1
|
Gigliotti AK, Bowen WD, Hammill MO, Puryear WB, Runstadler J, Wenzel FW, Cammen KM. Sequence diversity and differences at the highly duplicated MHC-I gene reflect viral susceptibility in sympatric pinniped species. J Hered 2022; 113:525-537. [PMID: 35690352 PMCID: PMC9584807 DOI: 10.1093/jhered/esac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
Differences in disease susceptibility among species can result from rapid host-pathogen coevolution and differences in host species ecology that affect the strength and direction of natural selection. Among two sympatric pinniped species that differ in sociality and putative disease exposure, we investigate observed differences in susceptibility through an analysis of a highly variable, duplicated gene family involved in the vertebrate immune response. Using high-throughput amplicon sequencing, we characterize diversity at the two exons that encode the peptide binding region of the major histocompatibility complex class I (MHC-I) gene in harbor (N = 60) and gray (N = 90) seal populations from the Northwest Atlantic. Across species, we identified 106 full-length exon 2 and 103 exon 3 sequence variants and a minimum of 11 duplicated MHC-I loci. The sequence variants clustered in 15 supertypes defined by the physiochemical properties of the peptide binding region, including a putatively novel Northwest Atlantic MHC-I diversity sublineage. Trans-species polymorphisms, dN/dS ratios, and evidence of gene conversion among supertypes are consistent with balancing selection acting on this gene. High functional redundancy suggests particularly strong selection among gray seals at the novel Northwest Atlantic MHC-I diversity sublineage. At exon 2, harbor seals had a significantly greater number of variants per individual than gray seals, but fewer supertypes. Supertype richness and private supertypes are hypothesized to contribute to observed differences in disease resistance between species, as consistently, across the North Atlantic and many disease outbreaks, gray seals appear to be more resistant to respiratory viruses than harbor seals.
Collapse
Affiliation(s)
| | - W Don Bowen
- Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Michael O Hammill
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jonathan Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Frederick W Wenzel
- Protected Species Branch, NOAA, NMFS, Northeast Fisheries Science Center, Woods Hole, MA, USA
| | | |
Collapse
|
2
|
A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proc Natl Acad Sci U S A 2021; 118:2020023118. [PMID: 33649227 DOI: 10.1073/pnas.2020023118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The population structure of social species has important consequences for both their demography and transmission of their pathogens. We develop a metapopulation model that tracks two key components of a species' social system: average group size and number of groups within a population. While the model is general, we parameterize it to mimic the dynamics of the Yellowstone wolf population and two associated pathogens: sarcoptic mange and canine distemper. In the initial absence of disease, we show that group size is mainly determined by the birth and death rates and the rates at which groups fission to form new groups. The total number of groups is determined by rates of fission and fusion, as well as environmental resources and rates of intergroup aggression. Incorporating pathogens into the models reduces the size of the host population, predominantly by reducing the number of social groups. Average group size responds in more subtle ways: infected groups decrease in size, but uninfected groups may increase when disease reduces the number of groups and thereby reduces intraspecific aggression. Our modeling approach allows for easy calculation of prevalence at multiple scales (within group, across groups, and population level), illustrating that aggregate population-level prevalence can be misleading for group-living species. The model structure is general, can be applied to other social species, and allows for a dynamic assessment of how pathogens can affect social structure and vice versa.
Collapse
|
3
|
Modi S, Mondol S, Nigam P, Habib B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci Rep 2021; 11:16371. [PMID: 34385570 PMCID: PMC8361113 DOI: 10.1038/s41598-021-95918-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Deforestation and agricultural intensification have resulted in an alarming change in the global land cover over the past 300 years, posing a threat to species conservation. Dhole is a monophyletic, social canid and, being an endangered and highly forest-dependent species, is more prone to the loss of favorable habitat in the Anthropocene. We determined the genetic differentiation and demographic history of dhole across the tiger reserves of Maharashtra using the microsatellite data of 305 individuals. Simulation-based analyses revealed a 77-85% decline in the major dhole sub-populations. Protected areas have provided refuge to the historically declining dhole population resulting in clustering with strong genetic structure in the remnant dhole population. The historical population decline coincides with the extreme events in the landscape over the past 300 years. The study highlights the pattern of genetic differentiation and diversity of a highly forest-dependent species which can be associated with the loss of forest cover outside tiger reserves. It also warrants attention to develop conservation plans for the remnant surviving population of dholes in India.
Collapse
Affiliation(s)
- Shrushti Modi
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Samrat Mondol
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Parag Nigam
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Bilal Habib
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India.
| |
Collapse
|
4
|
Verble K, Hallerman EM, Alexander KA. Urban landscapes increase dispersal, gene flow, and pathogen transmission potential in banded mongoose ( Mungos mungo) in northern Botswana. Ecol Evol 2021; 11:9227-9240. [PMID: 34306619 PMCID: PMC8293740 DOI: 10.1002/ece3.7487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
Disease transmission can be strongly influenced by the manner in which conspecifics are connected across a landscape and the effects of land use upon these dynamics. In northern Botswana, the territorial and group-living banded mongoose (Mungos mungo) lives across urban and natural landscapes and is infected with a novel Mycobacterium tuberculosis complex pathogen, M. mungi. Using microsatellite markers amplified from DNA derived from banded mongoose fecal and tissue samples (n = 168), we evaluated population genetic structure, individual dispersal, and gene flow for 12 troops. Genetic structure was detectable and moderately strong across groups (F ST = 0.086), with K = 7 being the best-supported number of genetic clusters. Indications of admixture in certain troops suggest formation of new groups through recent fusion events. Differentiation was higher for troops inhabiting natural areas (F ST = 0.102) than for troops in urban landscapes (F ST = 0.081). While this suggests increased levels of gene flow between urban-dwelling troops, the inclusion of a smaller number of study troops from natural land types may have influenced these findings. Of those individuals confirmed infected with M. mungi, the majority (73%, n = 11) were assigned to their natal group which is consistent with previous observations linking lower levels of dispersal with infection. Twenty-one probable dispersing individuals were identified, with all suspected migrants originating from troops within the urban landscape. Findings suggest that urbanized landscapes may increase gene flow and dispersal behavior with a concomitant increase in the risk of pathogen spread. As urban landscapes expand, there is an increasing need to understand how land use and pathogen infection may change wildlife behavior and disease transmission potential.
