1
|
Ajithkumar M, D’Ambrosio J, Travers MA, Morvezen R, Degremont L. Genomic selection for resistance to one pathogenic strain of Vibrio splendidus in blue mussel Mytilus edulis. Front Genet 2025; 15:1487807. [PMID: 39831199 PMCID: PMC11739312 DOI: 10.3389/fgene.2024.1487807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The blue mussel is one of the major aquaculture species worldwide. In France, this species faces a significant threat from infectious disease outbreaks in both mussel farms and the natural environment over the past decade. Diseases caused by various pathogens, particularly Vibrio spp., have posed a significant challenge to the mussel industry. Genetic improvement of disease resistance can be an effective approach to overcoming this issue. Methods In this work, we tested genomic selection in the blue mussel (Mytilus edulis) to understand the genetic basis of resistance to one pathogenic strain of Vibrio splendidus (strain 14/053 2T1) and to predict the accuracy of selection using both pedigree and genomic information. Additionally, we performed a genome-wide association study (GWAS) to identify putative QTLs underlying disease resistance. We conducted an experimental infection involving 2,280 mussels sampled from 24 half-sib families containing each two full-sib families which were injected with V. splendidus. Dead and survivor mussels were all sampled, and among them, 348 dead and 348 surviving mussels were genotyped using a recently published multi-species medium-density 60K SNP array. Results From potentially 23.5K SNPs for M. edulis present on the array, we identified 3,406 high-quality SNPs, out of which 2,204 SNPs were successfully mapped onto the recently published reference genome. Heritability for resistance to V. splendidus was moderate ranging from 0.22 to 0.31 for a pedigree-based model and from 0.28 to 0.36 for a genomic-based model. Discussion GWAS revealed the polygenic architecture of the resistance trait in the blue mussel. The genomic selection models studied showed overall better performance than the pedigree-based model in terms of accuracy of breeding values prediction. This work provides insights into the genetic basis of resistance to V. splendidus and exemplifies the potential of genomic selection in family-based breeding programs in M. edulis.
Collapse
Affiliation(s)
- Munusamy Ajithkumar
- Ifremer, Ressources Biologiques et Environnement (RBE)-ASIM, La Tremblade, France
| | | | - Marie-Agnès Travers
- IHPE, CNRS, Ifremer, Université de Montpellier, University Perpignan Via Domitia, Montpellier, France
| | - Romain Morvezen
- SYSAAF, Station LPGP/INRAE, Campus de Beaulieu, Rennes, France
| | - Lionel Degremont
- Ifremer, Ressources Biologiques et Environnement (RBE)-ASIM, La Tremblade, France
| |
Collapse
|
2
|
Qi H, Cong R, Wang Y, Li L, Zhang G. Construction and analysis of the chromosome-level haplotype-resolved genomes of two Crassostrea oyster congeners: Crassostrea angulata and Crassostrea gigas. Gigascience 2022; 12:giad077. [PMID: 37787064 PMCID: PMC10546077 DOI: 10.1093/gigascience/giad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The Portuguese oyster Crassostrea angulata and the Pacific oyster C. gigas are two major Crassostrea species that are naturally distributed along the Northwest Pacific coast and possess great ecological and economic value. Here, we report the construction and comparative analysis of the chromosome-level haplotype-resolved genomes of the two oyster congeners. FINDINGS Based on a trio-binning strategy, the PacBio high-fidelity and Illumina Hi-C reads of the offspring of the hybrid cross C. angulata (♂) × C. gigas (♀) were partitioned and independently assembled to construct two chromosome-level fully phased genomes. The assembly size (contig N50 size, BUSCO completeness) of the two genomes were 582.4 M (12.8 M, 99.1%) and 606.4 M (5.46 M, 98.9%) for C. angulata and C. gigas, respectively, ranking at the top of mollusk genomes with high contiguity and integrity. The general features of the two genomes were highly similar, and 15,475 highly conserved ortholog gene pairs shared identical gene structures and similar genomic locations. Highly similar sequences can be primarily identified in the coding regions, whereas most noncoding regions and introns of genes in the same ortholog group contain substantial small genomic and/or structural variations. Based on population resequencing analysis, a total of 2,756 species-specific single-nucleotide polymorphisms and 1,088 genes possibly under selection were identified. CONCLUSIONS This is the first report of trio-binned fully phased chromosome-level genomes in marine invertebrates. The study provides fundamental resources for the research on mollusk genetics, comparative genomics, and molecular evolution.
