1
|
Ucar S, Yaprak E, Yigider E, Kasapoglu AG, Oner BM, Ilhan E, Ciltas A, Yildirim E, Aydin M. Genome-wide analysis of miR172-mediated response to heavy metal stress in chickpea (Cicer arietinum L.): physiological, biochemical, and molecular insights. BMC PLANT BIOLOGY 2024; 24:1063. [PMID: 39528933 PMCID: PMC11555882 DOI: 10.1186/s12870-024-05786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.), a critical diploid legume in the Fabaceae family, is a rich source of protein, vitamins, and minerals. However, heavy metal toxicity severely affects its growth, yield, and quality. MicroRNAs (miRNAs) play a crucial role in regulating plant responses to both abiotic and biotic stress, including heavy metal exposure, by suppressing the expression of target genes. Plants respond to heavy metal stress through miRNA-mediated regulatory mechanisms at multiple physiological, biochemical, and molecular levels. Although the Fabaceae family is well represented in miRNA studies, chickpeas have been notably underrepresented. This study aimed to investigate the effects of heavy metal-induced stress, particularly from 100 µM concentrations of cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), and 30 µM arsenic (As), on two chickpea varieties: ILC 482 (sensitive) and Azkan (tolerant). The assessment focused on physiological, biochemical, and molecular parameters. Furthermore, a systematic characterization of the miR172 gene family in the chickpea genome was conducted to better understand the plant's molecular response to heavy metal stress. RESULTS Variance analysis indicated significant effects of genotype (G), treatment (T), and genotype-by-treatment (GxT) interactions on plant growth, physiological, and biochemical parameters. Heavy metal stress negatively impacted plant growth in chickpea genotypes ILC 482 and Azkan. A reduction in chlorophyll content and relative leaf water content was observed, along with increased cell membrane damage. In ILC 482, the highest hydrogen peroxide (H₂O₂) levels in shoot tissue were recorded under As, Cd, and Ni treatments, while in Azkan, peak levels were observed with Pb treatment. Malondialdehyde (MDA) levels in root tissue were highest in ILC 482 under Cd and Ni exposure and in Azkan under As, Cr, and Cd treatments. Antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), were significantly elevated under heavy metal stress in both genotypes. Gene expression analysis revealed upregulation of essential antioxidant enzyme genes, such as SOD, CAT, and APX, with APX showing notable increases in both shoot and root tissues compared to the control. Additionally, seven miR172 genes (miR172a, miR172b, miR172c, miR172d, miR172e, miR172f, and miR172g) were identified in the chickpea genome, distributed across five chromosomes. All genes exhibited conserved hairpin structures essential for miRNA functionality. Phylogenetic analysis grouped these miR172 genes into three clades, suggesting strong evolutionary conservation with other plant species. The expression analysis of miR172 and its target genes under heavy metal stress showed varied expression patterns, indicating their role in enhancing heavy metal tolerance in chickpea. CONCLUSIONS Heavy metal stress significantly impaired plant growth and physiological and biochemical parameters in chickpea genotypes, except for cell membrane damage. The findings underscore the critical role of miR172 and its target genes in modulating chickpea's response to heavy metal stress. These insights provide a foundational understanding for developing stress-tolerant chickpea varieties through miRNA-based genetic engineering approaches.
Collapse
Affiliation(s)
- Sumeyra Ucar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Esra Yaprak
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Esma Yigider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.
| | - Ayse Gul Kasapoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Burak Muhammed Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Emre Ilhan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Ertan Yildirim
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
2
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Amini Z, Salehi H, Chehrazi M, Etemadi M, Xiang M. miRNAs and Their Target Genes Play a Critical Role in Response to Heat Stress in Cynodon dactylon (L.) Pers. Mol Biotechnol 2023; 65:2004-2017. [PMID: 36913082 DOI: 10.1007/s12033-023-00713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Annual global temperature is increasing rapidly. Therefore, in the near future, plants will be exposed to severe heat stress. However, the potential of microRNAs-mediated molecular mechanism for modulating the expression of their target genes is unclear. To investigate the changes of miRNAs in thermo-tolerant plants, in this study, we first investigated the impact of four high temperature regimes including 35/30 °C, 40/35 °C, 45/40 °C, and 50/45 °C in a day/night cycle for 21 days on the physiological traits (total chlorophyll, relative water content and electrolyte leakage and total soluble protein), antioxidant enzymes activities (superoxide dismutase, ascorbic peroxidase, catalase and peroxidase), and osmolytes (total soluble carbohydrates and starch) in two bermudagrass accessions named Malayer and Gorgan. The results showed that more chlorophyll and the relative water content, lower ion leakage, more efficient protein and carbon metabolism and activation of defense proteins (such as antioxidant enzymes) in Gorgan accession, led to better maintained plant growth and activity during heat stress. In the next stage, to investigate the role of miRNAs and their target genes in response to heat stress in a thermo-tolerant plant, the impact of severe heat stress (45/40 °C) was evaluated on the expression of three miRNAs (miRNA159a, miRNA160a and miRNA164f) and their target genes (GAMYB, ARF17 and NAC1, respectively). All measurements were performed in leaves and roots simultaneously. Heat stress significantly induced the expression of three miRNAs in leaves of two accession, while having different effects on the expression of these miRNAs in roots. The results showed that a decrease in the expression of the transcription factor ARF17, no change in the expression of the transcription factor NAC1, and an increase in the expression of the transcription factor GAMYB in leaf and root tissues of Gorgan accession led to improved heat tolerance in it. These results also showed that the effect of miRNAs on the modulating expression of target mRNAs in leaves and roots is different under heat stress, and miRNAs and mRNAs show spatiotemporal expression. Therefore, the simultaneous analysis of miRNAs and mRNAs expressions in shoot and roots is needed to comprehensively understand miRNAs regulatory function under heat stress.
