1
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
2
|
Bai Y, Zhou Y, Lei Q, Wang Y, Pu G, Liu Z, Chen X, Liu Q. Analysis of the HD-Zip I transcription factor family in Salvia miltiorrhiza and functional research of SmHD-Zip12 in tanshinone synthesis. PeerJ 2023; 11:e15510. [PMID: 37397009 PMCID: PMC10312201 DOI: 10.7717/peerj.15510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Background The homeodomain-leucine zipper I (HD-Zip I) transcription factor is a plant-specific protein that plays an essential role in the abiotic stress response of plants. Research on the HD-Zip I family in Salvia miltiorrhiza is still lacking. Methods and Results In this study, a total of 25 SmHD-Zip I proteins were identified. Their characterizations, phylogenetic relationships, conserved motifs, gene structures, and cis-elements were analyzed comprehensively using bioinformatics methods. Expression profiling revealed that SmHD-Zip I genes exhibited distinctive tissue-specific patterns and divergent responses to ABA, PEG, and NaCl stresses. SmHD-Zip12 responded the most strongly to ABA, PEG, and NaCl, so it was used for transgenic experiments. The overexpression of SmHD-Zip12 significantly increased the content of cryptotanshinone, dihydrotanshinone I, tanshinone I, and tanshinone IIA by 2.89-fold, 1.85-fold, 2.14-fold, and 8.91-fold compared to the wild type, respectively. Moreover, in the tanshinone biosynthetic pathways, the overexpression of SmHD-Zip12 up-regulated the expression levels of SmAACT, SmDXS, SmIDS, SmGGPPS, SmCPS1, SmCPS2, SmCYP76AH1, SmCYP76AH3, and SmCYP76AK1 compared with the wild type. Conclusions This study provides information the possible functions of the HD-Zip I family and lays a theoretical foundation for clarifying the functional mechanism of the SmHD-Zip12 gene in regulating the synthesis of tanshinone in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yanhong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiaoqi Lei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gaobin Pu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhenhua Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- LiShizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, Hubei, China
| |
Collapse
|
3
|
Niu X, Fu D. The Roles of BLH Transcription Factors in Plant Development and Environmental Response. Int J Mol Sci 2022; 23:3731. [PMID: 35409091 PMCID: PMC8998993 DOI: 10.3390/ijms23073731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent advancements in plant molecular biology and biotechnology, providing enough, and safe, food for an increasing world population remains a challenge. The research into plant development and environmental adaptability has attracted more and more attention from various countries. The transcription of some genes, regulated by transcript factors (TFs), and their response to biological and abiotic stresses, are activated or inhibited during plant development; examples include, rooting, flowering, fruit ripening, drought, flooding, high temperature, pathogen infection, etc. Therefore, the screening and characterization of transcription factors have increasingly become a hot topic in the field of plant research. BLH/BELL (BEL1-like homeodomain) transcription factors belong to a subfamily of the TALE (three-amino-acid-loop-extension) superfamily and its members are involved in the regulation of many vital biological processes, during plant development and environmental response. This review focuses on the advances in our understanding of the function of BLH/BELL TFs in different plants and their involvement in the development of meristems, flower, fruit, plant morphogenesis, plant cell wall structure, the response to the environment, including light and plant resistance to stress, biosynthesis and signaling of ABA (Abscisic acid), IAA (Indoleacetic acid), GA (Gibberellic Acid) and JA (Jasmonic Acid). We discuss the theoretical basis and potential regulatory models for BLH/BELL TFs' action and provide a comprehensive view of their multiple roles in modulating different aspects of plant development and response to environmental stress and phytohormones. We also present the value of BLHs in the molecular breeding of improved crop varieties and the future research direction of the BLH gene family.
