1
|
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines (Basel) 2023; 11:vaccines11020251. [PMID: 36851129 PMCID: PMC9961428 DOI: 10.3390/vaccines11020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: (J.E.K.-R.); (M.A.)
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - John Readman
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Correspondence: (J.E.K.-R.); (M.A.)
| |
Collapse
|
2
|
Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon. BIOLOGY 2020; 9:biology9040082. [PMID: 32326041 PMCID: PMC7235720 DOI: 10.3390/biology9040082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
The overexpression of GATA-3, T-bet and TGF-ß may theoretically induce IL-4/A, IFN-γ and IL-17A expression, respectively. Whether this also applies to fish is not yet known. The plasmid vectors encoding reporter gene (RFP)-tagged T-bet, GATA-3 and TGF-ß were used as overexpression tools, transfected into cells or injected intramuscularly to monitor the expression of IFN-γ, IL-4/13A and IL-17A. In addition, the fish were either experimentally challenged with Vibrio anguillarum (VA group) or Piscirickettsia salmonis (PS group). The reporter gene (RFP) inserted upstream of the GATA-3, T-bet and TGF-ß genes, was observed in muscle cell nuclei and in inflammatory cells after intramuscular (i.m.) injection. PS group: following the injection of GATA-3 and T-bet-encoding plasmids, the expression of GATA-3 and T-bet was high at the injection site. The spleen expression of IFN-γ, following the injection of a T-bet-encoding plasmid, was significantly higher on day 2. VA group: The T-bet and GATA-3-overexpressing fish expressed high T-bet and GATA-3 mRNA levels in the muscles and on day 4 post-challenge. The expression of TGF-ß in the muscles of fish injected with TGF-ß-encoding plasmids was significantly higher on days 7 (8 days pre-challenge) and 19 (4 days after challenge). The protective effects of the overexpression of T-bet, GATA-3 and TGF-ß on both bacterial infections were negligible.
Collapse
|
3
|
Pradeepkiran JA. Aquaculture role in global food security with nutritional value: a review. Transl Anim Sci 2019; 3:903-910. [PMID: 32704855 PMCID: PMC7200472 DOI: 10.1093/tas/txz012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/20/2019] [Indexed: 11/12/2022] Open
Abstract
Food security is the main path to develop the socioeconomic status in any country in the world to defeat malnutrition. The present scenario in an under developed countries are still facing this problem. Hence the human nutrition deficiencies focus on the importance of animal protein in their regular diet. To overcome this problem, fisheries contribute a significant amount of animal protein to the diets of people worldwide. The aquatic animals are the highly nutritious and cheapest protein sources, which serves as a valuable supplement in diets by providing essential vitamins, proteins, micronutrients, and minerals, for the poor people. Aquaculture is playing a vital role in the developing countries in national economic development, and global food supply. Food and agricultural organization (FAO) declared that this aquaculture has the continuous potentiality to create a developmental goals for the country economy and better human welfare.
Collapse
Affiliation(s)
- Jangampalli Adi Pradeepkiran
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, India.,Texas Tech University of Health Science Centre, Lubbock, TX
| |
Collapse
|
4
|
Liu W, Han X, Zhan G, Zhao Z, Feng Y, Wu C. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.). Int J Mol Sci 2015; 16:20657-73. [PMID: 26404246 PMCID: PMC4613224 DOI: 10.3390/ijms160920657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022] Open
Abstract
The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.
