1
|
Fu Q, Ma K, Zhao J, Li J, Wang X, Zhao M, Fu X, Huang D, Chen H. Metagenomics unravel distinct taxonomic and functional diversities between terrestrial and aquatic biomes. iScience 2024; 27:111047. [PMID: 39435150 PMCID: PMC11492093 DOI: 10.1016/j.isci.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Microbes in terrestrial and aquatic ecosystems play crucial roles in driving ecosystem functions, but currently, there is a lack of comparison regarding their taxonomic and functional diversities. Here, we conducted a global analysis to investigate the disparities in microbial taxonomy and microbial-mediated biogeochemical cycles between terrestrial and aquatic ecosystems. Results showed a higher relative abundance of bacteria, especially Actinobacteria and Acidobacteria, in soil than water metagenomes, leading to a greater proportion of genes related to membrane transport, regulatory, and cellular signaling. Moreover, there was a higher abundance of genes associated with carbohydrate, sulfur, and potassium metabolisms in the soil, while those involved in nitrogen and iron metabolisms were more prevalent in the water. Thus, both soil and water microbiomes exhibited unique taxonomic and functional properties associated with biogeochemical processes, providing valuable insights into predicting and understanding the adaptation of microbes in different ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueying Wang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Meiqi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dandan Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
2
|
Electrochemical Enrichment and Isolation of Electrogenic Bacteria from 0.22 µm Filtrate. Microorganisms 2022; 10:microorganisms10102051. [PMID: 36296327 PMCID: PMC9611719 DOI: 10.3390/microorganisms10102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ultramicrobacteria (UMB) that can pass through a 0.22 µm filter are attractive because of their novelty and diversity. However, isolating UMB has been difficult because of their symbiotic or parasitic lifestyles in the environment. Some UMB have extracellular electron transfer (EET)-related genes, suggesting that these symbionts may grow on an electrode surface independently. Here, we attempted to culture from soil samples bacteria that passed through a 0.22 µm filter poised with +0.2 V vs. Ag/AgCl and isolated Cellulomonas sp. strain NTE-D12 from the electrochemical reactor. A phylogenetic analysis of the 16S rRNA showed 97.9% similarity to the closest related species, Cellulomonas algicola, indicating that the strain NTE-D12 is a novel species. Electrochemical and genomic analyses showed that the strain NTE-D12 generated the highest current density compared to that in the three related species, indicating the presence of a unique electron transfer system in the strain. Therefore, the present study provides a new isolation scheme for cultivating and isolating novel UMB potentially with a symbiotic relationship associated with interspecies electron transfer.
Collapse
|
3
|
Liu YF, Yang L, Liu ZL, Chen J, Fang B, Zhou L, Liu JF, Yang SZ, Gu JD, Mu BZ. Discovery of the non-cosmopolitan lineages in Candidatus Thermoprofundales. Environ Microbiol 2022; 24:3063-3080. [PMID: 35254697 DOI: 10.1111/1462-2920.15965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
The recently proposed order Candidatus Thermoprofundales, currently containing only one family-level lineage Marine Benthic Group-D (MBG-D), is distributed in global subsurface ecosystems and ecologically important, but its diversity, evolution and metabolism remain largely unknown. Here we described two novel family-level specialized lineages in Ca. Thermoprofundales, JdFR-43 and HyVt, which are restricted to specific biotopes (primarily in marine hydrothermal vents and occasionally in oil reservoirs and hot springs) in contrast to the cosmopolitan lineage MBG-D. The comparative genomics revealed that the specialized lineages have streamlined genomes, higher GC contents, enriched genes associated with nucleotide biosynthesis, ribosome biogenesis and DNA repair and additional thermostable aminopeptidases, enabling them to adapt to high-temperature habitats such as marine hydrothermal vents, deep subsurface oil reservoirs and hot springs. On the contrary, the unique metabolic traits of the cosmopolitan MBG-D, motility, glycolysis, butanoate metabolism, secondary metabolites production and additional genes for specific peptides and carbohydrates degradation potentially enhance its response to environmental change. Substrate preference is found for most MAGs across all lineages with the ability to utilize both polysaccharides (chitin and starch) and proteinaceous substances, whereas JdFR-43 members from oil reservoirs can only utilize proteins. These results expand the diversity of Ca. Thermoprofundales significantly and further improve our understandings of the adaptations of Ca. Thermoprofundales to various environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Liu Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Zhong-Lin Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jing Chen
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Bo Fang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
4
|