Collapse
Affiliation(s)
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
4
|
Genome-Wide Identification, Expression, and Interaction Analysis of BEL-Like Homeodomain Gene Family in Peach. Biochem Genet 2022; 60:2037-2051. [PMID: 35230561 DOI: 10.1007/s10528-022-10203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
Abstract
BEL1-like homeodomain (BLH) family genes as homeodomain transcription factors are found ubiquitously in plants to play important regulatory roles in reproductive development, morphological development, and stress response. Although BLH proteins have been reported in some species, there is little information about BLH genes in peach. In this study, we identified 11 peach PpBLH genes based on the conserved domain. Phylogenetic analysis suggested that the PpBLH proteins could be divided into five groups, which might be involved in different aspects of morphogenesis. Genomics structure analysis revealed that there were four exons in the PpBLH gene, and the length of the third exon was 61 bp. Chromosomal location analysis showed that the PpBLH genes were not distributed uniformly on six chromosomes. Promoter analysis showed that the promoter sequences of six PpBLH genes contained multiple cis-acting elements for hormones and stress. Six PpBLH genes were cloned by RT-PCR, and PpBLH1, PpBLH4, and PpBLH7 showed different expression patterns in the tested fruits under common temperature and high temperature. Y2H results indicated that PpBLH7 andPpBLH10 interacted with the PpOFP6 protein, and PpBLH1 interacted with the PpOFP1, PpOFP2, PpOFP4, and PpOFP13 proteins. These results provide new insight for further study of PpBLH genes, and construction of regulatory networks of PpBLH proteins in the growth, development, and stress response of peach.
Collapse
|
5
|
He Y, Yang T, Yan S, Niu S, Zhang Y. Identification and characterization of the BEL1-like genes reveal their potential roles in plant growth and abiotic stress response in tomato. Int J Biol Macromol 2022; 200:193-205. [PMID: 34995657 DOI: 10.1016/j.ijbiomac.2021.12.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022]
Abstract
BEL1-like (BELL) transcription factors, belonging to three-amino acid-loop-extension (TALE) superfamily, are ubiquitous in plants. BELLs regulate a wide range of plant biological processes, but the understanding of the BELL family in tomato (Solanum lycopersicum) remains fragmentary. In this study, a total of 14 members of the SlBELL family were identified in tomato. SlBELL proteins contained the conserved BELL and SKY domains that served as typical structures of the BELL family. Syntenic analysis indicated that the BELL orthologs between tomato and other dicots had close evolutionary relationships. Furthermore, the promoters of SlBELLs contained numerous cis-elements related to plant growth, development, and stress response. The SlBELL genes exhibited different tissue-specific expression profiles and responded to cold, heat, and drought stresses, implying their potential functions in regulating multiple aspects of plant growth, as well as in response to abiotic stresses. Through the interaction network prediction, we found that most SlBELL proteins displayed probable interactions with the KNOTTED1-like (KNOX) proteins, another kind of transcription factor in the TALE superfamily. These findings laid foundations for further dissection of the functions of SlBELL genes in tomato, as well as for exploration of the evolutionary relationships of BELL homologs among different plant species.
Collapse
Affiliation(s)
- Yu He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Siwei Yan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shaobo Niu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
6
|
Identification and Characterization of the Homeobox Gene Family in Fusarium pseudograminearum Reveal Their Roles in Pathogenicity. Biochem Genet 2022; 60:1601-1614. [DOI: 10.1007/s10528-021-10150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
|
7
|
Li K, Wang J, Kuang L, Tian Z, Wang X, Dun X, Tu J, Wang H. Genome-wide association study and transcriptome analysis reveal key genes affecting root growth dynamics in rapeseed. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:178. [PMID: 34507599 PMCID: PMC8431925 DOI: 10.1186/s13068-021-02032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND In terms of global demand, rapeseed is the third-largest oilseed crop after soybeans and palm, which produces vegetable oil for human consumption and biofuel for industrial production. Roots are vital organs for plant to absorb water and attain mineral nutrients, thus they are of great importance to plant productivity. However, the genetic mechanisms regulating root development in rapeseed remain unclear. In the present study, seven root-related traits and shoot biomass traits in 280 Brassica napus accessions at five continuous vegetative stages were measured to establish the genetic basis of root growth in rapeseed. RESULTS The persistent and stage-specific genetic mechanisms were revealed by root dynamic analysis. Sixteen persistent and 32 stage-specific quantitative trait loci (QTL) clusters were identified through genome-wide association study (GWAS). Root samples with contrasting (slow and fast) growth rates throughout the investigated stages and those with obvious stage-specific changes in growth rates were subjected to transcriptome analysis. A total of 367 differentially expressed genes (DEGs) with persistent differential expressions throughout root development were identified, and these DEGs were significantly enriched in GO terms, such as energy metabolism and response to biotic or abiotic stress. Totally, 485 stage-specific DEGs with different expressions at specific stage were identified, and these DEGs were enriched in GO terms, such as nitrogen metabolism. Four candidate genes were identified as key persistent genetic factors and eight as stage-specific ones by integrating GWAS, weighted gene co-expression network analysis (WGCNA), and differential expression analysis. These candidate genes were speculated to regulate root system development, and they were less than 100 kb away from peak SNPs of QTL clusters. The homologs of three genes (BnaA03g52990D, BnaA06g37280D, and BnaA09g07580D) out of 12 candidate genes have been reported to regulate root development in previous studies. CONCLUSIONS Sixteen QTL clusters and four candidate genes controlling persistently root development, and 32 QTL clusters and eight candidate genes stage-specifically regulating root growth in rapeseed were detected in this study. Our results provide new insights into the temporal genetic mechanisms of root growth by identifying key candidate QTL/genes in rapeseed.
