1
|
Arora K, Vats V, Kaushik N, Sindhawani D, Saini V, Arora DM, Kumar Y, Vashisht E, Singh G, Verma PK. A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management. Curr Neuropharmacol 2023; 21:2487-2504. [PMID: 36703580 PMCID: PMC10616914 DOI: 10.2174/1570159x21666230126151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. OBJECTIVE The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. METHOD This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. RESULTS A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. CONCLUSION Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
Collapse
Affiliation(s)
- Kaushal Arora
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vishal Vats
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nalin Kaushik
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Deepanshu Sindhawani
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vaishali Saini
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Divy Mohan Arora
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Yogesh Kumar
- Sat Priya College of Pharmacy, Rohtak, Haryana, 124001, India
| | - Etash Vashisht
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
2
|
Wang T, Bai S, Wang W, Chen Z, Chen J, Liang Z, Qi X, Shen H, Xie P. Diterpene Ginkgolides Exert an Antidepressant Effect Through the NT3-TrkA and Ras-MAPK Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1279-1294. [PMID: 32308365 PMCID: PMC7132272 DOI: 10.2147/dddt.s229145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Background Depression is a highly prevalent mental illness that severely impacts the quality of life of affected individuals. Our recent studies demonstrated that diterpene ginkgolides (DG) have antidepressant effects in mice. However, the underlying molecular mechanisms remained much unclear. Methods In this study, we assessed the antidepressant effects of chronic DG therapy in rats by evaluating depression-related behaviors, we also examined potential side effects using biochemical indicators. Furthermore, we performed an in-depth molecular network analysis of gene–protein–metabolite interactions on the basis of metabolomics. Results Chronic DG treatment significantly ameliorated the depressive-like behavioral phenotype. Furthermore, the neurotrophin signaling-related NT3-TrkA and Ras-MAPK pathways may play an important role in the antidepressant effect of DG in the hippocampus. Conclusion These findings provide novel insight into the mechanisms underlying the antidepressant action of DG, and should help advance the development of new therapeutic strategies for depression.
Collapse
Affiliation(s)
- Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Wei Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Jianjun Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Zihong Liang
- Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Xunzhong Qi
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hailan Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peng Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, People's Republic of China.,Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Scheff SW, Ansari MA. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals. J Neurotrauma 2016; 34:1491-1510. [PMID: 27846772 DOI: 10.1089/neu.2016.4718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
4
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
5
|
Ates O, Cayli SR, Gurses I, Karabulut AB, Yucel N, Kocak A, Cakir CO, Yologlu S. Do sodium channel blockers have neuroprotective effect after onset of ischemic insult? Neurol Res 2013; 29:317-23. [PMID: 17509233 DOI: 10.1179/016164107x159225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Cerebral ischemia causes a series of pathophysiologic events that may result in cerebral infarct. Some neurons are more vulnerable to ischemia, particularly pyramidal neurons in the hippocampal CA1 region. Pharmacologic intervention for treatment of cerebral ischemia aims to counteract secondary neurotoxic events or to interrupt the progression of this process. In the present study, we compare the neuroprotective effects of sodium channel blockers (mexiletine, riluzole and phenytoin) and investigate whether they have neuroprotective effect when given after ischemic insult. METHODS A transient global cerebral ischemia model was performed in this study by clipping bilateral common carotid arteries during 45 minutes. Riluzole (8 mg/kg), mexiletine (80 mg/kg) and phenytoin (200 mg/kg) were injected into the rats intraperitoneally 30 minutes before or after reperfusion. Lipid peroxidation levels and cerebral water contents were evaluated 24 hours after ischemia. Histopathologic assessment of hippocampal region was determined 7 days after ischemia. RESULTS Riluzole, mexiletine and phenytoin treatment after global ischemia significantly decreased water content of the ischemic brain (p<0.05 for each). No significant difference was observed in cerebral edema among the drug treatment groups (p>0.05). When pre-treatment and post-treatment groups were compared with each other, only riluzole pre-treatment group revealed better result for cerebral edema (p<0.05). Pre-treatment with these drugs revealed significantly better results for the malonyldialdehyde (MDA) level and the number of survival neuron on the hippocampal region than the post-treatment groups. CONCLUSION It is demonstrated that riluzole, mexiletine and phenytoin are potent neuroprotective agents in the rat model of transient global cerebral ischemia, but they are more effective when given before onset of the ischemia.
