1
|
Raveendran C, Sunaisha Ashrafudeen S, Yadev IP. Bortezomib-induced neuropathy in multiple myeloma manifesting as foot drop due to peroneal nerve palsy. BMJ Case Rep 2024; 17:e260909. [PMID: 39349299 PMCID: PMC11448164 DOI: 10.1136/bcr-2024-260909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
We present the case of a man in his 50s with multiple myeloma who developed foot drop after receiving bortezomib-dexamethasone combination chemotherapy. Diagnostic evaluations, including haematological parameters, nerve conduction studies and imaging, were performed to confirm the diagnosis and assess the extent of neuropathy. He was managed conservatively with analgesics and vitamin supplements, and bortezomib was temporarily withheld. The neuropathy gradually improved, and bortezomib was successfully reintroduced without recurrence of foot drop. Bortezomib-induced foot drop is a rare complication of bortezomib-based therapy in patients with multiple myeloma. Early recognition and intervention are crucial to minimise impact on quality of life. This case report emphasises the safe reintroduction of bortezomib post-neuropathy resolution, emphasising the importance of early recognition and multidisciplinary management.
Collapse
Affiliation(s)
- Ciniraj Raveendran
- Radiation Oncology, Government Medical College Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | | | - I P Yadev
- General Surgery, Government Medical College Thiruvananthapuram, Thiruvananthapuram, Kerala, India
- General Surgery, Government Medical College Kollam, Kollam, Kerala, India
| |
Collapse
|
2
|
Sun Y, Chen L, Xu T, Gou B, Mai JW, Luo DX, Xin WJ, Wu JY. MiR-672-5p-Mediated Upregulation of REEP6 in Spinal Dorsal Horn Participates in Bortezomib-Induced Neuropathic Pain in Rats. Neurochem Res 2023; 48:229-237. [PMID: 36064821 DOI: 10.1007/s11064-022-03741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 01/07/2023]
Abstract
Evidence shows that miRNAs are deeply involved in nervous system diseases, but whether miRNAs contribute to the bortezomib (BTZ)-induced neuropathic pain remains unclear. We aimed to investigate whether miRNAs contribute to bortezomib (BTZ)-induced neuropathic pain and explore the related downstream cascades. The level of miRNAs in the spinal dorsal horn was explored using miRNA microarray and PCR. MiR-672-5p was significantly downregulated in dorsal horn neurons in the rats with BTZ treatment. Intrathecal injection of miR-672-5p agomir blunted the increase of the amplitude and frequency of sEPSCs in dorsal horn neurons and mechanical allodynia induced by BTZ. In addition, the knockdown of miR-672-5p by intrathecal injection of antagomir increased the amplitude and frequency of sEPSCs in dorsal horn neurons and decreased the mechanical withdrawal threshold in naïve rats. Furthermore, silico analysis and the data from subsequent assays indicated that REEP6, a potential miR-672-5p-regulating molecule, was increased in the spinal dorsal horn of rats with BTZ-induced neuropathic pain. Blocking REEP6 alleviated the mechanical pain behavior induced by BTZ, whereas overexpressing REEP6 induced pain hypersensitivity in naïve rats. Importantly, we further found that miR-672-5p was expressed in the REEP6-positive cells, and overexpression or knockdown of miR-672-5p reversely regulated the REEP6 expression. Bioinformatics analysis and double-luciferase reporter assay showed the existence of interaction sites between REEP6 mRNA and miR-672-5p. Overall, our study demonstrated that miR-672-5p directly regulated the expression of REEP6, which participated in the neuronal hyperexcitability in the spinal dorsal horn and neuropathic pain following BTZ treatment. This signaling pathway may potentially serve as a novel therapeutic avenue for chemotherapeutic-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Yang Sun
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China.,Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi, China
| | - Li Chen
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Ting Xu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bo Gou
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jia-Yan Wu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Sak K. Dietary Flavonoids with Catechol Moiety Inhibit Anticancer Action of Bortezomib: What about the other Boronic Acid-Based Drugs? Curr Cancer Drug Targets 2022; 22:741-748. [PMID: 35578889 DOI: 10.2174/1568009622666220516102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Approval of the first boronic acid group-containing drug, bortezomib, in 2003 for the treatment of multiple myeloma sparked an increased interest of medicinal chemists in boronic acid-based therapeutics. As a result, another boronic acid moiety-harboring medication, ixazomib, was approved in 2015 as a second-generation proteasome inhibitor for multiple myeloma; and dutogliptin is under clinical investigation in combination therapy against myocardial infarction. Moreover, a large number of novel agents with boronic acid element in their structure are currently in intensive preclinical studies, allowing to suppose that at least some of them enter clinical trials in the near future. On the other hand, only some years after bortezomib approval, direct interactions between its boronic acid group and catechol moiety of green tea catechins as well as some other common dietary flavonoids like quercetin and myricetin were discovered, leading to the formation of stable cyclic boronate esters and abolishing the anticancer activities. Although highly relevant, to date, no reports on possible co-effects of catechol group-containing flavonoids with new-generation boronic acid-based drugs can be found. However, this issue cannot be ignored, especially considering the abundance of catechol moiety-harboring flavonoids in both plant-derived food items as well as over-the-counter dietary supplements and herbal products. Therefore, in parallel with the intensified development of boronic acid-based drugs, their possible interactions with catechol groups of plant-derived flavonoids must also be clarified to provide dietary recommendations to patients for maximizing therapeutic benefits. If concurrently consumed flavonoids can indeed antagonize drug efficacy, it may pose a real risk to clinical outcomes.
