1
|
Li Q, Zhu J, Liu S, Liu H, Zhang T, Ye T, Lou B, Liu F. QTL Mapping-Based Identification of Visceral White-Nodules Disease Resistance Genes in Larimichthys polyactis. Int J Mol Sci 2024; 25:10872. [PMID: 39456653 PMCID: PMC11507142 DOI: 10.3390/ijms252010872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Disease outbreaks in aquaculture have recently intensified. In particular, visceral white-nodules disease, caused by Pseudomonas plecoglossicida, has severely hindered the small yellow croaker (Larimichthys polyactis) aquaculture industry. However, research on this disease is limited. To address this gap, the present study employed a 100K SNP chip to genotype individuals from an F1 full-sib family, identify single nucleotide polymorphisms (SNPs), and construct a genetic linkage map for this species. A high-density genetic linkage map spanning a total length of 1395.72 cM with an average interval of 0.08 cM distributed across 24 linkage groups was obtained. Employing post-infection survival time as an indicator of disease resistance, 13 disease resistance-related quantitative trait loci (QTLs) were detected, and these regions included 169 genes. Functional enrichment analyses pinpointed 11 candidate disease resistance-related genes. RT-qPCR analysis revealed that the genes of chmp1a and arg1 are significantly differentially expressed in response to P. plecoglossicida infection in spleen and liver tissues, indicating their pivotal functions in disease resistance. In summary, in addition to successfully constructing a high-density genetic linkage map, this study reports the first QTL mapping for visceral white-nodules disease resistance. These results provide insight into the intricate molecular mechanisms underlying disease resistance in the small yellow croaker.
Collapse
Affiliation(s)
- Qian Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Jiajie Zhu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Sifang Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Haowen Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tianle Zhang
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Ting Ye
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Bao Lou
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Feng Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| |
Collapse
|
2
|
Li P, Luo X, Zuo S, Fu X, Lin Q, Niu Y, Liang H, Ma B, Li N. Genome-Wide Association Study of Resistance to Largemouth Bass Ranavirus (LMBV) in Micropterus salmoides. Int J Mol Sci 2024; 25:10036. [PMID: 39337523 PMCID: PMC11432711 DOI: 10.3390/ijms251810036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.
Collapse
Affiliation(s)
- Pinhong Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xia Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Shaozhi Zuo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Baofu Ma
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| |
Collapse
|
3
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
4
|
Fu Y, Li Y, Fu W, Su H, Zhang L, Huang C, Weng S, Yu F, He J, Dong C. Scale Drop Disease Virus Associated Yellowfin Seabream ( Acanthopagrus latus) Ascites Diseases, Zhuhai, Guangdong, Southern China: The First Description. Viruses 2021; 13:v13081617. [PMID: 34452481 PMCID: PMC8402775 DOI: 10.3390/v13081617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/28/2023] Open
Abstract
Scale drop disease virus (SDDV), an emerging piscine iridovirus prevalent in farmed Asian seabass Lates calcarifer in Southeast Asia, was firstly scientifically descripted in Singapore in 2015. Here, an SDDV isolate ZH-06/20 was isolated by inoculating filtered ascites from diseased juvenile yellowfin seabream into MFF-1 cell. Advanced cytopathic effects were observed 6 days post-inoculation. A transmission electron microscopy examination confirmed that numerous virion particles, about 140 nm in diameter, were observed in infected MFF-1 cell. ZH-06/20 was further purified and both whole genome and virion proteome were determined. The results showed that ZH-06/20 was composed of 131,122 bp with 135 putative viral proteins and 113 of them were further detected by virion proteome. Western blot analysis showed that no (or weak) cross-reaction was observed among several major viral proteins between ZH-06/20 and ISKNV-like megalocytivirus. An artificial challenge showed that ZH-06/20 could cause 100% death to juvenile yellowfin seabream. A typical sign was characterized by severe ascites, but not scale drop, which was considerably different from SDD syndrome in Asian seabass. Collectively, SDDV was confirmed, for the first time, as the causative agent of ascites diseases in farmed yellowfin seabream. Our study offers useful information to better understanding SDDV-associated diseases in farmed fish.