Collapse
Affiliation(s)
- Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430062 China
| | - Jie Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Ze Tian
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430062 China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| |
Collapse
|
8
|
Mining for Candidate Genes Controlling Secondary Growth of the Carrot Storage Root. Int J Mol Sci 2020; 21:ijms21124263. [PMID: 32549408 PMCID: PMC7352697 DOI: 10.3390/ijms21124263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Diverse groups of carrot cultivars have been developed to meet consumer demands and industry needs. Varietal groups of the cultivated carrot are defined based on the shape of roots. However, little is known about the genetic basis of root shape determination. Methods: Here, we used 307 carrot plants from 103 open-pollinated cultivars for a genome wide association study to identify genomic regions associated with the storage root morphology. Results: A 180 kb-long region on carrot chromosome 1 explained 10% of the total observed phenotypic variance in the shoulder diameter. Within that region, DcDCAF1 and DcBTAF1 genes were proposed as candidates controlling secondary growth of the carrot storage root. Their expression profiles differed between the cultivated and the wild carrots, likely indicating that their elevated expression was required for the development of edible roots. They also showed higher expression at the secondary root growth stage in cultivars producing thick roots, as compared to those developing thin roots. Conclusions: We provided evidence for a likely involvement of DcDCAF1 and/or DcBTAF1 in the development of the carrot storage root and developed a genotyping assay facilitating the identification of variants in the region on carrot chromosome 1 associated with secondary growth of the carrot root.
Collapse
|
9
|
Ye Q, Liu X, Bian W, Zhang Z, Zhang H. Over-expression of transcription factor ARK1 gene leads to down-regulation of lignin synthesis related genes in hybrid poplar '717'. Sci Rep 2020; 10:8549. [PMID: 32444679 PMCID: PMC7244773 DOI: 10.1038/s41598-020-65328-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
Improving wood growth rate and wood quality are worthy goals in forest genetics and breeding research. The ARK1 gene is one member of the ARBORKNOX family in all plants, which play an essential role in the process of plant growth and development, but the mechanism associated with its gene network regulation is poorly investigated. In order to generate over-expression transgenic hybrid poplar, the agrobacterium-mediated transformation was used to obtain transgenic hybrid poplar ‘717’ plants to provide insight into the function of the ARK1 gene in poplar. Moreover, the morphology of transgenic plants was observed, and transcriptome analysis was performed to explore the ARK1 gene function. The results showed that there were significant differences in pitch, stem diameter, petiole length, leaf width, leaf length and seedling height between ARK1 transgenic seedlings and non-transgenic seedlings. The transgenic seedlings usually had multiple branches and slender leaves, with some leaves not being fully developed. The results of transcriptome analysis showed that the differentially expressed genes were involved in the growth of poplars, including proteins, transcription factors and protein kinases. Genes related to the positive regulation in plant hormone signal transduction pathways were up-regulated, and the genes related to lignin synthesis were down-regulated. The RT-qPCR analysis confirmed the expression levels of the genes involved in the plant hormone signal transduction pathways and phenylpropanoid pathway. In conclusion, the ARK1 gene had a positive regulatory effect on plant growth, and the gene’s coding enzymes related to lignin synthesis were down-regulated.