Collapse
|
4
|
Characterization of PMI-5011 on the Regulation of Deubiquitinating Enzyme Activity in Multiple Myeloma Cell Extracts. Biochem Eng J 2020; 166. [PMID: 33716550 DOI: 10.1016/j.bej.2020.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deubiquitinating enzyme (DUB)-targeted therapeutics have shown promise in recent years as alternative cancer therapeutics, especially when coupled with proteasome-based inhibitors. While a majority of DUB-based therapeutics function by inhibiting DUB enzymes, studies show that positive regulation of these enzymes can stabilize levels of protein degradation. Unfortunately, there are currently no clinically available therapeutics for this purpose. The goal of this work was to understand the effect of a botanical extract from Artemisia dracunculus L called PMI-5011 on DUB activity in cancer cells. Through a series of kinetic analyses and mathematical modeling, it was found that PMI-5011 positively regulated DUB activity in two model multiple myeloma cells line (OPM2 and MM.1S). This suggests that PMI-5011 interacts with the active domains of DUBs to enhance their activity directly or indirectly, without apparently affecting cellular viability. Similar kinetic profiles of DUB activity were observed with three bioactive compounds in PMI-5011 (DMC-1, DMC-2, davidigenin). Interestingly, a differential cell line-independent trend was observed at higher concentrations which suggested variances in inherent gene expressions of UCHL1, UCHL5, USP7, USP15, USP14, and Rpn11 in OPM2 and MM.1S cell lines. These findings highlight the therapeutic potential of PMI-5011 and its selected bioactive compounds in cancer.
Collapse
|
5
|
Zheng Y, Sun Y, Yang Y, Zhang S, Xu T, Xin W, Wu S, Zhang X. GATA3-dependent epigenetic upregulation of CCL21 is involved in the development of neuropathic pain induced by bortezomib. Mol Pain 2020; 15:1744806919863292. [PMID: 31257992 PMCID: PMC6630071 DOI: 10.1177/1744806919863292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of bortezomib-induced neuropathic pain hampers the progress of therapy for neoplasia and also negatively affects the quality of life of patients. However, the molecular mechanism underlying bortezomib-induced neuropathic pain remains unknown. In this study, we found that the application of bortezomib significantly increased the expression of GATA-binding protein 3 (GATA3) in the spinal dorsal horn, and intrathecal administration of GATA3 siRNA attenuated mechanical allodynia. Furthermore, chromatin immunoprecipitation sequencing showed that bortezomib treatment induced the redistribution of GATA3 to transcriptional relevant regions. Notably, combined with the results of mRNA microarray, we found that C–C motif chemokine ligand 21 (CCL21) had an increased GATA3 binding and upregulated mRNA expression in the dorsal horn after bortezomib treatment. Next, we found that bortezomib treatment induced CCL21 upregulation in the spinal neurons, which was significantly reduced upon GATA3 silencing. Blockade of CCL21 using the neutralizing antibody or special siRNA ameliorated mechanical allodynia induced by bortezomib. In addition, bortezomib treatment increased the acetylation of histone H3 and the interaction between GATA3 and CREB-binding protein. GATA3 siRNA suppressed the CCL21 upregulation by decreasing the acetylation of histone H3. Together, these results suggested that activation of GATA3 mediated the epigenetic upregulation of CCL21 in dorsal horn neurons, which contributed to the bortezomib-induced neuropathic pain.
