1
|
Proteolytic Maturation of the Outer Membrane c-Type Cytochrome OmcZ by a Subtilisin-Like Serine Protease Is Essential for Optimal Current Production by Geobacter sulfurreducens. Appl Environ Microbiol 2021; 87:e0261720. [PMID: 33837010 DOI: 10.1128/aem.02617-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An outer membrane c-type cytochrome (OmcZ) in Geobacter sulfurreducens is essential for optimal current production in microbial fuel cells. OmcZ exists in two forms, small and large, designated OmcZS and OmcZL, respectively. However, it is still not known how these two structures are formed. A mutant with a disruption of the GSU2075 gene encoding a subtilisin-like serine protease (designated ozpA for the OmcZ protease), which is located downstream of omcZ, produced low currents at a level similar to that of the omcZ-deficient mutant strain. Biochemical analyses revealed that the ozpA mutant accumulated OmcZL and did not produce OmcZS, which is thought to be a mature form that is essential for the extracellular electron transfer to the electrode. A heterologous expression system cell lysate from an Escherichia coli strain producing OzpA cleaved OmcZL and generated OmcZS as the proteolytic product. Among the culture supernatant, loosely bound outer surface, and intracellular protein fractions from wild-type G. sulfurreducens, only the culture supernatant protein fraction showed OmcZL cleavage activity, indicating that the mature form of OmcZ, OmcZS, can be produced outside the cells. These results indicate that OzpA is an essential protease for current production via the maturation of OmcZ, and OmcZS is the key to the extracellular electron transfer to electrodes. This proteolytic maturation of OmcZ is a unique regulation among known c-type cytochromes in G. sulfurreducens. IMPORTANCE Microbial fuel cells are a promising technology for energy generation from various waste types. However, the molecular mechanisms of microbial extracellular electron transfer to the electrode need to be elucidated. G. sulfurreducens is a common key player in electricity generation in mixed-culture microbial fuel cell systems and a model microorganism for the study of extracellular electron transfer. Outer membrane c-type cytochrome OmcZ is essential for an optimal current production by G. sulfurreducens. OmcZ proteolytic cleavage occurs during maturation, but the underlying mechanism is unknown. This study identifies a subtilisin-like protease, OzpA, which plays a role in cleaving OmcZ and generating the mature form of OmcZ (OmcZS). OzpA is essential for current production and, thus, the proteolytic maturation of OmcZ. This is a novel regulation of the c-type cytochrome for G. sulfurreducens extracellular electron transfer. This study also provides new insights into the design strategy and development of microbial extracellular electron transfer for an efficient energy conversion from chemical energy to electricity.
Collapse
|
2
|
Abstract
The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.
Collapse
|
3
|
González G, Labastida A, Jímenez-Jacinto V, Vega-Alvarado L, Olvera M, Morett E, Juárez K. Global transcriptional start site mapping in Geobacter sulfurreducens during growth with two different electron acceptors. FEMS Microbiol Lett 2016; 363:fnw175. [PMID: 27488344 DOI: 10.1093/femsle/fnw175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens, little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens, we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens.
Collapse
Affiliation(s)
- Getzabeth González
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad 2001, Cuernavaca Morelos, C.P. 62210, México
| | - Aurora Labastida
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad 2001, Cuernavaca Morelos, C.P. 62210, México
| | - Verónica Jímenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México Campus Morelos, Av. Universidad 2001, Cuernavaca Morelos, C.P. 62210, México
| | - Leticia Vega-Alvarado
- Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, D.F., C.P. 04510, México
| | - Maricela Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad 2001, Cuernavaca Morelos, C.P. 62210, México
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad 2001, Cuernavaca Morelos, C.P. 62210, México
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad 2001, Cuernavaca Morelos, C.P. 62210, México
| |
Collapse
|
4
|
Abundance of the multiheme c-type cytochrome OmcB increases in outer biofilm layers of electrode-grown Geobacter sulfurreducens. PLoS One 2014; 9:e104336. [PMID: 25090411 PMCID: PMC4121341 DOI: 10.1371/journal.pone.0104336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
When Geobacter sulfurreducens utilizes an electrode as its electron acceptor, cells embed themselves in a conductive biofilm tens of microns thick. While environmental conditions such as pH or redox potential have been shown to change close to the electrode, less is known about the response of G. sulfurreducens to growth in this biofilm environment. To investigate whether respiratory protein abundance varies with distance from the electrode, antibodies against an outer membrane multiheme cytochrome (OmcB) and cytoplasmic acetate kinase (AckA) were used to determine protein localization in slices spanning ∼25 µm-thick G. sulfurreducens biofilms growing on polished electrodes poised at +0.24 V (vs. Standard Hydrogen Electrode). Slices were immunogold labeled post-fixing, imaged via transmission electron microscopy, and digitally reassembled to create continuous images allowing subcellular location and abundance per cell to be quantified across an entire biofilm. OmcB was predominantly localized on cell membranes, and 3.6-fold more OmcB was detected on cells 10–20 µm distant from the electrode surface compared to inner layers (0–10 µm). In contrast, acetate kinase remained constant throughout the biofilm, and was always associated with the cell interior. This method for detecting proteins in intact conductive biofilms supports a model where the utilization of redox proteins changes with depth.