Collapse
Affiliation(s)
- Qinxia Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming, Yunnan, 650224, China
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming, Yunnan, 650224, China
| | - Wen Bian
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Zhiming Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming, Yunnan, 650224, China.
| |
Collapse
|
10
|
Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, Wang A, He L. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 2020; 21:117. [PMID: 32013881 DOI: 10.21203/rs.2.9777/v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/14/2020] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Yam tuber is a storage organ, derived from the modified stem. Tuber expansion is a complex process, and depends on the expressions of genes that can be influenced by environmental and endogenous factors. However, little is known about the regulatory mechanism of tuber expansion. In order to identify the genes and miRNAs involved in tuber expansion, we examined the mRNAs and small RNAs in Dioscorea opposita (Chinese yam) cv. Guihuai 16 tuber during its initiation and expansion stages. RESULTS A total of 14,238 differentially expressed genes in yam tuber at its expansion stage were identified by using RNA sequencing technology. Among them, 5723 genes were up-regulated, and 8515 genes were down-regulated. Functional analysis revealed the coordination of tuber plant involved in processes of cell events, metabolism, biosynthesis, and signal transduction pathways at transcriptional level, suggesting that these differentially expressed genes are somehow involved in response to tuber expansion, including CDPK, CaM, CDL, SAUR, DELLA, SuSy, and expansin. In addition, 541 transcription factor genes showed differential expression during the expansion stage at transcriptional level. MADS, bHLH, and GRAS were involved in cell differentiation, division, and expansion, which may relate to tuber expansion. Noteworthy, data analysis revealed that 22 known tuber miRNAs belong to 10 miRNA families, and 50 novel miRNAs were identified. The integrated analysis of miRNA-mRNA showed that 4 known miRNAs and 11 genes formed 14 miRNA-target mRNA pairs were co-expressed in expansion stage. miRNA160, miRNA396, miRNA535 and miRNA5021 may be involved in complex network to regulate cell division and differentiation in yam during its expansion stage. CONCLUSION The mRNA and miRNA datasets presented here identified a subset of candidate genes and miRNAs that are putatively associated with tuber expansion in yam, a hypothetical model of genetic regulatory network associated with tuber expansion in yam was put forward, which may provide a foundation for molecular regulatory mechanism researching on tuber expansion in Dioscorea species.
Collapse
Affiliation(s)
- Yunyi Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Saba Hameed
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
11
|
Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, Wang A, He L. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 2020; 21:117. [PMID: 32013881 PMCID: PMC6998100 DOI: 10.1186/s12864-020-6492-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Yam tuber is a storage organ, derived from the modified stem. Tuber expansion is a complex process, and depends on the expressions of genes that can be influenced by environmental and endogenous factors. However, little is known about the regulatory mechanism of tuber expansion. In order to identify the genes and miRNAs involved in tuber expansion, we examined the mRNAs and small RNAs in Dioscorea opposita (Chinese yam) cv. Guihuai 16 tuber during its initiation and expansion stages. Results A total of 14,238 differentially expressed genes in yam tuber at its expansion stage were identified by using RNA sequencing technology. Among them, 5723 genes were up-regulated, and 8515 genes were down-regulated. Functional analysis revealed the coordination of tuber plant involved in processes of cell events, metabolism, biosynthesis, and signal transduction pathways at transcriptional level, suggesting that these differentially expressed genes are somehow involved in response to tuber expansion, including CDPK, CaM, CDL, SAUR, DELLA, SuSy, and expansin. In addition, 541 transcription factor genes showed differential expression during the expansion stage at transcriptional level. MADS, bHLH, and GRAS were involved in cell differentiation, division, and expansion, which may relate to tuber expansion. Noteworthy, data analysis revealed that 22 known tuber miRNAs belong to 10 miRNA families, and 50 novel miRNAs were identified. The integrated analysis of miRNA-mRNA showed that 4 known miRNAs and 11 genes formed 14 miRNA-target mRNA pairs were co-expressed in expansion stage. miRNA160, miRNA396, miRNA535 and miRNA5021 may be involved in complex network to regulate cell division and differentiation in yam during its expansion stage. Conclusion The mRNA and miRNA datasets presented here identified a subset of candidate genes and miRNAs that are putatively associated with tuber expansion in yam, a hypothetical model of genetic regulatory network associated with tuber expansion in yam was put forward, which may provide a foundation for molecular regulatory mechanism researching on tuber expansion in Dioscorea species.