Collapse
Affiliation(s)
- Wei Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Xiangdong Han
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Ge Zhan
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Zhenfang Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Cunxiang Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
5
|
Chowdhury LM, Gireesh-Babu P, Pavan-Kumar A, Suresh Babu P, Chaudhari A. First report on vertical transmission of a plasmid DNA in freshwater prawn, Macrobrachium rosenbergii. J Invertebr Pathol 2014; 121:24-7. [DOI: 10.1016/j.jip.2014.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/15/2022]
|
6
|
Evensen Ø, Leong JAC. DNA vaccines against viral diseases of farmed fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1751-8. [PMID: 24184267 DOI: 10.1016/j.fsi.2013.10.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 05/12/2023]
Abstract
Immunization by an antigen-encoding DNA was approved for commercial sale in Canada against a Novirhabdovirus infection in fish. DNA vaccines have been particularly successful against the Novirhabdoviruses while there are reports on the efficacy against viral pathogens like infectious pancreatic necrosis virus, infectious salmon anemia virus, and lymphocystis disease virus and these are inferior to what has been attained for the novirhabdoviruses. Most recently, DNA vaccination of Penaeus monodon against white spot syndrome virus was reported. Research efforts are now focused on the development of more effective vectors for DNA vaccines, improvement of vaccine efficacy against various viral diseases of fish for which there is currently no vaccines available and provision of co-expression of viral antigen and immunomodulatory compounds. Scientists are also in the process of developing new delivery methods. While a DNA vaccine has been approved for commercial use in farmed salmon in Canada, it is foreseen that it is still a long way to go before a DNA vaccine is approved for use in farmed fish in Europe.
Collapse
Affiliation(s)
- Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo, Norway.
| | | |
Collapse
|
7
|
Lee LH, Hui CF, Chuang CM, Chen JY. Electrotransfer of the epinecidin-1 gene into skeletal muscle enhances the antibacterial and immunomodulatory functions of a marine fish, grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1359-1368. [PMID: 23973381 DOI: 10.1016/j.fsi.2013.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Electrotransfer of plasmid DNA into skeletal muscle is a common non-viral delivery system for the study of gene function and for gene therapy. However, the effects of epinecidin-1 (epi) on bacterial growth and immune system modulation following its electrotransfer into the muscle of grouper (Epinephelus coioides), a marine fish species, have not been addressed. In this study, pCMV-gfp-epi plasmid was electroporated into grouper muscle, and its effect on subsequent infection with Vibrio vulnificus was examined. Over-expression of epi efficiently reduced bacterial numbers at 24 and 48 h after infection, and augmented the expression of immune-related genes in muscle and liver, inducing a moderate innate immune response associated with pro-inflammatory infiltration. Furthermore, electroporation of pCMV-gfp-epi plasmid without V. vulnificus infection induced moderate expression of certain immune-related genes, particularly innate immune genes. These data suggest that electroporation-mediated gene transfer of epi into the muscle of grouper may hold potential as an antimicrobial therapy for pathogen infection in marine fish.
Collapse
Affiliation(s)
- Lin-Han Lee
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | | | | | | |
Collapse
|
8
|
Cows I, Bolland J, Nunn A, Kerins G, Stein J, Blackburn J, Hart A, Henry C, Britton JR, Coop G, Peeler E. Defining environmental risk assessment criteria for genetically modified fishes to be placed on the EU market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- I.G. Cows
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J.D. Bolland
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - A.D. Nunn
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - G. Kerins
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. Stein
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. Blackburn
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - A. Hart
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - C. Henry
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. R. Britton
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - G. Coop
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - E. Peeler
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| |
Collapse
|
9
|
Leong IUS, Skinner JR, Shelling AN, Love DR. Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression. Acta Physiol (Oxf) 2010; 199:257-76. [PMID: 20331541 DOI: 10.1111/j.1748-1716.2010.02111.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Congenital long QT syndrome (LQT) is a group of cardiac disorders associated with the dysfunction of cardiac ion channels. It is characterized by prolongation of the QT-interval, episodes of syncope and even sudden death. Individuals may remain asymptomatic for most of their lives while others present with severe symptoms. This heterogeneity in phenotype makes diagnosis difficult with a greater emphasis on more targeted therapy. As a means of understanding the molecular mechanisms underlying LQT syndrome, evaluating the effect of modifier genes on disease severity as well as to test new therapies, the development of model systems remains an important research tool. Mice have predominantly been the animal model of choice for cardiac arrhythmia research, but there have been varying degrees of success in recapitulating the human symptoms; the mouse cardiac action potential (AP) and surface electrocardiograms exhibit major differences from those of the human heart. Against this background, the zebrafish is an emerging vertebrate disease modelling species that offers advantages in analysing LQT syndrome, not least because its cardiac AP much more closely resembles that of the human. This article highlights the use and potential of this species in LQT syndrome modelling, and as a platform for the in vivo assessment of putative disease-causing mutations in LQT genes, and of therapeutic interventions.