Collapse
Affiliation(s)
- Zohreh Amini
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mehrangiz Chehrazi
- Department of Horticultural Science, School of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mingying Xiang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
4
|
Sheri V, Kumar M, Jaconis S, Zhang B. Antioxidant defense in cotton under environmental stresses: Unraveling the crucial role of a universal defense regulator for enhanced cotton sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108141. [PMID: 37926000 DOI: 10.1016/j.plaphy.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Cotton (Gossypium spp.) is a globally significant crop that provides natural fibers for the textile industry and also an important oil and biopharmaceutical resources. However, the production of cotton faces substantial challenges due to various biotic and abiotic stress factors that can negatively impact cotton growth, yield, and fiber quality. This review offers a comprehensive overview of the effects of biotic stress factors, such as insect pests, bacterial, fungal, and viral pathogens, and nematodes, as well as abiotic stress factors, including extreme hot and cold temperature, drought, toxicity induced by heavy metal and salinity, on the antioxidant systems in cotton. We discuss the crucial antioxidants, such as glutathione, proline, and phenolics, and highlight major antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR), and their roles in cotton's response to these stress factors. Furthermore, we explore the potential mechanisms and the crosstalk between different stress factors signaling pathways. We also examine the implications of stress-induced changes in antioxidant levels and enzyme activities for cotton productivity and breeding strategies. Additionally, we shed light on the unanswered questions, research gaps, and future perspectives in this field, paving the way for further investigations to enhance our understanding of cotton's antioxidant defenses and develop novel strategies for improving cotton stress tolerance and yield stability.
Collapse
Affiliation(s)
- Vijay Sheri
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Susan Jaconis
- Agricultural & Environmental Research Department, Cotton Incorporated, Cary, NC, 27513, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, USA.
| |
Collapse
|
5
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
6
|
Cavé-Radet A, Salmon A, Tran Van Canh L, Moyle RL, Pretorius LS, Lima O, Ainouche ML, El Amrani A. Recent allopolyploidy alters Spartina microRNA expression in response to xenobiotic-induced stress. PLANT MOLECULAR BIOLOGY 2023; 111:309-328. [PMID: 36581792 DOI: 10.1007/s11103-022-01328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination by xenobiotics represents a major threat for natural ecosystems and public health. In response, xenobiotic detoxification is a fundamental trait of organisms for developmental plasticity and stress tolerance, but the underlying molecular mechanisms remain poorly understood in plants. To decipher this process, we explored the consequences of allopolyploidy on xenobiotic tolerance in the genus Spartina Schreb. Specifically, we focused on microRNAs (miRNAs) owing to their central function in the regulation of gene expression patterns, including responses to stress. Small RNA-Seq was conducted on the parents S. alterniflora and S. maritima, their F1 hybrid S. x townsendii and the allopolyploid S. anglica under phenanthrene-induced stress (phe), a model Polycyclic Aromatic Hydrocarbon (PAH) compound. Differentially expressed miRNAs in response to phe were specifically identified within species. In complement, the respective impacts of hybridization and genome doubling were detected, through changes in miRNA expression patterns between S. x townsendii, S. anglica and the parents. The results support the impact of allopolyploidy in miRNA-guided regulation of plant response to phe. In total, we identified 17 phe-responsive miRNAs in Spartina among up-regulated MIR156 and down-regulated MIR159. We also describe novel phe-responsive miRNAs as putative Spartina-specific gene expression regulators in response to stress. Functional validation using Arabidopsis (L.) Heynh. T-DNA lines inserted in homologous MIR genes was performed, and the divergence of phe-responsive miRNA regulatory networks between Arabidopsis and Spartina was discussed.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France.