Collapse
Affiliation(s)
- Kelton Verble
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
- Present address:
Department of Biological SciencesUniversity of AlabamaTuscaloosaALUSA
| | - Eric M. Hallerman
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Kathleen A. Alexander
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
- Chobe Research InstituteCARACALKasaneBotswana
| |
Collapse
|
5
|
Climate Change Impacts on Himalayan Biodiversity: Evidence-Based Perception and Current Approaches to Evaluate Threats Under Climate Change. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00237-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Abstract
Animal populations are occasionally shocked by epidemics of contagious diseases. The ability of social systems to withstand epidemic shocks and mitigate disruptions could shape the evolution of complex animal societies. We present a mathematical model to explore the potential impact of disease on the evolutionary fitness of different organizational strategies for populations of social species whose survival depends on collaborative efficiency. We show that infectious diseases select for a specific feature in the organization of collaborative roles-cohort stability-and that this feature is costly, and therefore unlikely to be maintained in environments where infection risks are absent. Our study provides evidence for an often-stated (but rarely supported) claim that pathogens have been the dominant force shaping the complexity of division of labour in eusocial societies of honeybees and termites and establishes a general theoretical approach for assessing evolutionary constraints on social organization from disease risk in other collaborative taxa.
Collapse
Affiliation(s)
- Oyita Udiani
- National Institute for Mathematical & Biological Synthesis, Knoxville, TN, USA.,Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, USA
| | - Nina H Fefferman
- National Institute for Mathematical & Biological Synthesis, Knoxville, TN, USA.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Sanderson CE, Alexander KA. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. GLOBAL CHANGE BIOLOGY 2020; 26:4284-4301. [PMID: 32558115 DOI: 10.1111/gcb.15163] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 05/09/2023]
Abstract
Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease-induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955-2018) across extant marine mammals (n = 129) in relation to key life-history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%-21%), with 72% (n = 36; 95% CI 56%-84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%-41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus-induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2 = 9.6, p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2 = 19.85, p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43, p = 2.7e-04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28, p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.
Collapse
Affiliation(s)
- Claire E Sanderson
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for African Resources: Animals, Communities and Land use (CARACAL), Kasane, Botswana
| | - Kathleen A Alexander
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for African Resources: Animals, Communities and Land use (CARACAL), Kasane, Botswana
| |
Collapse
|
8
|
Angulo E, Luque GM, Gregory SD, Wenzel JW, Bessa‐Gomes C, Berec L, Courchamp F. Review: Allee effects in social species. J Anim Ecol 2017; 87:47-58. [DOI: 10.1111/1365-2656.12759] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
| | - Gloria M. Luque
- Ecologie Systématique EvolutionCNRSUniv. Paris‐SudAgroParisTechUniversité Paris‐Saclay Orsay France
| | - Stephen D. Gregory
- Salmon and Trout Research CentreGame and Wildlife Conservation Trust East Stoke UK
| | - John W. Wenzel
- Powdermill Nature ReserveCarnegie Museum of Natural History Rector PA USA
| | - Carmen Bessa‐Gomes
- Ecologie Systématique EvolutionCNRSUniv. Paris‐SudAgroParisTechUniversité Paris‐Saclay Orsay France
| | - Ludek Berec
- Department of EcologyInstitute of EntomologyBiology Centre CAS České Budějovice Czech Republic
| | - Franck Courchamp
- Ecologie Systématique EvolutionCNRSUniv. Paris‐SudAgroParisTechUniversité Paris‐Saclay Orsay France
| |
Collapse
|
9
|
Comparison of energy balance between two different-sized groups of Japanese macaques (Macaca fuscata yakui). Primates 2017; 58:413-422. [DOI: 10.1007/s10329-017-0607-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
10
|
Sewalt L, Harley K, van Heijster P, Balasuriya S. Influences of Allee effects in the spreading of malignant tumours. J Theor Biol 2016; 394:77-92. [DOI: 10.1016/j.jtbi.2015.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/10/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022]
|
11
|
Demographic and Component Allee Effects in Southern Lake Superior Gray Wolves. PLoS One 2016; 11:e0150535. [PMID: 26930665 PMCID: PMC4801012 DOI: 10.1371/journal.pone.0150535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980–2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery.
Collapse
|
12
|
Kurihara Y, Hanya G. Comparison of feeding behavior between two different-sized groups of Japanese macaques (Macaca fuscata yakui). Am J Primatol 2015; 77:986-1000. [DOI: 10.1002/ajp.22429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 11/06/2022]
Affiliation(s)
| | - Goro Hanya
- Primate Research Institute; Kyoto University; Inuyama Japan
| |
Collapse
|