Collapse
|
10
|
Villemejane J, Mir LM. Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 2009; 157:207-19. [PMID: 19154421 DOI: 10.1111/j.1476-5381.2009.00032.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Physical methods of gene (and/or drug) transfer need to combine two effects to deliver the therapeutic material into cells. The physical methods must induce reversible alterations in the plasma membrane to allow the direct passage of the molecules of interest into the cell cytosol. They must also bring the nucleic acids in contact with the permeabilized plasma membrane or facilitate access to the inside of the cell. These two effects can be achieved in one or more steps, depending upon the methods employed. In this review, we describe and compare several physical methods: biolistics, jet injection, hydrodynamic injection, ultrasound, magnetic field and electric pulse mediated gene transfer. We describe the physical mechanisms underlying these approaches and discuss the advantages and limitations of each approach as well as its potential application in research or in preclinical and clinical trials. We also provide conclusions, comparisons, and projections for future developments. While some of these methods are already in use in man, some are still under development or are used only within clinical trials for gene transfer. The possibilities offered by these methods are, however, not restricted to the transfer of genes and the complementary uses of these technologies are also discussed. As these methods of gene transfer may bypass some of the side effects linked to viral or biochemical approaches, they may find their place in specific clinical applications in the future.
Collapse
Affiliation(s)
- Julien Villemejane
- CNRS, UMR 8121, Institut Gustave Roussy PR2, 39 rue Camille Desmoulins, Villejuif Cedex, France
| | | |
Collapse
|
11
|
Tonheim TC, Bøgwald J, Dalmo RA. What happens to the DNA vaccine in fish? A review of current knowledge. FISH & SHELLFISH IMMUNOLOGY 2008; 25:1-18. [PMID: 18448358 DOI: 10.1016/j.fsi.2008.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 05/12/2023]
Abstract
The primary function of DNA vaccines, a bacterial plasmid DNA containing a construct for a given protective antigen, is to establish specific and long-lasting protective immunity against diseases where conventional vaccines fail to induce protection. It is acknowledged that less effort has been made to study the fate, in terms of cellular uptake, persistence and degradation, of DNA vaccines after in vivo administration. However, during the last year some papers have given new insights into the fate of DNA vaccines in fish. By comparing the newly acquired information in fish with similar knowledge from studies in mammals, similarities with regard to transport, blood clearance, cellular uptake and degradation of DNA vaccines have been found. But the amount of DNA vaccine redistributed from the administration site after intramuscular administration seems to differ between fish and mammals. This review presents up-to-date and in-depth knowledge concerning the fate of DNA vaccines with emphasis on tissue distribution, cellular uptake and uptake mechanism(s) before finally describing the intracellular hurdles that DNA vaccines need to overcome in order to produce their gene product.