Collapse
Affiliation(s)
- Yuting Fu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Y.F.); (L.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Weixuan Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huibing Su
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Long Zhang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Y.F.); (L.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Congling Huang
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Shaoping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Jianguo He
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Y.F.); (L.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (J.H.); (C.D.)
| | - Chuanfu Dong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (J.H.); (C.D.)
| |
Collapse
|
5
|
Sawayama E, Handa Y, Nakano K, Noguchi D, Takagi M, Akiba Y, Sanada S, Yoshizaki G, Usui H, Kawamoto K, Suzuki M, Asahina K. Identification of the causative gene of a transparent phenotype of juvenile red sea bream Pagrus major. Heredity (Edinb) 2021; 127:167-175. [PMID: 34175895 PMCID: PMC8322342 DOI: 10.1038/s41437-021-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deformities in cultured fish species may be genetic, and identifying causative genes is essential to expand production and maintain farmed animal welfare. We previously reported a genetic deformity in juvenile red sea bream, designated a transparent phenotype. To identify its causative gene, we conducted genome-wide linkage analysis and identified two single nucleotide polymorphisms (SNP) located on LG23 directly linked to the transparent phenotype. The scaffold on which the two SNPs were located contained two candidate genes, duox and duoxa, which are related to thyroid hormone synthesis. Four missense mutations were found in duox and one in duoxa, with that in duoxa showing perfect association with the transparent phenotype. The mutation of duoxa was suggested to affect the transmembrane structure and thyroid-related traits, including an enlarged thyroid gland and immature erythrocytes, and lower thyroxine (T4) concentrations were observed in the transparent phenotype. The transparent phenotype was rescued by T4 immersion. Loss-of-function of duoxa by CRISPR-Cas9 induced the transparent phenotype in zebrafish. Evidence suggests that the transparent phenotype of juvenile red sea bream is caused by the missense mutation of duoxa and that this mutation disrupts thyroid hormone synthesis. The newly identified missense mutation will contribute to effective selective breeding of red sea bream to purge the causative gene of the undesirable phenotype and improve seed production of red sea bream as well as provide basic information of the mechanisms of thyroid hormones and its related diseases in fish and humans.
Collapse
Affiliation(s)
- Eitaro Sawayama
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | | | | | - Daiki Noguchi
- Nippon Total Science, Inc., Fukuyama, Hiroshima Japan
| | - Motohiro Takagi
- grid.255464.40000 0001 1011 3808South Ehime Fisheries Research Center, Ehime University, Ehime, Japan
| | - Yosuke Akiba
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shuwa Sanada
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hayato Usui
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kenta Kawamoto
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Miwa Suzuki
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kiyoshi Asahina
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| |
Collapse
|
6
|
Nyunoya H, Noda T, Kawamoto Y, Hayashi Y, Ishibashi Y, Ito M, Okino N. Lack of ∆5 Desaturase Activity Impairs EPA and DHA Synthesis in Fish Cells from Red Sea Bream and Japanese Flounder. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:472-481. [PMID: 34176006 DOI: 10.1007/s10126-021-10040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Long-chain (≥ C20) polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), are necessary for human health and are obtained from marine fish-derived oils. Marine fish are LC-PUFA-rich animals; however, many of them require LC-PUFA for growth. Therefore, it is suggested that they do not have sufficient ability to biosynthesize LC-PUFA. To evaluate in vivo LC-PUFA synthetic activity in fish cells, fish-derived cell lines from red sea bream (Pagrus major, PMS and PMF), Japanese flounder (Paralichthys olivaceus, HINAE), and zebrafish (Danio rerio, BRF41) were incubated with n-3 fatty acids