Collapse
Affiliation(s)
- Yaochao Zheng
- 1 Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Sun
- 2 Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yanling Yang
- 3 Department of Hematology, The Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, China
| | - Subo Zhang
- 1 Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ting Xu
- 4 Department of Physiology and Pain Research Center, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Xin
- 4 Department of Physiology and Pain Research Center, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Wu
- 1 Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangzhong Zhang
- 3 Department of Hematology, The Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Safa N, Pettigrew JH, Gauthier TJ, Melvin AT. Direct measurement of deubiquitinating enzyme activity in intact cells using a protease-resistant, cell-permeable, peptide-based reporter. Biochem Eng J 2019; 151. [PMID: 32831622 DOI: 10.1016/j.bej.2019.107320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Deubiquitinating enzymes (DUBs) regulate the removal of the polyubiquitin chain from proteins targeted for degradation. Current approaches to quantify DUB activity are limited to test tube-based assays that incorporate enzymes or cell lysates, but not intact cells. The goal of this work was to develop a novel peptide-based biosensor of DUB activity that is cell permeable, protease-resilient, fluorescent, and specific to DUBs. The biosensor consists of an N-terminal β-hairpin motif that acts as both a 'protectide' to increase intracellular stability and a cell penetrating peptide (CPP) to facilitate the uptake into intact cells. The β-hairpin was conjugated to a C-terminal substrate consisting of the last four amino acids in ubiquitin (LRGG) to facilitate DUB mediated cleavage of a C-terminal fluorophore (AFC). The kinetics of the peptide reporter were characterized in cell lysates by dose response and inhibition enzymology studies. Inhibition studies with an established DUB inhibitor (PR-619) confirmed the specificity of both reporters to DUBs. Fluorometry and fluorescent microscopy experiments followed by mathematical modeling established the capability of the biosensor to measure DUB activity in intact cells while maintaining cellular integrity. The novel reporter introduced here is compatible with high-throughput single cell analysis platforms such as FACS and droplet microfluidics facilitating direct quantification of DUB activity in single intact cells with direct application in point-of-care cancer diagnostics and drug discovery.
Collapse
Affiliation(s)
- Nora Safa
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Jacob H Pettigrew
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Ted J Gauthier
- LSU AgCenter Biotechnology Lab, Louisiana State University, Baton Rouge, LA, 70803
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
| |
Collapse
|
7
|
Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget 2018; 7:73697-73710. [PMID: 27655642 PMCID: PMC5342008 DOI: 10.18632/oncotarget.12048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022] Open
Abstract
Proteasome inhibition is an attractive approach for anticancer therapy. Doxorubicin (DOX) is widely used for treatment in a number of cancers including breast cancer; however, the development of DOX resistance largely limits its clinical application. One of the possible mechanisms of DOX-resistance is that DOX might induce the activation of NF-κB. In this case, proteasome inhibitors could inhibit the activation of NF-κB by blocking inhibitory factor κB (IκB) degradation. Carfilzomib, a second-generation proteasome inhibitor, overcomes bortezomib resistance and lessens its side-effects. Currently, the effect of carfilzomib on breast cancer cell proliferation remains unclear. In this study, we exploited the role of carfilzomib in seven breast cancer cell lines, MCF7, T-47D, MDA-MB-361, HCC1954, MDA-MB-468, MDA-MB-231, and BT-549, representing all major molecular subtypes of breast cancer. We found that carfilzomib alone had cytotoxic effects on the breast cancer cells and it increased DOX-induced cytotoxic effects and apoptosis in combination by enhancing DOX-induced JNK phosphorylation and inhibiting DOX-induced IκBα degradation. The results suggest that carfilzomib has potent antitumor effects on breast cancer in vitro and can sensitize breast cancer cells to DOX treatment. DOX in combination with carfilzomib may be an effective and feasible therapeutic option in the clinical trials for treating breast cancer.
Collapse
|
8
|
Huang W, Whittaker K, Zhang H, Wu J, Zhu SW, Huang RP. Integration of Antibody Array Technology into Drug Discovery and Development. Assay Drug Dev Technol 2018; 16:74-95. [PMID: 29394094 DOI: 10.1089/adt.2017.808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Jian Wu
- The Affiliated Third Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Ruo-Pan Huang
- Raybiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia
- South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
9
|
Wei JY, Liu CC, Ouyang HD, Ma C, Xie MX, Liu M, Lei WL, Ding HH, Wu SL, Xin WJ. Activation of RAGE/STAT3 pathway by methylglyoxal contributes to spinal central sensitization and persistent pain induced by bortezomib. Exp Neurol 2017; 296:74-82. [PMID: 28729113 DOI: 10.1016/j.expneurol.2017.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
Bortezomib is a first-line chemotherapeutic drug widely used for multiple myeloma and other nonsolid malignancies. Although bortezomib-induced persistent pain is easily diagnosed in clinic, the pathogenic mechanism remains unclear. Here, we studied this issue with use of a rat model of systemic intraperitoneal administration of bortezomib for consecutive 5days. Consisted with our previous study, we found that bortezomib treatment markedly induced mechanical allodynia in rats. Furthermore, we first found that bortezomib treatment significantly induced the upregulation of methylglyoxal in spinal dorsal horn of rats. Spinal local application of methylglyoxal also induced mechanical allodynia and central sensitization in normal rats. Moreover, administration of bortezomib upregulated the expression of receptors for advanced glycation end products (RAGE) and phosphorylated STAT3 (p-STAT3) in dorsal horn. Importantly, intrathecal injection of metformin, a known scavenger of methylglyoxal, significantly attenuated the upregulation of methylglyoxal and RAGE in dorsal horn, central sensitization and mechanical allodynia induced by bortezomib treatment, and blockage of RAGE also prevented the upregulation of p-STAT3, central sensitization and mechanical allodynia induced by bortezomib treatment. In addition, inhibition of STAT3 activity by S3I-201 attenuated bortezomib-induced mechanical allodynia and central sensitization. Local knockdown of STAT3 also ameliorated the mechanical allodynia induced by bortezomib administration. Our results suggest that accumulation of methylglyoxal may activate the RAGE/STAT3 signaling pathway in dorsal horn, and contributes to the spinal central sensitization and persistent pain induced by bortezomib treatment.