Yang Y, Sun J, Chen C, Zhou Y, Van Dover CL, Wang C, Qiu JW, Qian PY. Metagenomic and metatranscriptomic analyses reveal minor-yet-crucial roles of gut microbiome in deep-sea hydrothermal vent snail. Anim Microbiome 2022; 4:3. [PMID: 34980289 PMCID: PMC8722025 DOI: 10.1186/s42523-021-00150-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine animals often exhibit complex symbiotic relationship with gut microbes to attain better use of the available resources. Many animals endemic to deep-sea chemosynthetic ecosystems host chemoautotrophic bacteria endocellularly, and they are thought to rely entirely on these symbionts for energy and nutrition. Numerous investigations have been conducted on the interdependence between these animal hosts and their chemoautotrophic symbionts. The provannid snail Alviniconcha marisindica from the Indian Ocean hydrothermal vent fields hosts a Campylobacterial endosymbiont in its gill. Unlike many other chemosymbiotic animals, the gut of A. marisindica is reduced but remains functional; yet the contribution of gut microbiomes and their interactions with the host remain poorly characterised. RESULTS Metagenomic and metatranscriptomic analyses showed that the gut microbiome of A. marisindica plays key nutritional and metabolic roles. The composition and relative abundance of gut microbiota of A. marisindica were different from those of snails that do not depend on endosymbiosis. The relative abundance of microbial taxa was similar amongst three individuals of A. marisindica with significant inter-taxa correlations. These correlations suggest the potential for interactions between taxa that may influence community assembly and stability. Functional profiles of the gut microbiome revealed thousands of additional genes that assist in the use of vent-supplied inorganic compounds (autotrophic energy source), digest host-ingested organics (carbon source), and recycle the metabolic waste of the host. In addition, members of five taxonomic classes have the potential to form slime capsules to protect themselves from the host immune system, thereby contributing to homeostasis. Gut microbial ecology and its interplay with the host thus contribute to the nutritional and metabolic demands of A. marisindica. CONCLUSIONS The findings advance the understanding of how deep-sea chemosymbiotic animals use available resources through contributions from gut microbiota. Gut microbiota may be critical in the survival of invertebrate hosts with autotrophic endosymbionts in extreme environments.
Collapse
Affiliation(s)
- Yi Yang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yadong Zhou
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Cindy Lee Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Chunsheng Wang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
5
|
Li YX, Rao YZ, Qi YL, Qu YN, Chen YT, Jiao JY, Shu WS, Jiang H, Hedlund BP, Hua ZS, Li WJ. Deciphering Symbiotic Interactions of " Candidatus Aenigmarchaeota" with Inferred Horizontal Gene Transfers and Co-occurrence Networks. mSystems 2021; 6:e0060621. [PMID: 34313464 PMCID: PMC8407114 DOI: 10.1128/msystems.00606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
"Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota") represents one of the earliest proposed evolutionary branches within the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, their ecological roles and potential host-symbiont interactions are still poorly understood. Here, eight metagenome-assembled genomes (MAGs) were reconstructed from hot spring ecosystems, and further in-depth comparative and evolutionary genomic analyses were conducted on these MAGs and other genomes downloaded from public databases. Although with limited metabolic capacities, we reported that "Ca. Aenigmarchaeota" in thermal environments harbor more genes related to carbohydrate metabolism than "Ca. Aenigmarchaeota" in nonthermal environments. Evolutionary analyses suggested that members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota contribute substantially to the niche expansion of "Ca. Aenigmarchaeota" via horizontal gene transfer (HGT), especially genes related to virus defense and stress responses. Based on co-occurrence network results and recent genetic exchanges among community members, we conjectured that "Ca. Aenigmarchaeota" may be symbionts associated with one MAG affiliated with the genus Pyrobaculum, though host specificity might be wide and variable across different "Ca. Aenigmarchaeota" organisms. This study provides significant insight into possible DPANN-host interactions and ecological roles of "Ca. Aenigmarchaeota." IMPORTANCE Recent advances in sequencing technology promoted the blowout discovery of super tiny microbes in the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, the unculturable properties of the majority of microbes impeded our investigation of their behavior and symbiotic lifestyle in the corresponding community. By integrating horizontal gene transfer (HGT) detection and co-occurrence network analysis on "Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota"), we made one of the first attempts to infer their putative interaction partners and further decipher the potential functional and genetic interactions between the symbionts. We revealed that HGTs contributed by members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota conferred "Ca. Aenigmarchaeota" with the ability to survive under different environmental stresses, such as virus infection, high temperature, and oxidative stress. This study demonstrates that the interaction partners might be inferable by applying informatics analyses on metagenomic sequencing data.