labeled by radioisotopes or stable isotopes, and then, n-3 PUFA were analyzed by thin-layer chromatography or liquid chromatography-mass spectrometry. Labeled EPA and DHA were biosynthesized from labeled α-linolenic acid (18:3n-3) in BRF41, whereas they were not detected in PMS, PMF, or HINAE cells. We next cloned the fatty acid desaturase 2 (Fads2) cDNAs from PMF cells and zebrafish, expressed in budding yeasts, and then analyzed the substrate specificities of enzymes. As a result, we found that Fads2 from PMF cells was a ∆6/∆8 desaturase. Collectively, our study indicates that cell lines from red sea bream and Japanese flounder were not able to synthesize EPA or DHA by themselves, possibly due to the lack of ∆5 desaturase activity. Furthermore, this study provides a sensitive and reproducible non-radioactive method for evaluating LC-PUFA synthesis in fish cells using a stable isotope and liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Hayato Nyunoya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsuki Noda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - You Kawamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yasuhiro Hayashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø, Munang’andu HM. Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens 2021; 10:pathogens10060673. [PMID: 34070735 PMCID: PMC8227678 DOI: 10.3390/pathogens10060673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.
Collapse
Affiliation(s)
- Kizito K. Mugimba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Stephen Mutoloki
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Hetron M. Munang’andu
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| |
Collapse
|
8
|
Fraslin C, Quillet E, Rochat T, Dechamp N, Bernardet JF, Collet B, Lallias D, Boudinot P. Combining Multiple Approaches and Models to Dissect the Genetic Architecture of Resistance to Infections in Fish. Front Genet 2020; 11:677. [PMID: 32754193 PMCID: PMC7365936 DOI: 10.3389/fgene.2020.00677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases represent a major threat for the sustainable development of fish farming. Efficient vaccines are not available against all diseases, and growing antibiotics resistance limits the use of antimicrobial drugs in aquaculture. It is therefore important to understand the basis of fish natural resistance to infections to help genetic selection and to develop new approaches against infectious diseases. However, the identification of the main mechanisms determining the resistance or susceptibility of a host to a pathogenic microbe is challenging, integrating the complexity of the variation of host genetics, the variability of pathogens, and their capacity of fast evolution and adaptation. Multiple approaches have been used for this purpose: (i) genetic approaches, QTL (quantitative trait loci) mapping or GWAS (genome-wide association study) analysis, to dissect the genetic architecture of disease resistance, and (ii) transcriptomics and functional assays to link the genetic constitution of a fish to the molecular mechanisms involved in its interactions with pathogens. To date, many studies in a wide range of fish species have investigated the genetic determinism of resistance to many diseases using QTL mapping or GWAS analyses. A few of these studies pointed mainly toward adaptive mechanisms of resistance/susceptibility to infections; others pointed toward innate or intrinsic mechanisms. However, in the majority of studies, underlying mechanisms remain unknown. By comparing gene expression profiles between resistant and susceptible genetic backgrounds, transcriptomics studies have contributed to build a framework of gene pathways determining fish responsiveness to a number of pathogens. Adding functional assays to expression and genetic approaches has led to a better understanding of resistance mechanisms in some cases. The development of knock-out approaches will complement these analyses and help to validate putative candidate genes critical for resistance to infections. In this review, we highlight fish isogenic lines as a unique biological material to unravel the complexity of host response to different pathogens. In the future, combining multiple approaches will lead to a better understanding of the dynamics of interaction between the pathogen and the host immune response, and contribute to the identification of potential targets of selection for improved resistance.