Collapse
Affiliation(s)
- Tom Christian Tonheim
- Department of Marine Biotechnology, The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | |
Collapse
|
12
|
Abstract
We generated transient transgenic zebrafish by applying electrical pulses subsequent to injection of DNA into muscle tissue of 3-6-month old adult zebrafish. Electroporation parameters, such as number of pulses, voltage, and amount of plasmid DNA, were optimized and found that 6 pulses of 40 V/cm at 15 mug/fish increased the luciferase expression by 10-fold compared with those in controls. By measuring the expression of luciferase, in vivo by electroporation in adult zebrafish and in vitro using fish cell line (Xiphophorus xiphidium A2 cells), the strength of three promoters (CMV, human EF-1alpha, and Xenopus EF-1alpha) was compared. Subsequent to electroporation after injecting DNA in the mid region of zebrafish, expression of green fluorescent protein was found far away from the site of injection in the head and the tail sections. Thus, electroporation in adult zebrafish provides a rapid way of testing the behavior of gene sequences in the whole organism.
Collapse
|
13
|
Tonheim TC, Leirvik J, Løvoll M, Myhr AI, Bøgwald J, Dalmo RA. Detection of supercoiled plasmid DNA and luciferase expression in Atlantic salmon (Salmo salar L.) 535 days after injection. FISH & SHELLFISH IMMUNOLOGY 2007; 23:867-76. [PMID: 17502156 DOI: 10.1016/j.fsi.2007.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 05/12/2023]
Abstract
In this study our aim was to investigate the persistence and distribution of plasmid DNA in Atlantic salmon. Atlantic salmon (mean weight 70 g) were injected with 100 microg of plasmid DNA in 100 microl of phosphate buffered saline. The fish were reared in running fresh water at temperature 0-12 degrees C and injections were performed at 8 degrees C. After intramuscular injection, samples were obtained from blood and different tissues and organs up to day 535 after injection. We found by use of Southern blotting open circular and supercoiled plasmid DNA at the injection site and plasmid DNA fragments, assessed by real-time PCR, were detected in some of the examined tissues up to day 535. A co-persistence of luciferase transcript and activity were identified at the injection site up to day 535, however analysis of DAM methylation pattern suggested that the plasmid DNA did not replicate in vivo. Our study indicated that the plasmid DNA can persist for a prolonged time after intramuscular injection.
Collapse
Affiliation(s)
- Tom Christian Tonheim
- Department of Marine Biotechnology, The Norwegian College of Fishery Science, University of Tromsø, N-9037, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
14
|
Miura C, Kuwahara R, Miura T. Transfer of spermatogenesis-related cDNAs into eel testis germ-somatic cell coculture pellets by electroporation: Methods for analysis of gene function. Mol Reprod Dev 2007; 74:420-7. [PMID: 17075822 DOI: 10.1002/mrd.20653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genes encoding spermatogenesis-related substance (eSRSs) show unique expression patterns during spermatogenesis. To analyze their function, we developed a new assay system using gene transfer techniques combined with coculture of the eel germ-somatic cells. First, we investigated the efficacy of in vitro electroporation transfer of gene into germ-somatic cell pellets using green fluorescent protein (GFP) gene. Second, in order to define the function of the eSRSs, we electrophoretically transferred eel spermatogonial stem cell renewal factor (eSRS34) and eel spermatogenesis-preventing substance (eSRS21) genes into germ-somatic cell pellets. Presence of the transferred cDNA was examined by reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, proliferating cells were detected histologically, after labeling with BrdU. Transfer of the eSRS34 gene induced spermatogonial stem cell renewal in the pellets. Moreover, 11-ketotestosterone (11-KT) treatment stimulated the proliferation of spermatogonia, which resulted in the appearance of late type B spermatogonia in the pellets. The proliferation of spermatogonia by 11-KT stimulation was suppressed by transfer of the eSRS21 gene. These results indicate that the transferred eSRS34 and 21genes were functional in the pellets. Thus, an efficient in vitro gene transfer technique for coculture system of germ and somatic cell of Japanese eel was established.