Collapse
Affiliation(s)
- Yu-Xian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ling Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ya-Ting Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China
| |
Collapse
|
6
|
Ming YZ, Liu L, Lv AP, Xian WD, Liu ZT, Li MM, Jiao JY, Fang BZ, Li WJ. Thermaurantiacus tibetensis gen. nov., sp. nov., a novel moderately thermophilic bacterium isolated from hot spring microbial mat in Tibet. Antonie van Leeuwenhoek 2021; 114:445-455. [PMID: 33620611 DOI: 10.1007/s10482-021-01530-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Two bacterial strains SYSU G02173T and SYSU G03142 were isolated from hot springs in Tibet, China. Based on the results of nearly full-length 16S rRNA gene sequences and phylogenetic analyses, strains SYSU G02173T and SYSU G03142 were assigned to the family Sphingosinicellaceae, and were closest to Sandaracinobacter sibiricus RB16-17 T (96.04% and 96.12% similarity, respectively). Cells of the both new strains were observed to be motile rod-shape, Gram-staining negative. Growth occurred at pH 6-8 (optimal: pH 7.0) and 37-55 °C (optimal: 45 °C) with 0-1.0% (w/v) NaCl in T4 broth. The cells were found to be positive for oxidase and catalase activities. The major respiratory ubiquinone was Q-8. The major fatty acids were identified as summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0, C14:0 2-OH. The major polar lipids were found to consist of sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified phospholipid, one unidentified glycolipid, three unidentified aminolipids and two unidentified polar lipids. The DNA G + C contents of strains SYSU G02173T and SYSU G03142 were 71.8%. The average nucleotide identity (ANI) value between strain SYSU G02173T and SYSU G03142 was 99.98%. The amino acid identity (AAI) values between them and their closely related species were below 66.14%. The isolates are characterized by aerobic growth, a yellow endocellular pigment and a higher optimum growth temperature. The results showed that strains SYSU G02173T and SYSU G03142 represent a novel species of a novel genus in the family Sphingomonadaceae, and thus the name Thermaurantiacus tibetensis (type strain SYSU G02173T = KCTC 72052 T = CGMCC 1.16680 T) is proposed.
