BACs. Combined lengths of the contigs and single BACs covered a physical length of 498.75 Mb, or around 30% of the common carp genome. Comparative analysis between common carp and zebrafish genomes was performed based on the integrated map, providing more insights into the common carp specific whole genome duplication and segmental rearrangements in the genome. Conclusion We integrated a BAC-based physical map to a genetic linkage map of common carp by anchoring BAC-associated genetic markers. The density of the genetic linkage map was significantly increased. The integrated map provides a tool for both genetic and genomic studies of common carp, which will help us to understand the genomic architecture of common carp and facilitate fine mapping and positional cloning of economically important traits for genetic improvement and modification.
Collapse
|
8
|
Characterization of common carp transcriptome: sequencing, de novo assembly, annotation and comparative genomics. PLoS One 2012; 7:e35152. [PMID: 22514716 PMCID: PMC3325976 DOI: 10.1371/journal.pone.0035152] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/08/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Common carp (Cyprinus carpio) is one of the most important aquaculture species of Cyprinidae with an annual global production of 3.4 million tons, accounting for nearly 14% of the freshwater aquaculture production in the world. Due to the economical and ecological importance of common carp, genomic data are eagerly needed for genetic improvement purpose. However, there is still no sufficient transcriptome data available. The objective of the project is to sequence transcriptome deeply and provide well-assembled transcriptome sequences to common carp research community. RESULT Transcriptome sequencing of common carp was performed using Roche 454 platform. A total of 1,418,591 clean ESTs were collected and assembled into 36,811 cDNA contigs, with average length of 888 bp and N50 length of 1,002 bp. Annotation was performed and a total of 19,165 unique proteins were identified from assembled contigs. Gene ontology and KEGG analysis were performed and classified all contigs into functional categories for understanding gene functions and regulation pathways. Open Reading Frames (ORFs) were detected from 29,869 (81.1%) contigs with an average ORF length of 763 bp. From these contigs, 9,625 full-length cDNAs were identified with sequence length from 201 bp to 9,956 bp. Comparative analysis revealed that 27,693(75.2%) contigs have significant similarity to zebrafish Refseq proteins, and 24,371(66.2%), 24,501(66.5%) and 25,025(70.0%) to teraodon, medaka and three-spined stickleback refseq proteins. A total of 2,064 microsatellites were initially identified from 1,730 contigs, and 1,639 unique sequences had sufficient flanking sequences on both sides for primer design. CONCLUSION The transcriptome of common carp had been deep sequenced, de novo assembled and characterized, providing the valuable resource for better understanding of common carp genome. The transcriptome data will facilitate future functional studies on common carp genome, and gradually apply in breeding programs of common carp, as well as closely related other Cyprinids.
Collapse
|
9
|
Xu P, Wang J, Wang J, Cui R, Li Y, Zhao Z, Ji P, Zhang Y, Li J, Sun X. Generation of the first BAC-based physical map of the common carp genome. BMC Genomics 2011; 12:537. [PMID: 22044723 PMCID: PMC3221725 DOI: 10.1186/1471-2164-12-537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/02/2011] [Indexed: 01/23/2023] Open
Abstract
Background Common carp (Cyprinus carpio), a member of Cyprinidae, is the third most important aquaculture species in the world with an annual global production of 3.4 million metric tons, accounting for nearly 14% of the all freshwater aquaculture production in the world. Apparently genomic resources are needed for this species in order to study its performance and production traits. In spite of much progress, no physical maps have been available for common carp. The objective of this project was to generate a BAC-based physical map using fluorescent restriction fingerprinting. Result The first generation of common carp physical map was constructed using four- color High Information Content Fingerprinting (HICF). A total of 72,158 BAC clones were analyzed that generated 67,493 valid fingerprints (5.5 × genome coverage). These BAC clones were assembled into 3,696 contigs with the average length of 476 kb and a N50 length of 688 kb, representing approximately 1.76 Gb of the common carp genome. The largest contig contained 171 BAC clones with the physical length of 3.12 Mb. There are 761 contigs longer than the N50, and these contigs should be the most useful resource for future integrations with linkage map and whole genome sequence assembly. The common carp physical map is available at http://genomics.cafs.ac.cn/fpc/WebAGCoL/Carp/WebFPC/. Conclusion The reported common carp physical map is the first physical map of the common carp genome. It should be a valuable genome resource facilitating whole genome sequence assembly and characterization of position-based genes important for aquaculture traits.
Collapse
Affiliation(s)
- Peng Xu
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Distant hybridization leads to different ploidy fishes. SCIENCE CHINA-LIFE SCIENCES 2010; 53:416-25. [DOI: 10.1007/s11427-010-0057-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/30/2009] [Indexed: 10/19/2022]
|