| | - Armel Salmon
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Loup Tran Van Canh
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Richard L Moyle
- Nexgen Plants Pty Ltd., School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lara-Simone Pretorius
- Nexgen Plants Pty Ltd., School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Oscar Lima
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Malika L Ainouche
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Abdelhak El Amrani
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France.
| |
Collapse
|
7
|
Geetha N, Sunilkumar CR, Bhavya G, Nandini B, Abhijith P, Satapute P, Shetty HS, Govarthanan M, Jogaiah S. Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. ENVIRONMENTAL RESEARCH 2023; 216:114498. [PMID: 36209791 DOI: 10.1016/j.envres.2022.114498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The fungal symbiosis with the plant root system is importantly recognized as a plant growth promoting fungi (PGPFs), as well as elicitor of plant defence against different biotic and abiotic stress conditions. Thus PGPFs are playing as a key trouper in enhancing agricultural quality and increased crop production and paving a way towards a sustainable agriculture. Due to increased demand of food production, the over and unscientific usage of chemical fertilizers has led to the contamination of soil by organic and inorganic wastes impacting on soil quality, crops quality effecting on export business of agricultural products. The application of microbial based consortium like plant growth promoting fungi is gaining worldwide importance due to their multidimensional activity. These activities are through plant growth promotion, induction of systemic resistance, disease combating and detoxification of organic and inorganic toxic chemicals, a heavy metal tolerance ability. The master key behind these properties exhibited by PGPFs are attributed towards various secretory biomolecules (secondary metabolites or enzymes or metabolites) secreted by the fungi during interaction mechanism. The present review is focused on the multidimensional role PGPFs as elicitors of Induced systemic resistance against phytopathogens as well as heavy metal detoxifier through seed biopriming and biofortification methods. The in-sights on PGPFs and their probable mechanistic nature contributing towards plants to withstand heavy metal stress and stress alleviation by activating of various stress regulatory pathways leading to secretion of low molecular weight compounds like organic compounds, glomalin, hydrophobins, etc,. Thus projecting the importance of PGPFs and further requirement of research in developing PGPFs based molecules and combining with trending Nano technological approaches for enhanced heavy metal stress alleviations in plant and soil as well as establishing a sustainable agriculture.
Collapse
Affiliation(s)
- Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | | | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Boregowda Nandini
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Padukana Abhijith
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India
| | - Hunthrike Shekar Shetty
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) - 671316, Kasaragod (DT), Kerala, India.
| |
Collapse
|
8
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
9
|
Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 2022; 204:410. [PMID: 35729415 DOI: 10.1007/s00203-022-02978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.
Collapse
|
10
|
Jia W, Lin K, Lou T, Feng J, Lv S, Jiang P, Yi Z, Zhang X, Wang D, Guo Z, Tang Y, Qiu R, Li Y. Comparative analysis of sRNAs, degradome and transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd accumulation and tolerance. PLANTA 2021; 254:16. [PMID: 34185181 DOI: 10.1007/s00425-021-03669-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Key miRNAs including sbi-miR169p/q, sbi-miR171g/j, sbi-miR172a/c/d, sbi-miR172e, sbi-miR319a/b, sbi-miR396a/b, miR408, sbi-miR5384, sbi-miR5565e and nov_23 were identified to function in the regulation of Cd accumulation and tolerance. As an energy plant, sweet sorghum shows great potential in the phytoremediation of Cd-contaminated soils. However, few studies have focused on the regulatory roles of miRNAs and their targets under Cd stress. In this study, comparative analysis of sRNAs, degradome and transcriptomics was conducted in high-Cd accumulation (H18) and low-Cd accumulation (L69) genotypes of sweet sorghum. A total of 38 conserved and 23 novel miRNAs with differential expressions were identified under Cd stress or between H18 and L69, and 114 target genes of 41 miRNAs were validated. Furthermore, 25 miRNA-mRNA pairs exhibited negatively correlated expression profiles and sbi-miR172e together with its target might participate in the distinct Cd tolerance between H18 and L69 as well as sbi-miR172a/c/d. Additionally, two groups of them: miR169p/q-nov_23 and miR408 were focused through the co-expression analysis, which might be involved in Cd uptake and tolerance by regulating their targets associated with transmembrane transportation, cytoskeleton activity, cell wall construction and ROS (reactive oxygen species) homeostasis. Further experiments exhibited that cell wall components of H18 and L69 were different when exposed to cadmium, which might be regulated by miR169p/q, miR171g/j, miR319a/b, miR396a/b, miR5384 and miR5565e through their targets. Through this study, we aim to reveal the potential miRNAs involved in sweet sorghum in response to Cd stress and provide references for developing high-Cd accumulation or high Cd-resistant germplasm of sweet sorghum that can be used in phytoremediation.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yetao Tang