Collapse
Affiliation(s)
- Jia-You Wei
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Han-Dong Ouyang
- Department of Anesthesiology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chao Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Man-Xiu Xie
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Liu
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wan-Long Lei
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Huan-Huan Ding
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shao-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
McDaniel TJ, Lansdell TA, Dissanayake AA, Azevedo LM, Claes J, Odom AL, Tepe JJ. Substituted quinolines as noncovalent proteasome inhibitors. Bioorg Med Chem 2016; 24:2441-2450. [PMID: 27112450 PMCID: PMC5724766 DOI: 10.1016/j.bmc.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 01/26/2023]
Abstract
Screening of a library of diverse heterocyclic scaffolds identified substituted quinolines as inhibitors of the human proteasome. The heterocyclic library was prepared via a novel titanium-catalyzed multicomponent coupling reaction, which rendered a diverse set of isoxazoles, pyrimidines, pyrroles, pyrazoles and quinolines. SAR of the parent lead compound indicated that hydrophobic residues on the benzo-moiety significantly improved potency. Lead compound 25 inhibits the chymotryptic-like proteolytic activity of the proteasome (IC50 5.4μM), representing a new class of nonpeptidic, noncovalent proteasome inhibitors.
Collapse
Affiliation(s)
- Tanner J McDaniel
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Theresa A Lansdell
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Amila A Dissanayake
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Lauren M Azevedo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Jacob Claes
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Aaron L Odom
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
11
|
Li ZY, Zhang YP, Zhang J, Zhang SB, Li D, Huang ZZ, Xin WJ. The possible involvement of JNK activation in the spinal dorsal horn in bortezomib-induced allodynia: the role of TNF-α and IL-1β. J Anesth 2015; 30:55-63. [PMID: 26373954 DOI: 10.1007/s00540-015-2077-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/06/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Bortezomib (BTZ), a widely used chemotherapeutic drug, is closely associated with the development of painful peripheral neuropathy, but the mechanism underlying the induction of this disorder by BTZ remains largely unclear. To examine this association, we have evaluated the activation of mitogen-activated protein kinase (MAPK) family members in the spinal dorsal horn and the role of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in BTZ-induced allodynia in rats. METHODS Male Sprague-Dawley rats were used as the model animals. The paw withdrawal test, in which mechanical stimuli (von Frey hairs) is applied to the plantar surface of the hindpaw, was used to determine any changes in the paw withdrawal threshold of the treated rats. A PE-10 catheter was placed intrathecally to deliver TNF-α neutralizing antibody, IL-1 receptor antagonist (IL-1ra) or the c-Jun N-terminal kinase (JNK) inhibitor SP600125. The mRNA levels of various cytokines were measured by real-time quantitative PCR. The expression of TNF-α, IL-1β and mitogen-activated protein kinase (MAPK) family members in the spinal dorsal horn was measured by western blot analysis and immunohistochemistry. All data were expressed as the mean ± standard error of the mean and analyzed using the SPSS version 13.0 software program. RESULTS The BTZ treatment induced an upsurge in the mRNA and protein levels of TNF-α in the neurons and IL-1β in the astrocytes in the spinal dorsal horn. It also significantly upregulated the phosphorylation of JNK but not of extracellular signal-regulated kinases (ERK) and p38-MAPK in astrocytes of the spinal dorsal horn. Inhibition of TNF-α or IL-1β ameliorated JNK activation and mechanical allodynia induced by BTZ. Co-administration of thalidomide (TNF-α synthesis inhibitor) and IL-1ra prevented BTZ-induced mechanical allodynia. CONCLUSION Our results suggest that the TNF-α or IL-1β/JNK pathway in the spinal dorsal horn may play a critical role in the development of painful peripheral neuropathy induced by BTZ.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Sun Yet-Sen University, 58 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Yuan-Pei Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jie Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Su-Bo Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Dai Li
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Zhen-Zhen Huang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Zhang J, Su YM, Li D, Cui Y, Huang ZZ, Wei JY, Xue Z, Pang RP, Liu XG, Xin WJ. TNF-α-mediated JNK activation in the dorsal root ganglion neurons contributes to Bortezomib-induced peripheral neuropathy. Brain Behav Immun 2014; 38:185-91. [PMID: 24530998 DOI: 10.1016/j.bbi.2014.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 01/30/2023] Open
Abstract
Bortezomib (BTZ) is a frequently used chemotherapeutic drug for the treatment of refractory multiple myeloma and hematological neoplasms. The mechanism by which the administration of BTZ leads to painful peripheral neuropathy remains unclear. In the present study, we first determined that the administration of BTZ upregulated the expression of TNF-α and phosphorylated JNK1/2 in the dorsal root ganglion (DRG) of rat. Furthermore, the TNF-α synthesis inhibitor thalidomide significantly blocked the activation of both isoforms JNK1 and JNK2 in the DRG and attenuated mechanical allodynia following BTZ treatment. Knockout of the expression of TNF-α receptor TNFR1 (TNFR1 KO mice) or TNFR2 (TNFR2 KO mice) inhibited JNK1 and JNK2 activation and decreased mechanical allodynia induced by BTZ. These results suggest that upregulated TNF-α expression may activate JNK signaling via TNFR1 or TNFR2 to mediate mechanical allodynia following BTZ treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yi-Min Su
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Dai Li
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yu Cui
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Zhen-Zhen Huang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Jia-You Wei
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Zi Xue
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Rui-Ping Pang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| |
Collapse
|
13
|
Measuring activity in the ubiquitin-proteasome system: from large scale discoveries to single cells analysis. Cell Biochem Biophys 2014; 67:75-89. [PMID: 23686610 DOI: 10.1007/s12013-013-9621-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS has provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington's disease. These reporters, usually consisting of a recognition sequence fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes. This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, a recent study is presented highlighting the development of a novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples.