Collapse
Affiliation(s)
- Clémence Fraslin
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Quillet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Dechamp
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Bertrand Collet
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lallias
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
9
|
Tsai JM, Huang SL, Yang CD. PCR Detection and Phylogenetic Analysis of Megalocytivirus Isolates in Farmed Giant Sea Perch Lates calcarifer in Southern Taiwan. Viruses 2020; 12:v12060681. [PMID: 32599850 PMCID: PMC7354458 DOI: 10.3390/v12060681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/12/2023] Open
Abstract
The Megalocytivirus genus includes three genotypes, red sea bream iridovirus (RSIV), infectious spleen and kidney necrosis virus (ISKNV), and turbot reddish body iridovirus (TRBIV), and has caused mass mortalities in various marine and freshwater fish species in East and Southeast Asia. Of the three genotypes, TRBIV-like megalocytivirus is not included in the World Organization for Animal Health (OIE)-reportable virus list because of its geographic restriction and narrow host range. In 2017, 39 cases of suspected iridovirus infection were isolated from fingerlings of giant sea perch (Lates calcarifer) cultured in southern Taiwan during megalocytivirus epizootics. Polymerase chain reaction (PCR) with different specific primer sets was undertaken to identify the causative agent. Our results revealed that 35 out of the 39 giant sea perch iridovirus (GSPIV) isolates were TRBIV-like megalocytiviruses. To further evaluate the genetic variation, the nucleotide sequences of major capsid protein (MCP) gene (1348 bp) from 12 of the 35 TRBIV-like megalocytivirus isolates were compared to those of other known. High nucleotide sequence identity showed that these 12 TRBIV-like GSPIV isolates are the same species. Phylogenetic analysis based on the MCP gene demonstrated that these 12 isolates belong to the clade II of TRBIV megalocytiviruses, and are distinct from RSIV and ISKNV. In conclusion, the GSPIV isolates belonging to TRBIV clade II megalocytiviruses have been introduced into Taiwan and caused a severe impact on the giant sea perch aquaculture industry.
Collapse
Affiliation(s)
- Jia-Ming Tsai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Song-Lang Huang
- Pingtung County Animal Disease Control Center, Pingtung 90001, Taiwan;
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-7703-202 (ext. 5334)
| |
Collapse
|
10
|
Zhang Q, Yu Y, Wang Q, Liu F, Luo Z, Zhang C, Zhang X, Huang H, Xiang J, Li F. Identification of Single Nucleotide Polymorphisms Related to the Resistance Against Acute Hepatopancreatic Necrosis Disease in the Pacific White Shrimp Litopenaeus vannamei by Target Sequencing Approach. Front Genet 2019; 10:700. [PMID: 31428134 PMCID: PMC6688095 DOI: 10.3389/fgene.2019.00700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a major bacterial disease in Pacific white shrimp Litopenaeus vannamei farming, which is caused by Vibrio parahaemolyticus. AHPND has led to a significant reduction of shrimp output since its outbreak. Selective breeding of disease-resistant broodstock is regarded as a key strategy in solving the disease problem. Understanding the relationship between genetic variance and AHPND resistance is the basis for marker-assisted selection in shrimp. The purpose of this study was to identify single nucleotide polymorphisms (SNPs) associated with the resistance against AHPND in L. vannamei. In this work, two independent populations were used for V. parahaemolyticus challenge and the resistant or susceptible shrimp were evaluated according to the survival time after Vibrio infection. The above two populations were genotyped separately by a SNP panel designed based on the target sequencing platform using a pooling strategy. The SNP panel contained 508 amplicons from DNA fragments distributed evenly along the genome and some immune-related genes of L. vannamei. By analyzing the allele frequency in the resistant and susceptible groups, 30 SNPs were found to be significantly associated with the resistance of the shrimp against V. parahaemolyticus infection (false discovery rate corrected at P < 0.05). Three SNPs were further validated by individual genotyping in all samples of population 1. Our study illustrated that target sequencing and pooling sequencing were effective in identifying the markers associated with economic traits, and the SNPs identified in this study could be used as molecular markers for breeding disease-resistant shrimp.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Huang
- Hainan Grand Suntop Ocean Breeding Co., Ltd., Wenchang, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
11
|
Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH. QTL Mapping for Red Blotches in Malaysia Red Tilapia (Oreochromis spp.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:384-395. [PMID: 30863905 DOI: 10.1007/s10126-019-09888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p < 0.05). Our study laid a foundation for exploring a genetic mechanism of body colors and carrying out genetic improvement for color quality in tilapia.