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Rongliang Qiu
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
11
|
Wallace DR, Taalab YM, Heinze S, Tariba Lovaković B, Pizent A, Renieri E, Tsatsakis A, Farooqi AA, Javorac D, Andjelkovic M, Bulat Z, Antonijević B, Buha Djordjevic A. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020; 9:cells9040901. [PMID: 32272672 PMCID: PMC7226740 DOI: 10.3390/cells9040901] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Toxic metals are extensively found in the environment, households, and workplaces and contaminate food and drinking water. The crosstalk between environmental exposure to toxic metals and human diseases has been frequently described. The toxic mechanism of action was classically viewed as the ability to dysregulate the redox status, production of inflammatory mediators and alteration of mitochondrial function. Recently, growing evidence showed that heavy metals might exert their toxicity through microRNAs (miRNA)—short, single-stranded, noncoding molecules that function as positive/negative regulators of gene expression. Aberrant alteration of the endogenous miRNA has been directly implicated in various pathophysiological conditions and signaling pathways, consequently leading to different types of cancer and human diseases. Additionally, the gene-regulatory capacity of miRNAs is particularly valuable in the brain—a complex organ with neurons demonstrating a significant ability to adapt following environmental stimuli. Accordingly, dysregulated miRNAs identified in patients suffering from neurological diseases might serve as biomarkers for the earlier diagnosis and monitoring of disease progression. This review will greatly emphasize the effect of the toxic metals on human miRNA activities and how this contributes to progression of diseases such as cancer and neurodegenerative disorders (NDDs).
Collapse
Affiliation(s)
- David R. Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA;
| | - Yasmeen M. Taalab
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt or
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Sarah Heinze
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Elisavet Renieri
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | | | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Milena Andjelkovic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
- Correspondence:
| |
Collapse
|
12
|
Identification of Grafting-Responsive MicroRNAs Associated with Growth Regulation in Pecan [Carya illinoinensis (Wangenh.) K. Koch]. FORESTS 2020. [DOI: 10.3390/f11020196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pecan [Carya illinoinensis (Wangenh.) K. Koch] is an economically important nut tree and grafting is often used for clonal propagation of cultivars. However, there is a lack of research on the effects of rootstocks on scions, which are meaningful targets for directed breeding of pecan grafts. MicroRNAs (miRNAs) play an important role in many biological processes, but the mechanism underlying the involvement of miRNAs in grafting-conferred physiological changes is unclear. To identify the grafting-responsive miRNAs that may be involved in the regulation of growth in grafted pecan, six small RNA libraries were constructed from the phloem of two groups of grafts with significantly different growth performance on short and tall rootstocks. A total of 441 conserved miRNAs belonging to 42 miRNA families and 603 novel miRNAs were identified. Among the identified miRNAs, 24 (seven conserved and 17 novel) were significantly differentially expressed by the different grafts, implying that they might be responsive to grafting and potentially involved in the regulation of graft growth. Ninety-five target genes were predicted for the differentially expressed miRNAs; gene annotation was available for 33 of these. Analysis of their targets suggested that the miRNAs may regulate auxin transport, cell activity, and inorganic phosphate (Pi) acquisition, and thereby, mediate pecan graft growth. Use of the recently-published pecan genome enabled identification of a substantial population of miRNAs, which are now available for further research. We also identified the grafting-responsive miRNAs and their potential roles in pecan graft growth, providing a basis for research on long-distance regulation in grafted pecan.