Collapse
Affiliation(s)
- C Miura
- Laboratory of Fish Reproductive Physiology, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | | | | |
Collapse
|
15
|
Ando H, Okamoto H. Efficient transfection strategy for the spatiotemporal control of gene expression in zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:295-303. [PMID: 16614871 DOI: 10.1007/s10126-005-5138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/09/2005] [Indexed: 05/08/2023]
Abstract
Functional analyses of gene function by knockdown and expression approaches strongly enhance the genetic study of development. In vivo application of the introduction of inhibitors of gene expression, mRNA, and expression constructs in the target region make it possible to perform region- and stage-specific regulation of gene function in a simple manner. As a basic tool for the conditional regulation of gene expression in target tissue, we present methods for the efficient introduction of antisense morpholino oligonucleotide (MO), mRNA, and expression plasmid constructs into early and later stage zebrafish embryo and larva. Lipofection of a neuron-specific expression construct plasmid encoding green fluorescent protein (GFP) into optic vesicle resulted in clear GFP expression in the retinotectal pathway in hatched larva. Co-lipofection of MO and GFP mRNA to the presumptive head region resulted in brain-specific knockdown of the gene in mid-stage embryos.
Collapse
Affiliation(s)
- Hideki Ando
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, 351-0198, Japan.
| | | |
Collapse
|
16
|
Rambabu KM, Rao SHN, Rao NM. Efficient expression of transgenes in adult zebrafish by electroporation. BMC Biotechnol 2005; 5:29. [PMID: 16221312 PMCID: PMC1266056 DOI: 10.1186/1472-6750-5-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Accepted: 10/13/2005] [Indexed: 01/24/2023] Open
Abstract
Background Expression of transgenes in muscle by injection of naked DNA is widely practiced. Application of electrical pulses at the site of injection was demonstrated to improve transgene expression in muscle tissue. Zebrafish is a precious model to investigate developmental biology in vertebrates. In this study we investigated the effect of electroporation on expression of transgenes in 3–6 month old adult zebrafish. Results Electroporation parameters such as number of pulses, voltage and amount of plasmid DNA were optimized and it was found that 6 pulses of 40 V·cm-1 at 15 μg of plasmid DNA per fish increased the luciferase expression 10-fold compared to controls. Similar enhancement in transgene expression was also observed in Indian carp (Labeo rohita). To establish the utility of adult zebrafish as a system for transient transfections, the strength of the promoters was compared in A2 cells and adult zebrafish after electroporation. The relative strengths of the promoters were found to be similar in cell lines and in adult zebrafish. GFP fluorescence in tissues after electroporation was also studied by fluorescence microscopy. Conclusion Electroporation after DNA injection enhances gene expression 10-fold in adult zebrafish. Electroporation parameters for optimum transfection of adult zebrafish with tweezer type electrode were presented. Enhanced reporter gene expression upon electroporation allowed comparison of strengths of the promoters in vivo in zebrafish.
Collapse
Affiliation(s)
- K Murali Rambabu
- Center for Cellular and Molecular Biology, Hyderabad-500 007, India
| | - S Hari Narayana Rao
- Reliance Life Sciences Pvt. Ltd. Fosbery Road, Sewree, Mumbai 400 033, India
| | | |
Collapse
|
17
|
Hardy MP, Kendall MAF. Mucosal deformation from an impinging transonic gas jet and the ballistic impact of microparticles. Phys Med Biol 2005; 50:4567-80. [PMID: 16177490 DOI: 10.1088/0031-9155/50/19/010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
By means of a transonic gas jet, gene guns ballistically deliver microparticle formulations of drugs and vaccines to the outer layers of the skin or mucosal tissue to induce unique physiological responses for the treatment of a range of conditions. Reported high-speed imaging experiments show that the mucosa deforms significantly while subjected to an impinging gas jet from a biolistic device. In this paper, the effect of this tissue surface deformation on microparticle impact conditions is simulated with computational fluid dynamics (CFD) calculations. The microparticles are idealized as spheres of diameters 26.1, 39 and 99 microm and a density of 1050 kg m-3. Deforming surface calculations of particle impact conditions are compared directly with an immobile surface case. The relative velocity and obliquity of the deforming surface decrease the normal component of particle impact velocity by up to 30% at the outer edge of the impinging gas jet. This is qualitatively consistent with reported particle penetration profiles in the tissue. It is recommended that these effects be considered in biolistic studies requiring quantified particle impact conditions.