Collapse
|
14
|
Wang C, Chen S, Feng B, Guan Y. Proteasome inhibitors for malignancy-related Lambert-Eaton myasthenic syndrome. Muscle Nerve 2014; 49:325-8. [PMID: 24464710 DOI: 10.1002/mus.24122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022]
Abstract
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder characterized by autoantibodies against presynaptic voltage-gated calcium channels that impair neuromuscular transmission. Malignancies, especially small cell lung cancer (SCLC), have been associated with LEMS and account for approximately 60% of cases, making malignancy management a central step in LEMS therapy. In addition, immunosuppressive therapy is also recommended for symptomatic control. Interestingly, both pathological and epidemiological data suggest that the autoimmune response can inhibit progression of tumors in malignancy-associated LEMS. Thus, conventional broad-spectrum immunosuppressants may not be effective agents for treatment of LEMS, especially in those with malignancy-associated LEMS. Recent preclinical and clinical studies have indicated that proteasome inhibitors can eliminate antibody-producing cells efficiently, block dendritic cell maturation, and have anti-tumor activity. We hypothesize that proteasome inhibitors may be promising agents for treatment of malignancy-related LEMS.
Collapse
Affiliation(s)
- Chen Wang
- Department of Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | | | | | | |
Collapse
|
15
|
Hing SL, Ravichandran A, Escano J, Cooley J, Austin F, Lu SE, Pruett S, Smith L. Toxicological Evaluation of Occidiofungin against Mice and Human Cancer Cell Lines. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.511118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Abstract
Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP(L)), short (c-FLIP(S)), and c-FLIP(R) splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP(L) and c-FLIP(S) are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP(L) in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP(L) and c-FLIP(S) splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function.
Collapse
|
17
|
A comparative analysis of the ubiquitination kinetics of multiple degrons to identify an ideal targeting sequence for a proteasome reporter. PLoS One 2013; 8:e78082. [PMID: 24205101 PMCID: PMC3812159 DOI: 10.1371/journal.pone.0078082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/09/2013] [Indexed: 01/03/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins. The conjugation of a polyubiquitin chain, or polyubiquitination, to a target protein requires an increasingly diverse cascade of enzymes culminating with the E3 ubiquitin ligases. Protein recognition by an E3 ligase occurs through a specific sequence of amino acids, termed a degradation sequence or degron. Recently, degrons have been incorporated into novel reporters to monitor proteasome activity; however only a limited few degrons have successfully been incorporated into such reporters. The goal of this work was to evaluate the ubiquitination kinetics of a small library of portable degrons that could eventually be incorporated into novel single cell reporters to assess proteasome activity. After an intensive literary search, eight degrons were identified from proteins recognized by a variety of E3 ubiquitin ligases and incorporated into a four component degron-based substrate to comparatively calculate ubiquitination kinetics. The mechanism of placement of multiple ubiquitins on the different degron-based substrates was assessed by comparing the data to computational models incorporating first order reaction kinetics using either multi-monoubiquitination or polyubiquitination of the degron-based substrates. A subset of three degrons was further characterized to determine the importance of the location and proximity of the ubiquitination site lysine with respect to the degron. Ultimately, this work identified three candidate portable degrons that exhibit a higher rate of ubiquitination compared to peptidase-dependent degradation, a desired trait for a proteasomal targeting motif.