Collapse
|
13
|
Wang W, Chen D, Liu D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F. Comprehensive analysis of the Gossypium hirsutum L. respiratory burst oxidase homolog (Ghrboh) gene family. BMC Genomics 2020; 21:91. [PMID: 31996127 PMCID: PMC6988335 DOI: 10.1186/s12864-020-6503-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Plant NADPH oxidase (NOX), also known as respiratory burst oxidase homolog (rboh), encoded by the rboh gene, is a key enzyme in the reactive oxygen species (ROS) metabolic network. It catalyzes the formation of the superoxide anion (O2•-), a type of ROS. In recent years, various studies had shown that members of the plant rboh gene family were involved in plant growth and developmental processes as well as in biotic and abiotic stress responses, but little is known about its functional role in upland cotton. RESULTS In the present study, 26 putative Ghrboh genes were identified and characterized. They were phylogenetically classified into six subfamilies and distributed at different densities across 18 of the 26 chromosomes or scaffolds. Their exon-intron structures, conserved domains, synteny and collinearity, gene family evolution, regulation mediated by cis-acting elements and microRNAs (miRNAs) were predicted and analyzed. Additionally, expression profiles of Ghrboh gene family were analyzed in different tissues/organs and at different developmental stages and under different abiotic stresses, using RNA-Seq data and real-time PCR. These profiling studies indicated that the Ghrboh genes exhibited temporal and spatial specificity with respect to expression, and might play important roles in cotton development and in stress tolerance through modulating NOX-dependent ROS induction and other signaling pathways. CONCLUSIONS This comprehensive analysis of the characteristics of the Ghrboh gene family determined features such as sequence, synteny and collinearity, phylogenetic and evolutionary relationship, expression patterns, and cis-element- and miRNA-mediated regulation of gene expression. Our results will provide valuable information to help with further gene cloning, evolutionary analysis, and biological function analysis of cotton rbohs.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an, Shandong 271018 People’s Republic of China
| |
Collapse
|
14
|
Yu J, Su D, Yang D, Dong T, Tang Z, Li H, Han Y, Li Z, Zhang B. Chilling and Heat Stress-Induced Physiological Changes and MicroRNA-Related Mechanism in Sweetpotato ( Ipomoea batatas L.). FRONTIERS IN PLANT SCIENCE 2020; 11:687. [PMID: 32528515 PMCID: PMC7264270 DOI: 10.3389/fpls.2020.00687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/30/2020] [Indexed: 05/09/2023]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) is an important industrial and food crop. Both chilling and heat stress inhibits sweetpotato growth and development and then affects yield. However, the physiological and molecular mechanisms of sweetpotato response to chilling and heat stress is unclear. In this study, we investigated the effect of extreme temperature on sweetpotato physiological response, with a focus on oxidative stress and the potential microRNA (miRNA)-mediated molecular mechanism. Our results showed that both chilling and heat stress resulted in accumulation of reactive oxygen species (ROS), including H2O2 and O2 -, and caused oxidative stress in sweetpotato. This further affected the activities of oxidative stress-related enzymes and products, including SOD, POD, and MDA. Both chilling and heat stress inhibited POD activities but induced the enzyme activities of SOD and MDA. This suggests that sweetpotato cells initiated its own defense mechanism to handle extreme temperature-caused oxidative damage. Oxidative damage and repair are one mechanism that sweetpotato plants respond to extreme temperatures. Another potential mechanism is miRNA-mediated gene response. Chilling and heat stress altered the expression of stress-responsive miRNAs in sweetpotato seedlings. These miRNAs regulate sweetpotato response to extreme stress through targeting individual protein-coding genes.
Collapse
Affiliation(s)
- Jingjing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Dan Su
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| | - Dongjing Yang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Jiangsu Xuzhou Sweetpotato Research Center, Sweet Potato Research Institute, CAAS, Xuzhou, China
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Jiangsu Xuzhou Sweetpotato Research Center, Sweet Potato Research Institute, CAAS, Xuzhou, China
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou, China
| | - Hongmin Li
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Jiangsu Xuzhou Sweetpotato Research Center, Sweet Potato Research Institute, CAAS, Xuzhou, China
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou, China
| | - Yonghua Han
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Zongyun Li,
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
- Baohong Zhang,
| |
Collapse
|
15
|
Cai H, Yang C, Liu S, Qi H, Wu L, Xu LA, Xu M. MiRNA-target pairs regulate adventitious rooting in Populus: a functional role for miR167a and its target Auxin response factor 8. TREE PHYSIOLOGY 2019; 39:1922-1936. [PMID: 31504994 DOI: 10.1093/treephys/tpz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 05/13/2023]
Abstract
The ability of a plant to form roots from its non-root tissues is ecologically advantageous during rapid adaptation to a changing environment. Although this biological phenomenon has been widely utilized for cuttings in many economically important agronomic and tree species, its genetic and developmental mechanisms have been poorly understood. In this study, we conducted an association analysis of small RNAs, the degradome and the transcriptome of adventitious rooting in poplar softwood cuttings, which revealed that 373 miRNA-target pairs were detected. Of these, 72 significantly differentially expressed targets were screened as likely to modulate adventitious root (AR) development, in conjunction with plant hormone signal transduction. Poplar miR167a and its targets PeARF6s and PeARF8s were subjected to functional verification of their ability to mediate plant growth and hormone signal transduction. Overexpression of miR167a inhibited target transcripts and improved lateral root (LR) development in poplar, while overexpressing PeARF8.1mut increased AR numbers and slightly inhibited LR development. Taken together, these results suggest that miR167a-PeARF8.1 modules play crucial roles in regulating AR and LR development in poplar and improve the adaptation of poplar to more complex environments.