Collapse
Affiliation(s)
- Yunyi Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Saba Hameed
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
12
|
Yang H, Yang Z, Mao Z, Li Y, Hu D, Li X, Shi G, Huang F, Liu B, Kong F, Yu D. Genome-Wide DNA Methylation Analysis of Soybean Curled-Cotyledons Mutant and Functional Evaluation of a Homeodomain-Leucine Zipper (HD-Zip) I Gene GmHDZ20. FRONTIERS IN PLANT SCIENCE 2020; 11:593999. [PMID: 33505408 PMCID: PMC7830220 DOI: 10.3389/fpls.2020.593999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 05/17/2023]
Abstract
DNA methylation is a major, conserved epigenetic modification that influences many biological processes. Cotyledons are specialized tissues that provide nutrition for seedlings at the early developmental stage. To investigate the patterns of genomic DNA methylation of germinated cotyledons in soybean (Glycine max) and its effect on cotyledon development, we performed a genome-wide comparative analysis of DNA methylation between the soybean curled-cotyledons (cco) mutant, which has abnormal cotyledons, and its corresponding wild type (WT) by whole-genome bisulfite sequencing. The cco mutant was methylated at more sites but at a slightly lower level overall than the WT on the whole-genome level. A total of 46 CG-, 92 CHG-, and 9723 CHH- (H = A, C, or T) differentially methylated genes (DMGs) were identified in cotyledons. Notably, hypomethylated CHH-DMGs were enriched in the gene ontology term "sequence-specific DNA binding transcription factor activity." We selected a DMG encoding a homeodomain-leucine zipper (HD-Zip) I subgroup transcription factor (GmHDZ20) for further functional characterization. GmHDZ20 localized to the nucleus and was highly expressed in leaf and cotyledon tissues. Constitutive expression of GmHDZ20 in Arabidopsis thaliana led to serrated rosette leaves, shorter siliques, and reduced seed number per silique. A yeast two-hybrid assay revealed that GmHDZ20 physically interacted with three proteins associated with multiple aspects of plant growth. Collectively, our results provide a comprehensive study of soybean DNA methylation in normal and aberrant cotyledons, which will be useful for the identification of specific DMGs that participate in cotyledon development, and also provide a foundation for future in-depth functional study of GmHDZ20 in soybean.
Collapse
Affiliation(s)
- Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Hui Yang,
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhuozhuo Mao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guixia Shi
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Deyue Yu,
| |
Collapse
|
13
|
Identification of Homeobox Genes Associated with Lignification and Their Expression Patterns in Bamboo Shoots. Biomolecules 2019; 9:biom9120862. [PMID: 31835882 PMCID: PMC6995565 DOI: 10.3390/biom9120862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
: Homeobox (HB) genes play critical roles in regulating various aspects of plant growth and development. However, little is known about HB genes in bamboo. In this study, a total of 115 HB genes (PeHB001‒PeHB115) were identified from moso bamboo (Phyllostachys edulis) and grouped into 13 distinct classes (BEL, DDT, HD-ZIP I‒IV, KNOX, NDX, PHD, PINTOX, PLINC, SAWADEE, and WOX) based on the conserved domains and phylogenetic analysis. The number of members in the different classes ranged from 2 to 24, and they usually varied in terms of exon‒intron distribution pattern and length. There were 20 conserved motifs found in 115 PeHBs, with motif 1 being the most common. Gene ontology (GO) analysis showed that PeHBs had diverse molecular functions, with 19 PeHBs being annotated as having xylem development, xylem, and phloem pattern formation functions. Co-expression network analysis showed that 10 of the 19 PeHBs had co-expression correlations, and three members of the KNOX class were hub proteins that interacted with other transcription factors (TFs) such as MYB, bHLH, and OVATE, which were associated with lignin synthesis. Yeast two-hybridization results further proved that PeHB037 (BEL class) interacted with PeHB057 (KNOX class). Transcriptome expression profiling indicated that all PeHBs except PeHB017 were expressed in at least one of the seven tissues of moso bamboo, and 90 PeHBs were expressed in all the tissues. The qRT-PCR results of the 19 PeHBs showed that most of them were upregulated in shoots as the height increased. Moreover, a KNOX binding site was found in the promoters of the key genes involved in lignin synthesis such as Pe4CL, PeC3H, PeCCR, and PeCOMT, which had positive expression correlations with five KNOX genes. Similar results were found in winter bamboo shoots with prolonged storage time, which was consistent with the degree of lignification. These results provide basic data on PeHBs in moso bamboo, which will be helpful for future functional research on PeHBs with positive regulatory roles in the process of lignification.
Collapse
|