Collapse
|
5
|
Phylogenetic classification of diverse LysR-type transcriptional regulators of a model prokaryote Geobacter sulfurreducens. J Mol Evol 2012; 74:187-205. [PMID: 22526031 DOI: 10.1007/s00239-012-9498-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
The protein family of LysR-type transcriptional regulators (LTTRs) is highly abundant among prokaryotes. We analyzed 10,145 non-redundant microbial sequences with homology to eight LysR family regulators of a model prokaryote, Geobacter sulfurreducens, and employed phylogenetic tree inference for LTTR classification. We also analyzed the arrangement of genome clusters containing G. sulfurreducens LTTR genes and searched for LTTR regulatory motifs, suggesting likely regulatory targets of G. sulfurreducens LTTRs. This is the first study to date providing a detailed classification of LTTRs in the deltaproteobacterial family Geobacteraceae.
Collapse
|
6
|
Holmes DE, Risso C, Smith JA, Lovley DR. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus. THE ISME JOURNAL 2012; 6:146-57. [PMID: 21776029 PMCID: PMC3246244 DOI: 10.1038/ismej.2011.88] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 01/02/2023]
Abstract
Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80° C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA.
| | | | | | | |
Collapse
|
7
|
Krushkal J, Sontineni S, Leang C, Qu Y, Adkins RM, Lovley DR. Genome diversity of the TetR family of transcriptional regulators in a metal-reducing bacterial family Geobacteraceae and other microbial species. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:495-506. [PMID: 21699403 DOI: 10.1089/omi.2010.0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Members of the TetR family of bacterial transcriptional regulators affect expression of genes whose products are involved in a variety of important functions, including osmotic stress, catabolic pathways, homeostasis, biosynthesis of antibiotics, expression of efflux pumps, multidrug resistance, and virulence of pathogenic bacteria. We used genome sequence information to carry out phylogenetic classification of 864 TetR family members with a special focus on TetR regulators in Geobacteraceae, an environmentally important family of delta-Proteobacteria. The genome of Geobacter sulfurreducens, a model representative of Geobacteraceae, contains nine genes from the tetR family. Several of these genes are located immediately upstream of operons encoding functionally important c-type cytochromes. Computational analyses identified the presence of conserved promoters and other regulatory binding sites upstream of several G. sulfurreducens tetR genes. This suggests the possibility of an intermediary role of TetR family proteins in Geobacteraceae in regulatory cascades involving a variety of sigma factors. In order to understand the role of the TetR regulatory family in Geobacteraceae, we have inferred phylogenetic relationships among the Geobacteraceae TetR proteins and their homologs in other microbial species.
Collapse
Affiliation(s)
- Julia Krushkal
- Department of Preventive Medicine, the University of Tennessee Health Science Center, Memphis, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR. A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 2011; 13:13-23. [PMID: 20636372 DOI: 10.1111/j.1462-2920.2010.02302.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced. Both strains contain either a single base-pair change or a 1 nucleotide insertion in a GEMM riboswitch upstream of GSU1761, a gene coding for the periplasmic c-type cytochrome designated PgcA. GSU1771, a gene coding for a SARP regulator, was also mutated in both strains. Introduction of either of the GEMM riboswitch mutations upstream of pgcA in the wild-type increased the abundance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide reduction. Interruption of GSU1771 doubled the Fe(III) oxide reduction rate. This was associated with an increased in expression of pilA, the gene encoding the structural protein for the pili thought to function as microbial nanowires. The combination of the GSU1771 interruption with either of the pgcA mutations resulted in a strain that reduced Fe(III) as fast as the comparable adapted strain. These results suggest that the accumulation of a small number of beneficial mutations under selective pressure, similar to that potentially present during bioremediation, can greatly enhance the capacity for Fe(III) oxide reduction in G. sulfurreducens. Furthermore, the results emphasize the importance of the c-type cytochrome PgcA and pili in Fe(III) oxide reduction and demonstrate how adaptive evolution studies can aid in the elucidation of complex mechanisms, such as extracellular electron transfer.