Collapse
Affiliation(s)
- Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
12
|
Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Jin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z. GWAS Analysis Indicated Importance of NF-κB Signaling Pathway in Host Resistance Against Motile Aeromonas Septicemia Disease in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:335-347. [PMID: 30895402 DOI: 10.1007/s10126-019-09883-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Motile Aeromonas septicemia (MAS) disease caused by a bacterial pathogen, Aeromonas hydrophila, is an emerging but severe disease of catfish. Genetic enhancement of disease resistance is considered to be effective to control the disease. To provide an insight into the genomic basis of MAS disease resistance, in this study, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL). A total of 1820 interspecific backcross catfish of 7 families were challenged with A. hydrophila, and 382 phenotypic extremes were selected for genotyping with the catfish 690 K SNP arrays. Three QTL on linkage group (LG) 2, 26 and 29 were identified to be significantly associated with MAS resistance. Within these regions, a total of 24 genes had known functions in immunity, 10 of which were involved in NF-κB signaling pathway, suggesting the importance of NF-κB signaling pathway in MAS resistance. In addition, three suggestively significant QTL were identified on LG 11, 17, and 20. The limited numbers of QTL involved in MAS resistance suggests that marker-assisted selection may be a viable approach for catfish breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jian Luo
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
13
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
14
|
Kong S, Ke Q, Chen L, Zhou Z, Pu F, Zhao J, Bai H, Peng W, Xu P. Constructing a High-Density Genetic Linkage Map for Large Yellow Croaker (Larimichthys crocea) and Mapping Resistance Trait Against Ciliate Parasite Cryptocaryon irritans. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:262-275. [PMID: 30783862 DOI: 10.1007/s10126-019-09878-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is the most economically important marine cage-farming fish in China in the past decade. However, the sustainable development of large yellow croaker aquaculture has been severely hampered by several diseases, of which, the white spot disease caused by ciliate protozoan parasite Cryptocaryon irritans ranks the most damaging disease in large yellow croaker cage farms. To better understand the genetic basis of parasite infection and disease resistance to C. irritans, it is vital to map the traits and localize the underlying candidate genes in L. crocea genome. Here, we constructed a high-density genetic linkage map using double-digest restriction-site associated DNA (ddRAD)-based high-throughput SNP genotyping data of a F1 mapping family, which had been challenged with C. irritans for resistant trait measure. A total of 5261 SNPs was grouped and oriented into 24 linkage groups (LGs), representing 24 chromosomes of L. crocea. The total genetic map length was 1885.67 cM with an average inter-locus distance of 0.36 cM. Quantitative trait loci (QTL) mapping identified seven significant QTLs in four LGs linked to C. irritans disease resistance. Candidate genes underlying disease resistance were identified from the reference genome, including ifnar1, ifngr2, ikbke, and CD112. Comparative genomic analysis between large yellow croaker and the four closely related species revealed high evolutionary conservation of chromosomes, though inter-chromosomal rearrangements do exist. Especially, the croaker genome structure was closer to the medaka genome than stickleback, indicating that the croaker genome might retain the teleost ancestral genome structure. The high-density genetic linkage map provides an important tool and resource for fine mapping, comparative genome analysis, and molecular selective breeding of large yellow croaker.