Collapse
Affiliation(s)
- Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China. .,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
7
|
Abstract
Ultra-small microorganisms are ubiquitous in Earth’s environments. Ultramicrobacteria, which are defined as having a cell volume of <0.1 μm3, are often numerically dominant in aqueous environments. Cultivated representatives among these bacteria, such as members of the marine SAR11 clade (e.g., “Candidatus Pelagibacter ubique”) and freshwater Actinobacteria and Betaproteobacteria, possess highly streamlined, small genomes and unique ecophysiological traits. Many ultramicrobacteria may pass through a 0.2-μm-pore-sized filter, which is commonly used for filter sterilization in various fields and processes. Cultivation efforts focusing on filterable small microorganisms revealed that filtered fractions contained not only ultramicrocells (i.e., miniaturized cells because of external factors) and ultramicrobacteria, but also slender filamentous bacteria sometimes with pleomorphic cells, including a special reference to members of Oligoflexia, the eighth class of the phylum Proteobacteria. Furthermore, the advent of culture-independent “omics” approaches to filterable microorganisms yielded the existence of candidate phyla radiation (CPR) bacteria (also referred to as “Ca. Patescibacteria”) and ultra-small members of DPANN (an acronym of the names of the first phyla included in this superphyla) archaea. Notably, certain groups in CPR and DPANN are predicted to have minimal or few biosynthetic capacities, as reflected by their extremely small genome sizes, or possess no known function. Therefore, filtered fractions contain a greater variety and complexity of microorganisms than previously expected. This review summarizes the broad diversity of overlooked filterable agents remaining in “sterile” (<0.2-μm filtered) environmental samples.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Applied Molecular Microbiology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
8
|
Nakai R, Naganuma T, Tazato N, Morohoshi S, Koide T. Cell Plasticity and Genomic Structure of a Novel Filterable Rhizobiales Bacterium that Belongs to a Widely Distributed Lineage. Microorganisms 2020; 8:microorganisms8091373. [PMID: 32906802 PMCID: PMC7564735 DOI: 10.3390/microorganisms8091373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023] Open
Abstract
Rhizobiales bacterium strain IZ6 is a novel filterable bacterium that was isolated from a suspension filtrate (<0.22 µm) of soil collected in Shimane Prefecture, western Japan. Additional closely related isolates were recovered from filterable fractions of terrestrial environmental samples collected from other places in Japan; the Gobi Desert, north-central China; and Svalbard, Arctic Norway. These findings indicate a wide distribution of this lineage. This study reports the cell variation and genomic structure of IZ6. When cultured at lower temperatures (4 °C and 15 °C), this strain contained ultra-small cells and cell-like particles in the filtrate. PacBio sequencing revealed that this chromosome (3,114,641 bp) contained 3150 protein-coding, 51 tRNA, and three rRNA genes. IZ6 showed low 16S rRNA gene sequence identity (<97%) and low average nucleotide identity (<76%) with its closest known relative, Flaviflagellibacter deserti. Unlike the methylotrophic bacteria and nitrogen-fixing bacteria in related genera, there were no genes that encoded enzymes for one-carbon-compound utilization and nitrogen fixation in the IZ6 genome; the genes related to nitrate and nitrite reductase are retained and those related to the cell membrane function tend to be slightly enriched in the genome. This genomic information helps elucidate the eco-physiological function of a phenotypically heterogeneous and diverse Rhizobiales group.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Microbial Ecology and Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Correspondence:
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan;
| | - Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| | - Sho Morohoshi
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| | - Tomomi Koide
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| |
Collapse
|
9
|
Metagenomic Analysis of Virioplankton from the Pelagic Zone of Lake Baikal. Viruses 2019; 11:v11110991. [PMID: 31671744 PMCID: PMC6893740 DOI: 10.3390/v11110991] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022] Open
Abstract
This study describes two viral communities from the world’s oldest lake, Lake Baikal. For the analysis, we chose under-ice and late spring periods of the year as the most productive for Lake Baikal. These periods show the maximum seasonal biomass of phytoplankton and bacterioplankton, which are targets for viruses, including bacteriophages. At that time, the main group of viruses were tailed bacteriophages of the order Caudovirales that belong to the families Myoviridae, Siphoviridae and Podoviridae. Annotation of functional genes revealed that during the under-ice period, the “Phages, Prophages, Transposable Elements and Plasmids” (27.4%) category represented the bulk of the virome. In the late spring period, it comprised 9.6% of the virome. We assembled contigs by two methods: Separately assembled in each virome or cross-assembled. A comparative analysis of the Baikal viromes with other aquatic environments indicated a distribution pattern by soil, marine and freshwater groups. Viromes of lakes Baikal, Michigan, Erie and Ontario form the joint World’s Largest Lakes clade.