Collapse
|
18
|
Li Z, Agharkar P, Chen B. Therapeutic enhancement of vascular-targeted photodynamic therapy by inhibiting proteasomal function. Cancer Lett 2013; 339:128-34. [DOI: 10.1016/j.canlet.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
|
19
|
Carozzi VA, Renn CL, Bardini M, Fazio G, Chiorazzi A, Meregalli C, Oggioni N, Shanks K, Quartu M, Serra MP, Sala B, Cavaletti G, Dorsey SG. Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS One 2013; 8:e72995. [PMID: 24069168 PMCID: PMC3772181 DOI: 10.1371/journal.pone.0072995] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Bortezomib is the first proteasome inhibitor with significant antineoplastic activity for the treatment of relapsed/refractory multiple myeloma as well as other hematological and solid neoplasms. Peripheral neurological complications manifesting with paresthesias, burning sensations, dysesthesias, numbness, sensory loss, reduced proprioception and vibratory sensitivity are among the major limiting side effects associated with bortezomib therapy. Although bortezomib-induced painful peripheral neuropathy is clinically easy to diagnose and reliable models are available, its pathophysiology remains partly unclear. In this study we used well-characterized immune-competent and immune-compromised mouse models of bortezomib-induced painful peripheral neuropathy. To characterize the drug-induced pathological changes in the peripheral nervous system, we examined the involvement of spinal cord neuronal function in the development of neuropathic pain and investigated the relevance of the immune response in painful peripheral neuropathy induced by bortezomib. We found that bortezomib treatment induced morphological changes in the spinal cord, dorsal roots, dorsal root ganglia (DRG) and peripheral nerves. Neurophysiological abnormalities and specific functional alterations in Aδ and C fibers were also observed in peripheral nerve fibers. Mice developed mechanical allodynia and functional abnormalities of wide dynamic range neurons in the dorsal horn of spinal cord. Bortezomib induced increased expression of the neuronal stress marker activating transcription factor-3 in most DRG. Moreover, the immunodeficient animals treated with bortezomib developed a painful peripheral neuropathy with the same features observed in the immunocompetent mice. In conclusion, this study extends the knowledge of the sites of damage induced in the nervous system by bortezomib administration. Moreover, a selective functional vulnerability of peripheral nerve fiber subpopulations was found as well as a change in the electrical activity of wide dynamic range neurons of dorsal horn of spinal cord. Finally, the immune response is not a key factor in the development of morphological and functional damage induced by bortezomib in the peripheral nervous system.
Collapse
Affiliation(s)
- Valentina A. Carozzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
- * E-mail: (VAC)
| | - Cynthia L. Renn
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Michela Bardini
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Grazia Fazio
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Cristina Meregalli
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Norberto Oggioni
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Kathleen Shanks
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Barbara Sala
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Guido Cavaletti
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Susan G. Dorsey
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Abstract
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication ("origin licensing") to active DNA synthesis ("origin firing"). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells.
Collapse
Affiliation(s)
- Lindsay F Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
21
|
McPhee CK, Balgley BM, Nelson C, Hill JH, Batlevi Y, Fang X, Lee CS, Baehrecke EH. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics. Cell Death Differ 2012; 20:218-25. [PMID: 22935612 DOI: 10.1038/cdd.2012.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.
Collapse
Affiliation(s)
- C K McPhee
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Voutsadakis IA. Epithelial to mesenchymal transition in the pathogenesis of uterine malignant mixed Müllerian tumours: the role of ubiquitin proteasome system and therapeutic opportunities. Clin Transl Oncol 2012; 14:243-53. [PMID: 22484631 DOI: 10.1007/s12094-012-0792-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant mixed Müllerian tumours (malignant mixed mesodermal tumours, MMMT) of the uterus are metaplastic carcinomas with a sarcomatous component and thus they are also called carcinosarcomas. It has now been accepted that the sarcomatous component is derived from epithelial elements that have undergone metaplasia. The process that produces this metaplasia is epithelial to mesenchymal transition (EMT), which has recently been described as a neoplasia-associated programme shared with embryonic development and enabling neoplastic cells to move and metastasise. The ubiquitin proteasome system (UPS) regulates the turnover and functions of hundreds of cellular proteins. It plays important roles in EMT by being involved in the regulation of several pathways participating in the execution of this metastasis-associated programme. In this review the specifi c role of UPS in EMT of MMMT is discussed and therapeutic opportunities from UPS manipulations are proposed.