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zarath M Summers
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard H Glaven
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Karsten Zengler
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christian L Barrett
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Yu Qiu
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 2011; 80:142-50. [DOI: 10.1016/j.bioelechem.2010.07.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/06/2010] [Accepted: 07/15/2010] [Indexed: 11/23/2022]
|
10
|
Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 2011; 59:1-100. [PMID: 22114840 DOI: 10.1016/b978-0-12-387661-4.00004-5] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology and Environmental Biotechnology Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun J, Haveman SA, Bui O, Fahland TR, Lovley DR. Constraint-based modeling analysis of the metabolism of two Pelobacter species. BMC SYSTEMS BIOLOGY 2010; 4:174. [PMID: 21182788 PMCID: PMC3022650 DOI: 10.1186/1752-0509-4-174] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/23/2010] [Indexed: 01/08/2023]
Abstract
Background Pelobacter species are commonly found in a number of subsurface environments, and are unique members of the Geobacteraceae family. They are phylogenetically intertwined with both Geobacter and Desulfuromonas species. Pelobacter species likely play important roles in the fermentative degradation of unusual organic matters and syntrophic metabolism in the natural environments, and are of interest for applications in bioremediation and microbial fuel cells. Results In order to better understand the physiology of Pelobacter species, genome-scale metabolic models for Pelobacter carbinolicus and Pelobacter propionicus were developed. Model development was greatly aided by the availability of models of the closely related Geobacter sulfurreducens and G. metallireducens. The reconstructed P. carbinolicus model contains 741 genes and 708 reactions, whereas the reconstructed P. propionicus model contains 661 genes and 650 reactions. A total of 470 reactions are shared among the two Pelobacter models and the two Geobacter models. The different reactions between the Pelobacter and Geobacter models reflect some unique metabolic capabilities such as fermentative growth for both Pelobacter species. The reconstructed Pelobacter models were validated by simulating published growth conditions including fermentations, hydrogen production in syntrophic co-culture conditions, hydrogen utilization, and Fe(III) reduction. Simulation results matched well with experimental data and indicated the accuracy of the models. Conclusions We have developed genome-scale metabolic models of P. carbinolicus and P. propionicus. These models of Pelobacter metabolism can now be incorporated into the growing repertoire of genome scale models of the Geobacteraceae family to aid in describing the growth and activity of these organisms in anoxic environments and in the study of their roles and interactions in the subsurface microbial community.
Collapse
Affiliation(s)
- Jun Sun
- Genomatica Inc., 10520 Wateridge Circle, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
12
|
Qu Y, Brown P, Barbe JF, Puljic M, Merino E, Adkins RM, Lovley DR, Krushkal J. GSEL Version 2, an Online Genome-Wide Query System of Operon Organization and Regulatory Sequence Elements of Geobacter sulfurreducens. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:439-49. [DOI: 10.1089/omi.2009.0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yanhua Qu
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Peter Brown
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Jose F. Barbe
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Marko Puljic
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee
| | - Enrique Merino
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ronald M. Adkins
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Julia Krushkal
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
13
|
Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. BMC Genomics 2009; 10:331. [PMID: 19624843 PMCID: PMC2725144 DOI: 10.1186/1471-2164-10-331] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/22/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. RESULTS An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III), which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. CONCLUSION The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of cellular processes.
Collapse
|
14
|
Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methé BA, Didonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 2009; 4:e5628. [PMID: 19461962 PMCID: PMC2680965 DOI: 10.1371/journal.pone.0005628] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/10/2009] [Indexed: 11/19/2022] Open
Abstract
The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.
Collapse
Affiliation(s)
- Kelly P Nevin
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tran HT, Krushkal J, Antommattei FM, Lovley DR, Weis RM. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function. BMC Genomics 2008; 9:471. [PMID: 18844997 PMCID: PMC2577667 DOI: 10.1186/1471-2164-9-471] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 10/09/2008] [Indexed: 01/13/2023] Open
Abstract
Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III) reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70) homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively). Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP) homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors σ28 and σ54 play a role in regulating the Geobacter chemotaxis gene expression. Conclusion The numerous chemoreceptors and chemotaxis-like gene clusters of Geobacter appear to be responsible for a diverse set of signaling functions in addition to chemotaxis, including gene regulation and biofilm formation, through functionally and spatially distinct signaling pathways.