Collapse
Affiliation(s)
- Heng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chunxia Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Zhao T, Xu X, Wang M, Li C, Li C, Zhao R, Zhu S, He Q, Chen J. Identification and profiling of upland cotton microRNAs at fiber initiation stage under exogenous IAA application. BMC Genomics 2019; 20:421. [PMID: 31138116 PMCID: PMC6537205 DOI: 10.1186/s12864-019-5760-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Background Cotton is the most essential textile crop worldwide, and phytohormones are critical for cotton fiber development. One example is the role of auxin in fiber initiation, but we know little molecular basis. MicroRNAs (miRNAs) have a significant function in cotton development; nevertheless their role in fiber initiation remains unclear. Here, exogenous IAA was applied to cotton plant before anthesis. Utilizing small RNA sequencing, the mechanism underlying miRNA-mediated regulation of fiber initiation under exogenous IAA treatment was investigated. Results With exogenous IAA application, the endogenous IAA and GA contents of IAA treated (IT) ovules were higher than control (CK) ovules at the fiber initiation stage, while endogenous ABA content was lower in IT than CK. Using scanning electron microscopy, we found the fiber number and size were significantly promoted in IT at 0 DPA. Fiber quality analysis showed that fiber length, uniformity, strength, elongation, and micronaire of IT were higher than CK, though not statistically significant, while lint percent was significantly higher in IT. We generated six small RNA libraries using − 3, 0, and 3 DPA ovules of IT and CK, and identified 58 known miRNAs and 83 novel miRNAs together with the target genes. The differential expressed miRNAs number between IT and CK at − 3, 0, 3 DPA was 34, 16 and 24, respectively. Gene ontology and KEGG pathway enrichment analyses for the target genes of the miRNAs expressed in a differential manner showed that they were significantly enriched in 30 terms and 8 pathways. QRT-PCR for those identified miRNAs and the target genes related to phytohormones and fiber development was performed, and results suggested a potential role of these miRNAs in fiber initiation. Conclusions The exogenous IAA application affected the relative phytohormone contents in ovule and promoted fiber initiation in cotton. Identification and profiling of miRNAs and their targets at the fiber initiation stage provided insights for miRNAs’ regulation function of fiber initiation. These findings not only shed light on the regulatory network of fiber growth but also offer clues for cotton fiber amelioration strategies in cotton. Electronic supplementary material The online version of this article (10.1186/s12864-019-5760-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianlun Zhao
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Xiaojian Xu
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Min Wang
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Cheng Li
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Cong Li
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Rubing Zhao
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Qiuling He
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China.
| | - Jinhong Chen
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
17
|
Wang W, Liu D, Chen D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol 2019; 16:362-375. [PMID: 30676211 PMCID: PMC6380294 DOI: 10.1080/15476286.2019.1574163] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022] Open
Abstract
Salinity stress is a major abiotic stress affecting the productivity and fiber quality of cotton. Although reactive oxygen species (ROS) play critical roles in plant stress responses, their complex molecular regulatory mechanism under salinity stress is largely unknown in cotton, especially microRNA (miRNA)-mediated regulation of superoxide dismutase gene expression. Here, we report that a cotton iron superoxide dismutase gene GhFSD1 and the cotton miRNA ghr-miR414c work together in response to salinity stress. The miRNA ghr-miR414c targets the coding sequence region of GhFSD1, inhibiting expression of transcripts of this antioxidase gene, which represents the first line of defense against stress-induced ROS. Expression of GhFSD1 was induced by salinity stress. Under salinity stress, ghr-miR414c showed expression patterns opposite to those of GhFSD1. Ectopic expression of GhFSD1 in Arabidopsis conferred salinity stress tolerance by improving primary root growth and biomass, whereas Arabidopsis constitutively expressing ghr-miR414c showed hypersensitivity to salinity stress. Silencing GhFSD1 in cotton caused an excessive hypersensitive phenotype to salinity stress, whereas overexpressing miR414c decreased the expression of GhFSD1 and increased sensitivity to salinity stress, yielding a phenotype similar to that of GhFSD1-silenced cotton. Taken together, our results demonstrated that ghr-miR414c was involved in regulation of plant response to salinity stress by targeting GhFSD1 transcripts. This study provides a new strategy and method for plant breeding in order to improve plant salinity tolerance.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| |
Collapse
|
18
|