Collapse
Affiliation(s)
- M P Hardy
- The PowderJect Centre for Gene and Drug Delivery Research, Department of Engineering Science, University of Oxford, 43 Banbury Rd, Oxford, OX2 6PE, UK
| | | |
Collapse
|
18
|
Garver KA, Conway CM, Elliott DG, Kurath G. Analysis of DNA-vaccinated fish reveals viral antigen in muscle, kidney and thymus, and transient histopathologic changes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:540-53. [PMID: 16075347 DOI: 10.1007/s10126-004-5129-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 02/08/2005] [Indexed: 05/03/2023]
Abstract
A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was used in a systematic study to analyze vaccine tissue distribution, persistence, expression patterns, and histopathologic effects. Vaccine plasmid pIHNw-G, containing the gene for the viral glycoprotein, was detected immediately after intramuscular injection in all tissues analyzed, including blood, but at later time points was found primarily in muscle tissue, where it persisted to 90 days. Glycoprotein expression was detected in muscle, kidney, and thymus tissues, with levels peaking at 14 days and becoming undetectable by 28 days. Histologic examination revealed no vaccine-specific pathologic changes at the standard effective dose of 0.1 mug DNA per fish, but at a high dose of 50 mug an increased inflammatory response was evident. Transient damage associated with needle injection was localized in muscle tissue, but by 90 days after vaccination no damage was detected in any tissue, indicating the vaccine to be safe and well tolerated.
Collapse
Affiliation(s)
- Kyle A Garver
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
19
|
Lorenzen E, Lorenzen N, Einer-Jensen K, Brudeseth B, Evensen O. Time course study of in situ expression of antigens following DNA-vaccination against VHS in rainbow trout (Oncorhynchus mykiss Walbaum) fry. FISH & SHELLFISH IMMUNOLOGY 2005; 19:27-41. [PMID: 15722229 DOI: 10.1016/j.fsi.2004.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 10/27/2004] [Indexed: 05/12/2023]
Abstract
The present study was performed as a time course study of fish vaccinated with 20 microg plasmid DNA vaccine encoding either the VHSV G-protein or the VHSV N-protein. Samples of the injection site were collected sequentially over a 7-week period. The study revealed an intense positive staining by immunohistochemistry for the viral G-protein mainly in the membrane of intact myocytes, most prominent by days 10-27, and with concomitant infiltration of inflammatory cells by days 13-38 that subsequently lead to a marked reduction in the number of myocytes expressing the G-protein. By immunofluorescence, infiltrating cells positive for MHC II, IgM, and C3 were demonstrated. By contrast, in fish vaccinated with the VHSV-N construct, fewer, diffusely positive myocytes were found, most prominent by days 13-38, these having a positive reaction for the N-protein mainly in the cytoplasm and variably in the membrane. N-protein positive myocytes did not attract infiltrating cells to the same degree. Positive reaction for the N-protein almost ceased by day 48 post-vaccination.
