1
|
Friedman ST, Muñoz MM. The Effect of Thermally Robust Ballistic Mechanisms on Climatic Niche in Salamanders. Integr Org Biol 2022; 4:obac020. [PMID: 35975191 PMCID: PMC9375770 DOI: 10.1093/iob/obac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Many organismal functions are temperature-dependent due to the contractile properties of muscle. Spring-based mechanisms offer a thermally robust alternative to temperature-sensitive muscular movements and may correspondingly expand a species' climatic niche by partially decoupling the relationship between temperature and performance. Using the ballistic tongues of salamanders as a case study, we explore whether the thermal robustness of elastic feeding mechanisms increases climatic niche breadth, expands geographic range size, and alters the dynamics of niche evolution. Combining phylogenetic comparative methods with global climate data, we find that the feeding mechanism imparts no discernable signal on either climatic niche properties or the evolutionary dynamics of most climatic niche parameters. Although biomechanical innovation in feeding influences many features of whole-organism performance, it does not appear to drive macro-climatic niche evolution in salamanders. We recommend that future work incorporate micro-scale environmental data to better capture the conditions that salamanders experience, and we discuss a few outstanding questions in this regard. Overall, this study lays the groundwork for an investigation into the evolutionary relationships between climatic niche and biomechanical traits in ectotherms.
Collapse
Affiliation(s)
- Sarah T Friedman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA
| |
Collapse
|
2
|
White KA, McEntire KD, Buan NR, Robinson L, Barbar E. Charting a New Frontier Integrating Mathematical Modeling in Complex Biological Systems from Molecules to Ecosystems. Integr Comp Biol 2021; 61:2255-2266. [PMID: 34283225 DOI: 10.1093/icb/icab165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Nicole R Buan
- University of Nebraska-Lincoln, Department of Biochemistry
| | | | - Elisar Barbar
- Oregon State University, Department of Biochemistry and Biophysics
| |
Collapse
|
3
|
McEntire KD, Gage M, Gawne R, Hadfield MG, Hulshof C, Johnson MA, Levesque DL, Segura J, Pinter-Wollman N. Understanding Drivers of Variation and Predicting Variability Across Levels of Biological Organization. Integr Comp Biol 2021; 61:2119-2131. [PMID: 34259842 DOI: 10.1093/icb/icab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022] Open
Abstract
Differences within a biological system are ubiquitous, creating variation in nature. Variation underlies all evolutionary processes and allows persistence and resilience in changing environments; thus, uncovering the drivers of variation is critical. The growing recognition that variation is central to biology presents a timely opportunity for determining unifying principles that drive variation across biological levels of organization. Currently, most studies that consider variation are focused at a single biological level and not integrated into a broader perspective. Here we explain what variation is and how it can be measured. We then discuss the importance of variation in natural systems, and briefly describe the biological research that has focused on variation. We outline some of the barriers and solutions to studying variation and its drivers in biological systems. Finally, we detail the challenges and opportunities that may arise when studying the drivers of variation due to the multi-level nature of biological systems. Examining the drivers of variation will lead to a reintegration of biology. It will further forge interdisciplinary collaborations and open opportunities for training diverse quantitative biologists. We anticipate that these insights will inspire new questions and new analytic tools to study the fundamental questions of what drives variation in biological systems and how variation has shaped life.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danielle L Levesque
- University of Maine College of Natural Sciences Forestry and Agriculture, School of Biology and Ecology
| | | | | |
Collapse
|
4
|
Hocking DJ, Crawford JA, Peterman WE, Milanovich JR. Abundance of montane salamanders over an elevational gradient. Ecol Evol 2021; 11:1378-1391. [PMID: 33598138 PMCID: PMC7863398 DOI: 10.1002/ece3.7142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
Climate change is expected to systematically alter the distribution and population dynamics of species around the world. The effects are expected to be particularly strong at high latitudes and elevations, and for ectothermic species with small ranges and limited movement potential, such as salamanders in the southern Appalachian Mountains. In this study, we sought to establish baseline abundance estimates for plethodontid salamanders (family: Plethodontidae) over an elevational gradient in Great Smoky Mountains National Park. In addition to generating these baseline data for multiple species, we describe methods for surveying salamanders that allow for meaningful comparisons over time by separating observation and ecological processes generating the data. We found that Plethodon jordani had a mid-elevation peak (1,500 m) in abundance and Desmognathus wrighti increased in abundance with elevation up to the highest areas of the park (2025 m), whereas Eurycea wilderae increased in abundance up to 1,600 m and then plateaued with increasing uncertainty. Litter depth, herbaceous ground cover, and proximity to stream were also important predictors of abundance (dependent upon species), whereas daily temperature, precipitation, ground cover, and humidity influenced detection rates. Our data provide some of the first minimally biased information for future studies to assess changes in the abundance and distribution of salamanders in this region. Understanding abundance patterns along with detailed baseline distributions will be critical for comparisons with future surveys to understand the population and community-level effects of climate change on montane salamanders.