Collapse
Affiliation(s)
- Ozkan Ates
- Department of Neurosurgery, School of Medicine, Inonu University, Malatya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kline AE, McAloon RL, Henderson KA, Bansal UK, Ganti BM, Ahmed RH, Gibbs RB, Sozda CN. Evaluation of a combined therapeutic regimen of 8-OH-DPAT and environmental enrichment after experimental traumatic brain injury. J Neurotrauma 2010; 27:2021-32. [PMID: 21028935 DOI: 10.1089/neu.2010.1535] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
When provided individually, both the serotonin (5-HT(1A))-receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and environmental enrichment (EE) enhance behavioral outcome and reduce histopathology after experimental traumatic brain injury (TBI). The aim of this study was to determine whether combining these therapies would yield greater benefit than either used alone. Anesthetized adult male rats received a cortical impact or sham injury and then were randomly assigned to enriched or standard (STD) housing, where either 8-OH-DPAT (0.1 mg/kg) or vehicle (1.0 mL/kg) was administered intraperitoneally once daily for 3 weeks. Motor and cognitive assessments were conducted on post-injury days 1-5 and 14-19, respectively. CA1/CA3 neurons and choline acetyltransferase-positive (ChAT(+)) medial septal cells were quantified at 3 weeks. 8-OH-DPAT and EE attenuated CA3 and ChAT(+) cell loss. Both therapies also enhanced motor recovery, acquisition of spatial learning, and memory retention, as verified by reduced times to traverse the beam and to locate an escape platform in the water maze, and a greater percentage of time spent searching in the target quadrant during a probe trial in the TBI + STD + 8-OH-DPAT, TBI + EE + 8-OH-DPAT, and TBI + EE + vehicle groups versus the TBI + STD + vehicle group (p ≤ 0.0016). No statistical distinctions were revealed between the TBI + EE + 8-OH-DPAT and TBI + EE + vehicle groups in functional outcome or CA1/CA3 cell survival, but there were significantly more ChAT(+) cells in the former (p = 0.003). These data suggest that a combined therapeutic regimen of 8-OH-DPAT and EE reduces TBI-induced ChAT(+) cell loss, but does not enhance hippocampal cell survival or neurobehavioral performance beyond that of either treatment alone. The findings underscore the complexity of combinational therapies and of elucidating potential targets for TBI.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
van Patot MCT, Keyes LE, Leadbetter G, Hackett PH. Ginkgo bilobafor Prevention of Acute Mountain Sickness: Does It Work? High Alt Med Biol 2009; 10:33-43. [DOI: 10.1089/ham.2008.1085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Martha C. Tissot van Patot
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
- Altitude Research Center, Division of Emergency Medicine, Department of Surgery, University of Colorado, Denver Colorado
| | - Linda E. Keyes
- Altitude Research Center, Division of Emergency Medicine, Department of Surgery, University of Colorado, Denver Colorado
| | - Guy Leadbetter
- Department of Exercise Physiology, Mesa State College, Grand Junction, Colorado
| | - Peter H. Hackett
- Altitude Research Center, Division of Emergency Medicine, Department of Surgery, University of Colorado, Denver Colorado
- Institute for Altitude Medicine, Telluride, Colorado
| |
Collapse
|
8
|
Ates O, Cayli SR, Altinoz E, Yucel N, Kocak A, Tarim O, Durak A, Turkoz Y, Yologlu S. Neuroprotective effect of mexiletine in the central nervous system of diabetic rats. Mol Cell Biochem 2006; 286:125-31. [PMID: 16541198 DOI: 10.1007/s11010-005-9102-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 12/02/2005] [Indexed: 10/24/2022]
Abstract
Both experimental and clinical studies suggests that oxidative stress plays an important role in the pathogenesis of diabetes mellitus type 1 and type 2. Hyperglycaemia leads to free radical generation and causes neural degeneration. In the present study we investigated the possible neuroprotective effect of mexiletine against streptozotocin-induced hyperglycaemia in the rat brain and spinal cord. 30 adult male Wistar rats were divided into three groups: control, diabetic, and diabetic-mexiletine treated group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Mexiletine (50 mg/kg) was injected intraperitoneally every day for six weeks. After 6 weeks the brain, brain stem and cervical spinal cord of the rats were removed and the hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical analysis (the level of Malondialdehide [MDA], Nitric Oxide [NO], Reduced Glutathione [GSH], and Xanthine Oxidase [XO] activity). MDA, XO and NO levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group increased significantly, when compared with control and mexiletine groups (P < 0.05). GSH levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group decreased significantly when compared with control and mexiletine groups (P < 0.05). This study demonstrates that mexiletine protects the neuronal tissue against the diabetic oxidative damage.
Collapse
Affiliation(s)
- Ozkan Ates
- Inonu University, School of Medicine, Department of Neurosurgery, Malatya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|