Collapse
Affiliation(s)
- Ellen Lorenzen
- Danish Institute for Food and Veterinary Research, Hangøvej 2, DK-8200 Arhus N, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Kendall M, Rishworth S, Carter F, Mitchell T. Effects of relative humidity and ambient temperature on the ballistic delivery of micro-particles to excised porcine skin. J Invest Dermatol 2004; 122:739-46. [PMID: 15086561 DOI: 10.1111/j.0022-202x.2004.22320.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effectiveness of ballistic particle delivery to the skin is often dependent upon breaching the stratum corneum (SC) and targeting cells within defined layers of the viable epidermis. This paper experimentally determines the influence of relative humidity (RH) and temperature on the ballistic delivery of particles to the skin. Gold particles of radius 0.9+/-0.6 microm were accelerated by a hand-held supersonic device to impact freshly excised porcine skin at 410-665 m per s. Increasing the RH from 15% to 95% (temperature at 25 degrees C) led to a particle penetration increase by a factor of 1.8. Temperature increases from 20 degrees C to 40 degrees C (RH at 15%) enhanced particle penetration 2-fold. In both cases, these increases were sufficient to move the target layer from the SC to the viable epidermis. Relative trends in particle penetration compared well with predictions from a theoretical model well. Calculated absolute penetration depths are 6-fold greater than the measurements. The inversely calculated dynamic yield stress of the SC is up to a factor of 10 higher than reported quasi-static measurements, due to changes in tissue failure modes over a strain-rate range spanning 10 orders of magnitude. If targeted particle delivery is required, it is recommended that the environmental RH and temperature be monitored.
Collapse
Affiliation(s)
- Mark Kendall
- The PowderJect Centre for Gene and Drug Delivery Research, Department of Engineering Science, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
21
|
Abstract
Over the past 15 years researchers have generated stable lines of several species of transgenic fish important for aquaculture. 'All-fish' growth hormone (GH) gene constructs and antifreeze protein (AFP) genes have been successfully introduced into the fish genome resulting in a significant acceleration of growth rate and an increase in cold and freeze tolerance. However, neither gene modification is completely understood; there are still questions to be resolved. Expression rates are still low, producing variable growth enhancement rates and less than desired levels of freeze resistance. Transgene strategies are also being developed to provide improved pathogen resistance and modified metabolism for better utilization of the diet. Additional challenges are to tailor the genetically modified fish strains to prevent release of the modified genes into the environment.
Collapse
|
22
|
Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, Walsh PJ, Vijayan MM, Devlin RH, Hardy RW, Overturf KE, Young WP, Robison BD, Rexroad C, Palti Y. Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:609-46. [PMID: 12470823 DOI: 10.1016/s1096-4959(02)00167-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss) is one of the most widely studied of model fish species. Extensive basic biological information has been collected for this species, which because of their large size relative to other model fish species are particularly suitable for studies requiring ample quantities of specific cells and tissue types. Rainbow trout have been widely utilized for research in carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. They are distinctive in having evolved from a relatively recent tetraploid event, resulting in a high incidence of duplicated genes. Natural populations are available and have been well characterized for chromosomal, protein, molecular and quantitative genetic variation. Their ease of culture, and experimental and aquacultural significance has led to the development of clonal lines and the widespread application of transgenic technology to this species. Numerous microsatellites have been isolated and two relatively detailed genetic maps have been developed. Extensive sequencing of expressed sequence tags has begun and four BAC libraries have been developed. The development and analysis of additional genomic sequence data will provide distinctive opportunities to address problems in areas such as evolution of the immune system and duplicate genes.
Collapse
Affiliation(s)
- Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The coupling of the GFP reporter system with the optical clarity of embryogenesis in model fish such as zebrafish and medaka is beginning to change the picture of transgenic fish study. Since the advent of first GFP transgenic fish in 1995, GFP transgenic fish technology have been quickly employed in many areas such as analyses of gene expression patterns and tissue/organ development, dissection of promoters/enhancers, cell lineage and axonal pathfinding, cellular localization of protein products, chimeric embryo and nuclear transplantation, cell sorting, etc. The GFP transgenic fish also have the potentials in analysis of upstream regulatory factors, mutagenesis screening and characterization, and promoter/enhancer trap. Our own studies indicate that GFP transgenic fish may become a new source of novel variety of ornamental fish. Efforts are also being made in our laboratory to turn GFP transgenic fish into biomonitoring organisms for surveillance of environmental pollution.
Collapse
Affiliation(s)
- Z Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| | | | | |
Collapse
|