Collapse
Affiliation(s)
| | - John A. Crawford
- National Great Rivers Research and Education CenterEast AltonILUSA
| | - William E. Peterman
- School of Environment and Natural ResourcesThe Ohio State UniversityColumbusOHUSA
| | | |
Collapse
|
5
|
Gade MR, Connette GM, Crawford JA, Hocking DJ, Maerz JC, Milanovich JR, Peterman WE. Predicted alteration of surface activity as a consequence of climate change. Ecology 2020; 101:e03154. [PMID: 32740923 DOI: 10.1002/ecy.3154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Wildlife are faced with numerous threats to survival, none more pressing than that of climate change. Understanding how species will respond behaviorally, physiologically, and demographically to a changing climate is a cornerstone of many contemporary ecological studies, especially for organisms, such as amphibians, whose persistence is closely tied to abiotic conditions. Activity is a useful parameter for understanding the effects of climate change because activity is directly linked to fitness as it dictates foraging times, energy budgets, and mating opportunities. However, activity can be challenging to measure directly, especially for secretive organisms like plethodontid salamanders, which only become surface active when conditions are cool and moist because of their anatomical and physiological restrictions. We estimated abiotic predictors of surface activity for the seven species of the Plethodon jordani complex. Five independent data sets collected from 2004 to 2017 were used to determine the parameters driving salamander surface activity in the present day, which were then used to predict potential activity changes over the next 80 yrs. Average active seasonal temperature and vapor pressure deficit were the strongest predictors of salamander surface activity and, without physiological or behavioral modifications, salamanders were predicted to exhibit a higher probability of surface activity during peak active season under future climate conditions. Temperatures during the active season likely do not exceed salamander thermal maxima to cause activity suppression and, until physiological limits are reached, future conditions may continue to increase activity. Our model is the first comprehensive field-based study to assess current and future surface activity probability. Our study provides insights into how a key behavior driving fitness may be affected by climate change.
Collapse
Affiliation(s)
- Meaghan R Gade
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| | - Grant M Connette
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - John A Crawford
- National Great Rivers Research and Education Center, One Confluence Way, East Alton, Illinois, 62024, USA
| | - Daniel J Hocking
- Department of Biology, Frostburg State University, 101 Braddock Rd, Frostburg, Maryland, 21532, USA
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green St, Athens, Georgia, 30602, USA
| | - Joseph R Milanovich
- Department of Biology, Loyola University Chicago, 1032 Sheridan Rd, Chicago, Illinois, 60660, USA
| | - William E Peterman
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| |
Collapse
|
6
|
McEntire KD, Maerz JC. Integrating Ecophysiological and Agent-Based Models to Simulate How Behavior Moderates Salamander Sensitivity to Climate. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Abstract
Several amphibian lineages epitomize the faunal biodiversity crises, with numerous reports of population declines and extinctions worldwide. Predicting how such lineages will cope with environmental changes is an urgent challenge for biologists. A promising framework for this involves mechanistic modeling, which integrates organismal ecophysiological features and ecological models as a means to establish causal and consequential relationships of species with their physical environment. Solid frameworks built for other tetrapods (e.g., lizards) have proved successful in this context, but its extension to amphibians requires care. First, the natural history of amphibians is distinct within tetrapods, for it includes a biphasic life cycle that undergoes major habitat transitions and changes in sensitivity to environmental factors. Second, the accumulated data on amphibian ecophysiology is not nearly as expressive, is heavily biased towards adult lifeforms of few non-tropical lineages, and overlook the importance of hydrothermal relationships. Thus, we argue that critical usage and improvement in the available data is essential for enhancing the power of mechanistic modeling from the physiological ecology of amphibians. We highlight the complexity of ecophysiological variables and the need for understanding the natural history of the group under study and indicate directions deemed crucial to attaining steady progress in this field.
Collapse
|
8
|
Riddell EA, Odom JP, Damm JD, Sears MW. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. SCIENCE ADVANCES 2018; 4:eaar5471. [PMID: 30014037 PMCID: PMC6047487 DOI: 10.1126/sciadv.aar5471] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/30/2018] [Indexed: 05/21/2023]
Abstract
Extinction rates are predicted to rise exponentially under climate warming, but many of these predictions ignore physiological and behavioral plasticity that might buffer species from extinction. We evaluated the potential for physiological acclimatization and behavioral avoidance of poor climatic conditions to lower extinction risk under climate change in the global hotspot of salamander diversity, a region currently predicted to lose most of the salamander habitat due to warming. Our approach integrated experimental physiology and behavior into a mechanistic species distribution model to predict extinction risk based on an individual's capacity to maintain energy balance with and without plasticity. We assessed the sensitivity of extinction risk to body size, behavioral strategies, limitations on energy intake, and physiological acclimatization of water loss and metabolic rate. The field and laboratory experiments indicated that salamanders readily acclimatize water loss rates and metabolic rates in ways that could maintain positive energy balance. Projections with plasticity reduced extinction risk by 72% under climate warming, especially in the core of their range. Further analyses revealed that juveniles might experience the greatest physiological stress under climate warming, but we identified specific physiological adaptations or plastic responses that could minimize the lethal physiological stress imposed on juveniles. We conclude that incorporating plasticity fundamentally alters ecological predictions under climate change by reducing extinction risk in the hotspot of salamander diversity.
Collapse
Affiliation(s)
| | - Jonathan P. Odom
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Jason D. Damm
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Michael W. Sears
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|