Jiu S, Leng X, Haider MS, Dong T, Guan L, Xie Z, Li X, Shangguan L, Fang J. Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180735. [PMID: 30800341 PMCID: PMC6366190 DOI: 10.1098/rsos.180735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/24/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play important roles in plant growth, development and stress responses. With more copper (Cu) and copper containing compounds used as bactericides and fungicides in plants, Cu stress has become one of the serious environmental problems that affect plant growth and development. In order to uncover the hidden response mechanisms of Cu stress, two small RNA libraries were constructed from Cu-treated and water-treated (Control) leaves of 'Summer Black' grapevine. Following high-throughput sequencing and filtering, a total of 158 known and 98 putative novel miRNAs were identified in the two libraries. Among these, 100 known and 47 novel miRNAs were identified as differentially expressed under Cu stress. Subsequently, the expression patterns of nine Cu-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). There existed some consistency in expression levels of Cu-responsive miRNAs between high throughput sequencing and qRT-PCR assays. The targets prediction of miRNAs indicates that miRNA may regulate some transcription factors, including AP2, SBP, NAC, MYB and ARF during Cu stress. The target genes for two known and two novel miRNAs showed specific cleavage sites at the 10th and/or 11th nucleotide from the 5'-end of the miRNA corresponding to their miRNA complementary sequences. The findings will lay the foundation for exploring the role of the regulation of miRNAs in response to Cu stress and provide valuable gene information for breeding some Cu-tolerant grapevine cultivars.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Le Guan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhenqiang Xie
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaopeng Li
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
19
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
20
|
Li J, Yue L, Shen Y, Sheng Y, Zhan X, Xu G, Xing B. Phenanthrene-responsive microRNAs and their targets in wheat roots. CHEMOSPHERE 2017; 186:588-598. [PMID: 28818587 DOI: 10.1016/j.chemosphere.2017.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/14/2017] [Accepted: 08/06/2017] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) play key roles in plant growth, development and responses to abiotic stress. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. However, it is yet unknown how miRNAs work during PAH uptake by plant roots. Thus, in this study we ascertain phenanthrene (a model PAH)-responsive miRNAs using small RNA high-throughput deep sequencing and their target genes in wheat roots. We identified 108 conserved and non-conserved miRNA members belonging to 82 miRNA families and found 11 differentially expressed miRNAs, among which four miRNAs (miR156, miR164, miR171a and miR9678-3p) were up-regulated and the other seven miRNAs (miR398, miR531, miR1121, miR5048-5p, miR9653b, miR9773 and miR9778) were down-regulated. ABC-transporter-related Gene CA704421 and CA697226 did not respond to phenanthrene exposure. miR156 and miR164 might regulate directly the growth and development of wheat roots by targeting SPL and NAC, respectively. miR398 and miR1121 could regulate oxidative reactions to respond to phenanthrene stress. Additionally, miR9773 might involve phenanthrene metabolism through acting on CYP450. Therefore, it is concluded that phenanthrene triggers variation in miRNA expression, which is associated with uptake of and response to phenanthrene. These findings are of significance for further understanding miRNA regulation mechanisms on PAH uptake, and providing guidance for screening of resistant cultivars in crop production and phytoremediation of PAH-contaminated soils or water at genetic level.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Le Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yu Sheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
21
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
22
|
Huang Y, Yang YB, Sun XH. Genome-wide identification of microRNAs and their target genes in Cynoglossus semilaevis using computational approach. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Fan G, Niu S, Zhao Z, Deng M, Xu E, Wang Y, Yang L. Identification of microRNAs and their targets in Paulownia fortunei plants free from phytoplasma pathogen after methyl methane sulfonate treatment. Biochimie 2016; 127:271-80. [PMID: 27328782 DOI: 10.1016/j.biochi.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/15/2016] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) play major roles in plant responses to various biotic and abiotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. Paulownia witches' broom (PaWB) disease caused by phytoplasmas reduces Paulownia production worldwide. In this study, we investigated the miRNA-mediated plant response to PaWB phytoplasma by Illumina sequencing and degradome analysis of Paulownia fortunei small RNAs (sRNAs). The sRNA and degradome libraries were constructed from healthy and diseased P. fortunei plants and the plants free from phytoplasma pathogen after 60 mg L(-1) methyl methane sulfonate treatment. A total of 96 P. fortunei-conserved miRNAs and 83 putative novel miRNAs were identified. Among them, 37 miRNAs (17 conserved, 20 novel) were found to be differentially expressed in response to PaWB phytoplasma infection. In addition, 114 target genes for 18 of the conserved miRNA families and 33 target genes for 15 of the novel miRNAs in P. fortunei were detected. The expression patterns of 14 of the PaWB phytoplasma-responsive miRNAs and 12 target genes were determined by quantitative real-time polymerase chain reaction (qPCR) experiments. A functional analysis of the miRNA targets indicated that these targeted genes may regulate transcription, stress response, nitrogen metabolism, and various other activities. Our results will help identify the potential roles of miRNAs involved in protecting P. fortunei from diseases.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China.