Collapse
|
10
|
Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME JOURNAL 2018; 12:1344-1359. [PMID: 29416124 PMCID: PMC5932017 DOI: 10.1038/s41396-018-0070-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/08/2022]
Abstract
Here we used flow cytometry (FCM) and filtration paired with amplicon sequencing to determine the abundance and composition of small low nucleic acid (LNA)-content bacteria in a variety of freshwater ecosystems. We found that FCM clusters associated with LNA-content bacteria were ubiquitous across several ecosystems, varying from 50 to 90% of aquatic bacteria. Using filter-size separation, we separated small LNA-content bacteria (passing 0.4 µm filter) from large bacteria (captured on 0.4 µm filter) and characterized communities with 16S amplicon sequencing. Small and large bacteria each represented different sub-communities within the ecosystems' community. Moreover, we were able to identify individual operational taxonomical units (OTUs) that appeared exclusively with small bacteria (434 OTUs) or exclusively with large bacteria (441 OTUs). Surprisingly, these exclusive OTUs clustered at the phylum level, with many OTUs appearing exclusively with small bacteria identified as candidate phyla (i.e. lacking cultured representatives) and symbionts. We propose that LNA-content bacteria observed with FCM encompass several previously characterized categories of bacteria (ultramicrobacteria, ultra-small bacteria, candidate phyla radiation) that share many traits including small size and metabolic dependencies on other microorganisms.
Collapse
|
11
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
12
|
Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. BMC Microbiol 2016; 16:136. [PMID: 27388368 PMCID: PMC4936230 DOI: 10.1186/s12866-016-0748-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/15/2016] [Indexed: 02/02/2023] Open
Abstract
Background Lake Magadi and little Magadi are hypersaline, alkaline lakes situated in the southern part of Kenyan Rift Valley. Solutes are supplied mainly by a series of alkaline hot springs with temperatures as high as 86 °C. Previous culture-dependent and culture-independent studies have revealed diverse groups of microorganisms thriving under these conditions. Previous culture independent studies were based on the analysis of 16S rDNA but were done on less saline lakes. For the first time, this study combined illumina sequencing and analysis of amplicons of both total community rDNA and 16S rRNA cDNA to determine the diversity and community structure of bacteria and archaea within 3 hot springs of L. Magadi and little Magadi. Methods Water, wet sediments and microbial mats were collected from springs in the main lake at a temperature of 45.1 °C and from Little Magadi “Nasikie eng’ida” (temperature of 81 °C and 83.6 °C). Total community DNA and RNA were extracted from samples using phenol-chloroform and Trizol RNA extraction protocols respectively. The 16S rRNA gene variable region (V4 – V7) of the extracted DNA and RNA were amplified and library construction performed following Illumina sequencing protocol. Sequences were analyzed done using QIIME while calculation of Bray-Curtis dissimilarities between datasets, hierarchical clustering, Non Metric Dimensional Scaling (NMDS) redundancy analysis (RDA) and diversity indices were carried out using the R programming language and the Vegan package. Results Three thousand four hundred twenty-six and one thousand nine hundred thirteen OTUs were recovered from 16S rDNA and 16S rRNA cDNA respectively. Uncultured diversity accounted for 89.35 % 16S rDNA and 87.61 % 16S rRNA cDNA reads. The most abundant phyla in both the 16S rDNA and 16S rRNA cDNA datasets included: Proteobacteria (8.33–50 %), Firmicutes 3.52–28.92 %, Bacteroidetes (3.45–26.44 %), Actinobacteria (0.98–28.57 %) and Euryarchaeota (3.55–34.48 %) in all samples. NMDS analyses of taxonomic composition clustered the taxa into three groups according to sample types (i.e. wet sediments, mats and water samples) with evident overlap of clusters between wet sediments and microbial mats from the three sample types in both DNA and cDNA datasets. The hot spring (45.1 °C) contained less diverse populations compared to those in Little Magadi (81–83 °C). Conclusion There were significant differences in microbial community structure at 95 % level of confidence for both total diversity (P value, 0.009) based on 16S rDNA analysis and active microbial diversity (P value, 0.01) based on 16S rRNA cDNA analysis, within the three hot springs. Differences in microbial composition and structure were observed as a function of sample type and temperature, with wet sediments harboring the highest diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0748-x) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Handling temperature bursts reaching 464°C: different microbial strategies in the sisters peak hydrothermal chimney. Appl Environ Microbiol 2015; 80:4585-98. [PMID: 24837379 DOI: 10.1128/aem.01460-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The active venting Sisters Peak (SP) chimney on the Mid-Atlantic Ridge holds the current temperature record for the hottest ever measured hydrothermal fluids (400°C, accompanied by sudden temperature bursts reaching 464°C). Given the unprecedented temperature regime, we investigated the biome of this chimney with a focus on special microbial adaptations for thermal tolerance. The SP metagenome reveals considerable differences in the taxonomic composition from those of