Collapse
Affiliation(s)
- Hoa T Tran
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
16
|
Krushkal J, Leang C, Barbe JF, Qu Y, Yan B, Puljic M, Adkins RM, Lovley DR. Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer. Funct Integr Genomics 2008; 9:15-25. [DOI: 10.1007/s10142-008-0094-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 01/01/2023]
|
17
|
Role of the DksA-like protein in the pathogenesis and diverse metabolic activity of Campylobacter jejuni. J Bacteriol 2008; 190:4512-20. [PMID: 18456813 DOI: 10.1128/jb.00105-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DksA is well known for its regulatory role in the transcription of rRNA and genes involved in amino acid synthesis in many bacteria. DksA has also been reported to control expression of virulence genes in pathogenic bacteria. Here, we elucidated the roles of a DksA-like protein (CJJ81176_0160, Cj0125c) in the pathogenesis of Campylobacter jejuni. As in other bacteria, transcription of stable RNA was repressed by the DksA-like protein under stress conditions in C. jejuni. Transcriptomic and proteomic analyses of C. jejuni 81-176 and an isogenic mutant lacking the DksA-like protein showed differential expression of many genes involved in amino acid metabolism, iron-related metabolism, and other metabolic reactions. Also, the C. jejuni DksA-like protein mutant exhibited a decreased ability to invade intestinal cells and induce release of interleukin-8 from intestinal cells. These results suggest that the DksA-like protein plays an important regulatory role in diverse metabolic events and the virulence of C. jejuni.
Collapse
|
18
|
Kim BC, Postier BL, Didonato RJ, Chaudhuri SK, Nevin KP, Lovley DR. Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry 2008; 73:70-5. [PMID: 18538641 DOI: 10.1016/j.bioelechem.2008.04.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/15/2008] [Accepted: 04/22/2008] [Indexed: 02/06/2023]
Abstract
Geobacter sulfurreducens effectively produces electricity in microbial fuel cells by oxidizing acetate with an electrode serving as the sole electron acceptor. Deletion of the gene encoding OmcF, a monoheme outer membrane c-type cytochrome, substantially decreased current production. Previous studies demonstrated that inhibition of Fe(III) reduction in the OmcF-deficient mutant could be attributed to poor transcription of the gene for OmcB, an outer membrane c-type cytochrome that is required for Fe(III) reduction. However, a mutant in which omcB was deleted produced electricity as well as wild type. Microarray analysis of the OmcF-deficient mutant versus the wild type revealed that many of the genes with the greatest decreases in transcript levels were genes whose expression was previously reported to be upregulated in cells grown with an electrode as the sole electron acceptor. These included genes with putative functions related to metal efflux and/or type I secretion and two hypothetical proteins. The outer membrane cytochromes, OmcS and OmcE, which previous studies have demonstrated are required for optimal current generation, were not detected on the outer surface of the OmcF-deficient mutant even though the omcS and omcE genes were still transcribed, suggesting that the putative secretion system could be involved in the export of outer membrane proteins necessary for electron transfer to the fuel cell anode. These results suggest that the requirement for OmcF for optimal current production is not because OmcF is directly involved in extracellular electron transfer but because OmcF is required for the appropriate transcription of other genes either directly or indirectly involved in electricity production.
Collapse
Affiliation(s)
- Byoung-Chan Kim
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mahadevan R, Yan B, Postier B, Nevin KP, Woodard TL, O'Neil R, Coppi MV, Methé BA, Krushkal J. Characterizing Regulation of Metabolism inGeobacter sulfurreducensthrough Genome-Wide Expression Data and Sequence Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2008; 12:33-59. [DOI: 10.1089/omi.2007.0043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Radhakrishnan Mahadevan
- Department of Chemical Engineering & Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Bin Yan
- Department of Preventive Medicine, University of Tennessee Health Science Center, 66 Memphis, Tennessee
| | - Brad Postier
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Kelly P. Nevin
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Trevor L. Woodard
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Regina O'Neil
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Maddalena V. Coppi
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | | | - Julia Krushkal
- Department of Preventive Medicine, University of Tennessee Health Science Center, 66 Memphis, Tennessee
| |
Collapse
|