Collapse
Affiliation(s)
- Shengnan Kong
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Ji Zhao
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
15
|
Shin GH, Shin Y, Jung M, Hong JM, Lee S, Subramaniyam S, Noh ES, Shin EH, Park EH, Park JY, Kim YO, Choi KM, Nam BH, Park CI. First Draft Genome for Red Sea Bream of Family Sparidae. Front Genet 2018; 9:643. [PMID: 30619468 PMCID: PMC6299066 DOI: 10.3389/fgene.2018.00643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ga-Hee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | - Younhee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Myunghee Jung
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | - Ji-Man Hong
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | - Sangmin Lee
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | | | - Eun-Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Eun-Ha Shin
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Eun-Hee Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Kwnag-Min Choi
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| |
Collapse
|
16
|
Wang Y, Sun G, Zeng Q, Chen Z, Hu X, Li H, Wang S, Bao Z. Predicting Growth Traits with Genomic Selection Methods in Zhikong Scallop (Chlamys farreri). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:769-779. [PMID: 30116982 DOI: 10.1007/s10126-018-9847-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Selective breeding is a common and effective approach for genetic improvement of aquaculture stocks with parental selection as the key factor. Genomic selection (GS) has been proposed as a promising tool to facilitate selective breeding. Here, we evaluated the predictability of four GS methods in Zhikong scallop (Chlamys farreri) through real dataset analyses of four economical traits (e.g., shell length, shell height, shell width, and whole weight). Our analysis revealed that different GS models exhibited variable performance in prediction accuracy depending on genetic and statistical factors, but non-parametric method, including reproducing kernel Hilbert spaces regression (RKHS) and sparse neural networks (SNN), generally outperformed parametric linear method, such as genomic best linear unbiased prediction (GBLUP) and BayesB. Furthermore, we demonstrated that the predictability relied mainly on the heritability regardless of GS methods. The size of training population and marker density also had considerable effects on the predictive performance. In practice, increasing the training population size could better improve the genomic prediction than raising the marker density. This study is the first to apply non-linear model and neural networks for GS in scallop and should be valuable to help develop strategies for aquaculture breeding programs.
Collapse
Affiliation(s)
- Yangfan Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
| | - Guidong Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhihui Chen
- Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hengde Li
- Ministry of Agriculture Key Laboratory of Aquatic Genomics, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Center for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
17
|
Sawayama E, Noguchi D, Nakayama K, Takagi M. Identification, Characterization, and Mapping of a Novel SNP Associated with Body Color Transparency in Juvenile Red Sea Bream (Pagrus major). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:481-489. [PMID: 29572774 DOI: 10.1007/s10126-018-9810-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
We previously reported a body color deformity in juvenile red sea bream, which shows transparency in the juvenile stage because of delayed chromatophore development compared with normal individuals, and this finding suggested a genetic cause based on parentage assessments. To conduct marker-assisted selection to eliminate broodstock inheriting the causative gene, developing DNA markers associated with the phenotype was needed. We first conducted SNP mining based on AFLP analysis using bulked-DNA from normal and transparent individuals. One SNP was identified from a transparent-specific AFLP fragment, which significantly associated with transparent individuals. Two alleles (A/G) were observed in this locus, and the genotype G/G was dominantly observed in the transparent groups (97.1%) collected from several production lots produced from different broodstock populations. A few normal individuals inherited the G/G genotype (5.0%), but the A/A and A/G genotypes were dominantly observed in the normal groups. The homologs region of the SNP was searched using a medaka genome database, and intron 12 of the Nell2a gene (located on chromosome 6 of the medaka genome) was highly matched. We also mapped the red sea bream Nell2a gene on the previously developed linkage maps, and this gene was mapped on a male linkage group, LG4-M. The newly found SNP was useful in eliminating broodstock possessing the causative gene of the body color transparency observed in juvenile stage of red sea bream.
Collapse
Affiliation(s)
- Eitaro Sawayama
- R&D Division, Marua Suisan Co., Ltd., Kamijima, Ehime, 794-2410, Japan.
| | - Daiki Noguchi
- Nippon Total Science, Inc., Hiroshima, 720-0832, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Motohiro Takagi
- South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime, 798-4292, Japan
| |
Collapse
|