other hydrothermal vent and subsurface samples; these could be better explained by temperature than by other available abiotic parameters. The most common species to which SP genes were assigned were thermophilic Aciduliprofundum sp. strain MAR08-339 (11.8%), Hippea maritima (3.8%), Caldisericum exile (1.5%), and Caminibacter mediatlanticus (1.4%) as well as to the mesophilic Niastella koreensis (2.8%). A statistical analysis of associations between taxonomic and functional gene assignments revealed specific overrepresented functional categories: for Aciduliprofundum, protein biosynthesis, nucleotide metabolism, and energy metabolism genes; for Hippea and Caminibacter, cell motility and/or DNA replication and repair system genes; and for Niastella, cell wall and membrane biogenesis genes. Cultured representatives of these organisms inhabit different thermal niches; i.e., Aciduliprofundum has an optimal growth temperature of 70°C, Hippea and Caminibacter have optimal growth temperatures around 55°C, and Niastella grows between 10 and 37°C. Therefore, we posit that the different enrichment profiles of functional categories reflect distinct microbial strategies to deal with the different impacts of the local sudden temperature bursts in disparate regions of the chimney.
Collapse
|
14
|
Hedlund BP, Murugapiran SK, Alba TW, Levy A, Dodsworth JA, Goertz GB, Ivanova N, Woyke T. Uncultivated thermophiles: current status and spotlight on 'Aigarchaeota'. Curr Opin Microbiol 2015; 25:136-45. [PMID: 26113243 DOI: 10.1016/j.mib.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 01/28/2023]
Abstract
Meta-analysis of cultivation-independent sequence data shows that geothermal systems host an abundance of novel organisms, representing a vast unexplored phylogenetic and functional diversity among yet-uncultivated thermophiles. A number of thermophiles have recently been interrogated using metagenomic and/or single-cell genomic approaches, including members of taxonomic groups that inhabit both thermal and non-thermal environments, such as 'Acetothermia' (OP1) and 'Atribacteria' (OP9/JS1), as well as the exclusively thermophilic lineages 'Korarchaeota', 'Calescamantes' (EM19), 'Fervidibacteria' (OctSpA1-106), and 'Aigarchaeota' (HWCG-I). The 'Aigarchaeota', a sister lineage to the Thaumarchaeota, likely includes both hyperthermophiles and moderate thermophiles. They inhabit terrestrial, marine, and subsurface thermal environments and comprise at least nine genus-level lineages, several of which are globally distributed.
Collapse
Affiliation(s)
- Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| | | | - Timothy W Alba
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Asaf Levy
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Gisele B Goertz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
15
|
Nnadozie CF, Lin J, Govinden R. Selective isolation of bacteria for metagenomic analysis: Impact of membrane characteristics on bacterial filterability. Biotechnol Prog 2015; 31:853-66. [DOI: 10.1002/btpr.2109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/20/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Chika F. Nnadozie
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences; University of KwaZulu-Natal (Westville Campus), Private Bag X54001; Durban 4000, South Africa
| | - Johnson Lin
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences; University of KwaZulu-Natal (Westville Campus), Private Bag X54001; Durban 4000, South Africa
| | - Roshini Govinden
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences; University of KwaZulu-Natal (Westville Campus), Private Bag X54001; Durban 4000, South Africa
| |
Collapse
|
16
|
Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica. Appl Environ Microbiol 2015; 80:3687-98. [PMID: 24727273 DOI: 10.1128/aem.00276-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anoxic and freezing brine that permeates Lake Vida's perennial ice below 16 m contains an abundance of very small (≤0.2-μm) particles mixed with a less abundant population of microbial cells ranging from >0.2 to 1.5 μm in length. Fluorescent DNA staining, electron microscopy (EM) observations, elemental analysis, and extraction of high-molecular-weight genomic DNA indicated that a significant portion of these ultrasmall particles are cells. A continuous electron-dense layer surrounding a less electron-dense region was observed by EM, indicating the presence of a biological membrane surrounding a cytoplasm. The ultrasmall cells are 0.192 ± 0.065 μm, with morphology characteristic of coccoid and diplococcic bacterial cells, often surrounded by iron-rich capsular structures. EM observations also detected the presence of smaller unidentified nanoparticles of 0.020 to 0.140 μm among the brine cells. A 16S rRNA gene clone library from the brine 0.1- to 0.2-μm-size fraction revealed a relatively low-diversity assemblage of Bacteria sequences distinct from the previously reported >0.2-μm-cell-size Lake Vida brine assemblage. The brine 0.1- to 0.2-μm-size fraction was dominated by the Proteobacteria-affiliated genera Herbaspirillum, Pseudoalteromonas, and Marinobacter. Cultivation efforts of the 0.1- to 0.2-μm-size fraction led to the isolation of Actinobacteria-affiliated genera Microbacterium and Kocuria. Based on phylogenetic relatedness and microscopic observations, we hypothesize that the ultrasmall cells in Lake Vida brine are ultramicrocells that are likely in a reduced size state as a result of environmental stress or life cycle-related conditions.