Collapse
Affiliation(s)
- I A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
23
|
Meregalli C, Ceresa C, Canta A, Carozzi VA, Chiorazzi A, Sala B, Oggioni N, Lanza M, Letari O, Ferrari F, Avezza F, Marmiroli P, Caselli G, Cavaletti G. CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats. J Pain Res 2012; 5:151-67. [PMID: 22792002 PMCID: PMC3392714 DOI: 10.2147/jpr.s32122] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although bortezomib (BTZ) is the frontline treatment for multiple myeloma, its clinical use is limited by the occurrence of painful peripheral neuropathy, whose treatment is still an unmet clinical need. Previous studies have shown chronic BTZ administration (0.20 mg/kg intravenously three times a week for 8 weeks) to female Wistar rats induced a peripheral neuropathy similar to that observed in humans. In this animal model of BTZ-induced neurotoxicity, the present authors evaluated the efficacy of CR4056, a novel I2 ligand endowed with a remarkable efficacy in several animal pain models. CR4056 was administered in a wide range of doses (0.6-60 mg/kg by gavage every day for 2-3 weeks) in comparison with buprenorphine (Bupre) (28.8 μg/kg subcutaneously every day for 2 weeks) and gabapentin (Gaba) (100 mg/kg by gavage every day for 3 weeks). Chronic administration of BTZ reduced nerve conduction velocity and induced allodynia. CR4056, Bupre, or Gaba did not affect the impaired nerve conduction velocity. Conversely, CR4056 dose-dependently reversed BTZ-induced allodynia (minimum effective dose 0.6 mg/kg). The optimal dose found, 6 mg/kg, provided a constant pain relief throughout the treatment period and without rebound after suspension, being effective when coadministered with BTZ, starting before or after allodynia was established, or when administered alone after BTZ cessation. A certain degree of tolerance was seen after 7 days of administration, but only at the highest doses (20 and 60 mg/kg). Bupre was effective only acutely, since tolerance was evident from the fourth day onwards. Gaba showed a significant activity only at the fourth day of treatment. CR4056, over the range of concentrations of 3-30 μM, was unable to hinder BTZ cytotoxicity on several tumor cell lines, which could indicate that this substance does not directly interfere with BTZ antitumor activity. Therefore, CR4056 could represent a new treatment option for BTZ-induced neuropathic pain.
Collapse
Affiliation(s)
- Cristina Meregalli
- Department of Neuroscience and Biomedical Technologies, University of Milan-Bicocca
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Morgillo F, D'Aiuto E, Troiani T, Martinelli E, Cascone T, De Palma R, Orditura M, De Vita F, Ciardiello F. RETRACTED: Antitumor activity of bortezomib in human cancer cells with acquired resistance to anti-epidermal growth factor receptor tyrosine kinase inhibitors. Lung Cancer 2011; 71:283-90. [PMID: 20619923 DOI: 10.1016/j.lungcan.2010.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief Concern has been raised about the duplication of the β-Actin protein blot in the western blots that are in Figure 3A and Figure 4C. The authors have been asked to provide an acceptable explanation for this and – after initial denial and being presented with an independent evaluation noted that the western blot for β-Actin in Figure 3A was erroneously uploaded as a partial duplication of the β-Actin western blot in Figure 4C. According to the authors, this mistake was due to the fact that both Figure 3A and Figure 4C are representing the same experiment with only different protein species presented in the two Figures and with the loading control β-Actin that is presented in both Figures. The Editor-in-Chief of the journal therefore feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted. All authors agree with this retraction and deeply regret these errors and apologize to the editorial board and readers for any inconvenience caused.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale F. Magrassi e A. Lanzara, Seconda Università degli Studi di Napoli, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Feng X, Yan J, Wang Y, Zierath JR, Nordenskjöld M, Henter JI, Fadeel B, Zheng C. The proteasome inhibitor bortezomib disrupts tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and natural killer (NK) cell killing of TRAIL receptor-positive multiple myeloma cells. Mol Immunol 2010; 47:2388-96. [PMID: 20542572 DOI: 10.1016/j.molimm.2010.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/05/2010] [Indexed: 11/29/2022]
Abstract
Bortezomib, a potent 26S proteasome inhibitor, is approved for the treatment of multiple myeloma (MM) and clinical trials are under way to evaluate its efficacy in other malignant diseases. However, cytotoxic effects of bortezomib on immune-competent cells have also been observed. In this study, we show that bortezomib downregulates cell surface expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on primary human interleukin (IL)-2-activated natural killer (NK) cells. Pharmacological inhibition of the transcription factor, NF-kappaB also profoundly decreased TRAIL expression, suggesting that NF-kappaB is involved in the regulation of TRAIL expression in activated human NK cells. Furthermore, perforin-independent killing of the human MM cell lines RPMI8226 and U266 by NK cells was markedly suppressed following bortezomib treatment. In addition, blocking cell surface-bound TRAIL with a TRAIL antibody impaired NK cell-mediated lysis of the TRAIL-sensitive MM cell line, RPMI8226. In conclusion, the proteasome is likely to be involved in the regulation of TRAIL expression in primary human IL-2-activated NK cells. Proteasome inhibition by bortezomib disrupts TRAIL expression and TRAIL dependent and/or independent pathway-mediated killing of myeloma cells, suggesting that bortezomib may potentially hamper NK-dependent immunosurveillance against tumors in patients treated with this drug.