| | - Suyan Niu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Enkai Xu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Yuanlong Wang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Lu Yang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| |
Collapse
|
24
|
Han X, Yin H, Song X, Zhang Y, Liu M, Sang J, Jiang J, Li J, Zhuo R. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1470-83. [PMID: 26801211 PMCID: PMC5066797 DOI: 10.1111/pbi.12512] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/05/2015] [Accepted: 11/13/2015] [Indexed: 05/15/2023]
Abstract
The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA-target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox-related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA-target pairs also exhibited negative correlations according to a real-time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd-responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Hengfu Yin
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xixi Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jiang Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jihong Li
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Plant-Pathogen Interaction-Related MicroRNAs and Their Targets Provide Indicators of Phytoplasma Infection in Paulownia tomentosa × Paulownia fortunei. PLoS One 2015; 10:e0140590. [PMID: 26484670 PMCID: PMC4617444 DOI: 10.1371/journal.pone.0140590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/26/2015] [Indexed: 01/18/2023] Open
Abstract
Paulownia witches’ broom (PaWB) caused by a phytoplasma, has caused extensive losses in the yields of paulownia timber and resulted in significant economic losses. However, the molecular mechanisms in Paulownia that underlie the phytoplasma stress are poorly characterized. In this study, we use an Illumina platform to sequence four small RNA libraries and four degradome sequencing libraries derived from healthy, PaWB-infected, and PaWB-infected 15 mg·L−1 and 30 mg·L−1 methyl methane sulfonate (MMS)-treated plants. In total, 125 conserved and 118 novel microRNAs (miRNAs) were identified and 33 miRNAs responsive to PaWB disease were discovered. Furthermore, 166 target genes for 18 PaWB disease-related miRNAs were obtained, and found to be involved in plant-pathogen interaction and plant hormone signal transduction metabolic pathways. Eleven miRNAs and target genes responsive to PaWB disease were examined by a quantitative real-time PCR approach. Our findings will contribute to studies on miRNAs and their targets in Paulownia, and provide new insights to further understand plant-phytoplasma interactions.
Collapse
|
26
|
Wang Q, Zhang B. MicroRNAs in cotton: an open world needs more exploration. PLANTA 2015; 241:1303-12. [PMID: 25841643 DOI: 10.1007/s00425-015-2282-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/13/2015] [Indexed: 05/28/2023]
Abstract
This paper reviews the progress and current problems in the field of cotton microRNAs. Cotton is not only one of the most important crops in terms of fiber usage and economic value, but also a model species for investigating cell wall and cellulose biosynthesis as well plant polyploidization. Compared with model plant species, such as Arabidopsis and rice, the research on cotton microRNAs (miRNAs) is lagging, although great progress has been made in the past decade. Since the first reports on identifying miRNAs in cotton in 2007, hundreds of miRNAs have been identified using an in silico comparative genome-based approach and direct cloning. Next-generation deep sequencing has opened the door for cotton miRNA research. In cotton, miRNAs are associated with many biological and metabolic processes, including fiber initiation and development, floral development, embryogenesis, and response to biotic and abiotic stresses. However, the majority of current research is focused on miRNA identification. Although several targets have been predicted using computational approaches and degradome sequencing, more functional studies should be performed in the next couple of years to elucidate the roles of miRNAs in cotton fiber development and response to different environmental stresses using transgenic technology. This paper reviews the history, identification, and function of cotton miRNAs as well as future directions for this research.
Collapse
Affiliation(s)
- Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | | |
Collapse
|
27
|
Wang Y, Zhao Z, Deng M, Liu R, Niu S, Fan G. Identification and functional analysis of microRNAs and their targets in Platanus acerifolia under lead (Pb) stress. Int J Mol Sci 2015; 16:7098-111. [PMID: 25830479 PMCID: PMC4425006 DOI: 10.3390/ijms16047098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) play important regulatory roles in development and stress responses in plants. Lead (Pb) is a non-essential element that is highly toxic to living organisms. Platanus acerifolia is grown as a street tree in cities throughout temperate regions for its importance in improving the urban ecological environment. MiRNAs that respond to abiotic stresses have been identified in plants; however, until now, the influence of Pb stress on P. acerifolia miRNAs has not been reported. To identify miRNAs and predict their target genes under Pb stress, two small RNA and two degradome libraries were constructed from Pb-treated and Pb-free leaves of P.acerifolia seedlings. After sequencing, 55 known miRNAs and 129 novel miRNAs were obtained, and 104 target genes for the miRNAs were identified by degradome sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to predict the functions of the targets. The expressions of eight differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report about P. acerifolia miRNAs and their target genes under Pb stress. This study has provided data for further research into molecular mechanisms involved in resistance of P.acerifolia to Pb stress.
Collapse
Affiliation(s)
- Yuanlong Wang
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China.
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China.
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China.
| | - Rongning Liu
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China.
- Department of Landscape Architecture, Henan Vocational College of Agriculture, Zhengzhou 451450, China.
| | - Suyan Niu
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China.
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China.
| |
Collapse
|