Collapse
|
17
|
Nakai R, Nishijima M, Tazato N, Handa Y, Karray F, Sayadi S, Isoda H, Naganuma T. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol 2014; 64:3353-3359. [PMID: 25013226 PMCID: PMC4179278 DOI: 10.1099/ijs.0.060798-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A phylogenetically novel proteobacterium, strain Shr3T, was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3T was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3T showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16 : 1ω5c and C16 : 0, and the primary hydroxy acid present was C12 : 0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3T was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83 % sequence similarity, was Desulfomicrobium orale DSM 12838T in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96–99 %). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3T, the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3T ( = JCM 16864T = NCIMB 14846T). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan.,Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| | - Miyuki Nishijima
- Technical Department, TechnoSuruga Laboratory Co., Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| | - Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co., Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| | - Yutaka Handa
- Technical Department, TechnoSuruga Laboratory Co., Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| | - Fatma Karray
- Centre of Biotechnology at Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Centre of Biotechnology at Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Hiroko Isoda
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
18
|
Smedile F, Messina E, La Cono V, Yakimov MM. Comparative analysis of deep-sea bacterioplankton OMICS revealed the occurrence of habitat-specific genomic attributes. Mar Genomics 2014; 17:1-8. [PMID: 24937756 DOI: 10.1016/j.margen.2014.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 01/20/2023]
Abstract
Bathyal aphotic ocean represents the largest biotope on our planet, which sustains highly diverse but low-density microbial communities, with yet untapped genomic attributes, potentially useful for discovery of new biomolecules, industrial enzymes and pathways. In the last two decades, culture-independent approaches of high-throughput sequencing have provided new insights into structure and function of marine bacterioplankton, leading to unprecedented opportunities to accurately characterize microbial communities and their interactions with the environments. In the present review we focused on the analysis of relatively few deep-sea OMICS studies, completed thus far, to find the specific genomic patterns determining the lifeway and adaptation mechanisms of prokaryotes thriving in the dark deep ocean below the depth of 1000m. Phylogenomic and omic studies provided clear evidence that the bathyal microbial communities are distinct from the epipelagic counterparts and, along with generally larger genomes, possess their own habitat-specific genomic attributes. The high abundance in the deep ocean OMICS of the systems for environmental sensing, signal transduction and metabolic versatility as compared to the epipelagic counterparts is thought to enable the deep-sea bacterioplankton to rapidly adapt to changing environmental conditions associated with resource scarcity and high diversity of energy and carbon substrates in the bathyal biotopes. Together with a versatile heterotrophy, mixotrophy and anaplerosis are thought to enable the deep-sea bacterioplankton to cope with these environmental conditions.
Collapse
Affiliation(s)
- Francesco Smedile
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
19
|
Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of north pacific ocean. Mar Drugs 2013; 11:3777-801. [PMID: 24152557 PMCID: PMC3826135 DOI: 10.3390/md11103777] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/30/2022] Open
Abstract
Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.
Collapse
|
20
|
Lewin A, Wentzel A, Valla S. Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol 2013; 24:516-25. [DOI: 10.1016/j.copbio.2012.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 02/04/2023]
|