Collapse
Affiliation(s)
- Haigang Qi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanjun Wang
- Marine Science Data Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
| |
Collapse
|
3
|
Bean TP, Tanguy A, Peñaloza C, Gundappa MK, Boutet I, Houston RD, Macqueen DJ, Boudry P. Two parallel chromosome-level reference genomes to support restoration and aquaculture of European flat oyster Ostrea edulis. Evol Appl 2022; 15:1709-1712. [PMID: 36426118 PMCID: PMC9679237 DOI: 10.1111/eva.13465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 12/15/2022] Open
Abstract
This volume of Evolutionary Applications sees the publication of two genomes for the European native flat oyster Ostrea edulis, a species of significant evolutionary, ecological and commercial value. Each is a highly contiguous chromosome-level assembly from individuals of different genetic backgrounds, which have been benchmarked against one another. This situation has resulted from the serendipitous discovery that two independent research groups were both deep into the process of building, annotating and investigating separately produced assemblies. Due to constraints with funder requirements and the need to recognize early career researchers for their work, alongside the technical challenge of integrating assemblies from two very different genomes, there was limited capacity to merge the sequences into one publication at the stage of discovery. This issue is likely to become very common over the next few years until the technologies for working with multiple genomes at once, for example, graph genomes, become commonplace in nonmodel species. Consequently, both of our teams have decided to collaborate rather than compete, recognizing the benefit to copublishing two separate genome resources for the research community, each with distinct scientific investigations, and working collaboratively to benchmark the assemblies.
Collapse
Affiliation(s)
- Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush CampusEdinburghUK
| | - Arnaud Tanguy
- CNRS, UMR 7144, Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush CampusEdinburghUK
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush CampusEdinburghUK
| | - Isabelle Boutet
- CNRS, UMR 7144, Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush CampusEdinburghUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush CampusEdinburghUK
| | - Pierre Boudry
- Département Ressources Biologiques et EnvironnementIfremerPlouzanéFrance
| |
Collapse
|
4
|
Tan C, Shi C, Li Y, Teng W, Li Y, Fu H, Ren L, Yu H, Li Q, Liu S. Comparative Methylome Analysis Reveals Epigenetic Signatures Associated with Growth and Shell Color in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:911-926. [PMID: 36087152 DOI: 10.1007/s10126-022-10154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fast growth is one of the most important breeding goals for all economic species such as the Pacific oyster (Crassostrea gigas), an aquaculture mollusk with top global production. Although the genetic basis and molecular mechanisms of growth-related traits have been widely investigated in the oyster, the role of DNA methylation involved in growth regulation remains largely unexplored. In this study, we performed a comparative DNA methylome analysis of two selectively bred C. gigas strains with contrasted phenotypes in growth and shell color based on whole-genome bisulfite sequencing (WGBS). Genome-wide profiling of DNA methylation at the single-base resolution revealed that DNA methylations were widely spread across the genome with obvious hotspots, coinciding with the distribution of genes and repetitive elements. Higher methylation levels were observed within genic regions compared with intergenic and promoter regions. Comparative analysis of DNA methylation allowed the identification of 339,604 differentially methylated CpG sites (DMCs) clustering in 27,600 differentially methylated regions (DMRs). Functional annotation analysis identified 11,033 genes from DMRs which were enriched in biological processes including cytoskeleton system, cell cycle, signal transduction, and protein biosynthesis. Integrative analysis of methylome and transcriptome profiles revealed a positive correlation between gene expression and DNA methylation within gene-body regions. Protein-protein interaction (PPI) analysis of differentially expressed and methylated genes allowed for the identification of integrin beta-6 (homolog of human ITGB3) as a hub modulator of the PI3K/Akt signaling pathway that was involved in various growth-related processes. This work provided insights into epigenetic regulation of growth in oysters and will be valuable resources for studying DNA methylation in invertebrates.
Collapse
Affiliation(s)
- Chao Tan
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yin Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Wen Teng
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yongjing Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Liting Ren
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Yáñez JM, Xu P, Carvalheiro R, Hayes B. Genomics applied to livestock and aquaculture breeding. Evol Appl 2022; 15:517-522. [PMID: 35505887 PMCID: PMC9046759 DOI: 10.1111/eva.13378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias Universidad de Chile
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Roberto Carvalheiro
- Departamento de Zootecnia Faculdade de Ciências Agrárias e Veterinárias UNESP – Univ Estadual Paulista Jaboticabal, São Paulo Brazil
- CSIRO Agriculture & Food Hobart Tasmania Australia
| | - Ben Hayes
- Centre for Animal Science Queensland Alliance for Agriculture and Food Innovation The University of Queensland Australia
| |
Collapse
|