Collapse
Affiliation(s)
- Xiaoli Feng
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Huber JM, Tagwerker A, Heininger D, Mayer G, Rosenkranz AR, Eller K. The proteasome inhibitor Bortezomib aggravates renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2009; 297:F451-60. [DOI: 10.1152/ajprenal.90576.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bortezomib is a well-established treatment option for patients with multiple myeloma (MM). It is a selective and reversible inhibitor of the proteasome that is responsible for the degradation of many regulatory proteins that are involved in apoptosis, cell-cycle regulation, or transcription. Because patients with MM are prone to develop acute renal failure, we evaluated the influence of Bortezomib on renal ischemia-reperfusion injury (IRI). Mice were subjected to renal IRI by having the renal pedicles clamped for 30 min followed by reperfusion for 3, 24, and 48 h. Mice were either pretreated with 0.5 mg/kg body wt Bortezomib or vehicle intravenously 12 h before induction of IRI. Serum creatinine and tubular necrosis were significantly increased in Bortezomib compared with vehicle-treated mice. The inflammatory response was found to be significantly decreased in Bortezomib-treated mice as reflected by a decreased infiltration of CD4+ T cells and a significantly decreased Th1 cytokine expression in the kidneys. In contrast, apoptosis was significantly increased in kidneys of Bortezomib-treated mice compared with vehicle-treated controls. Increased numbers of TUNEL-positive cells/mm2 and increased mRNA expression of proapoptotic factors were detected in kidneys of Bortezomib-treated mice. Of note, p21, a cell senescence marker, was also significantly increased in kidneys of Bortezomib-treated mice. In summary, we provide evidence that Bortezomib worsens the outcome of renal IRI by leading to increased apoptosis of tubular cells despite decreased infiltrating T cells and proinflammatory mediators.
Collapse
|
27
|
Kloss A, Meiners S, Ludwig A, Dahlmann B. Multiple cardiac proteasome subtypes differ in their susceptibility to proteasome inhibitors. Cardiovasc Res 2009; 85:367-75. [PMID: 19564153 DOI: 10.1093/cvr/cvp217] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The proteasome is the proteolytically active core of the ubiquitin-proteasome system, which regulates vital processes and which can cause various diseases when it malfunctions. Therefore, the proteasome has become an attractive target for pharmaceutical interventions. Inhibition of the cardiac proteasome by specific proteasome inhibitors has been shown to attenuate cardiac hypertrophy and ischaemia reperfusion injury of the heart. We have resolved the cardiac proteasome into its subtypes and have addressed the key question of how proteasome inhibitors affect single cardiac proteasomal subtypes. METHODS AND RESULTS The 20S proteasome from rat heart was dissected into three different subpopulations (groups I-III), each comprising 4-7 different subtypes. The major group (group II) comprises standard proteasome subtypes; the two minor subpopulations (groups I and III) contain intermediate proteasome subtypes. All subtypes exhibit chymotrypsin-, trypsin-, and caspase-like activity but to different degrees. We have tested the effect of two common proteasome inhibitors on the chymotrypsin-like activity of all subtypes: 20-30 nmol/L MG132 caused 50% inhibition of all subtypes from groups I and II, whereas 100 nmol/L was necessary to affect group III subtypes to the same extent. However, another inhibitor, bortezomib (VELCADE), already used clinically, inhibited 50% of the activity of group III proteasome subtypes even below 20 nmol/L, a concentration showing almost no effect on group I and II proteasome subtypes. The caspase-like activity of group II proteasome subtypes was not affected by MG132 and was inhibited by bortezomib only at concentrations above 100 nmol/L. CONCLUSION These data show that different inhibitors have differential inhibitory effects on the various cardiac proteasome subtypes. Different cardiac subtypes are inhibited by the same dose of proteasome inhibitor to a different extent.
Collapse
Affiliation(s)
- Alexander Kloss
- Institut für Biochemie/CCM, Charité-Universitätsmedizin Berlin, Monbijoustr 2, Berlin 10117, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
The ubiquitin system is a network of proteins dedicated to the ubiquitylation of cellular targets and the subsequent control of numerous cellular functions. The deregulation of components of this elaborate network leads to human pathogenesis, including the development of many types of tumour. Alterations in the ubiquitin system that occur during the initiation and progression of cancer are now being uncovered, and this knowledge is starting to be exploited for both molecular diagnostics and the development of novel strategies to combat cancer.
Collapse
Affiliation(s)
- Daniela Hoeller
- Division of Medical Biochemistry, Innsbruck Medical University, Biocenter, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | | |
Collapse
|
29
|
Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem Biophys Res Commun 2009; 382:451-6. [PMID: 19289106 DOI: 10.1016/j.bbrc.2009.03.051] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/09/2009] [Indexed: 01/15/2023]
Abstract
Macroautophagy is a process by which cytoplasmic content and organelles are sequestered by double-membrane bound vesicles and subsequently delivered to lysosomes for degradation. Macroautophagy serves as a major intracellular pathway for protein degradation and as a pro-survival mechanism in time of stress by generating nutrients. In the present study, bafilomycin A(1), a vacuolar type H(+)-ATPase inhibitor, suppresses macroautophagy by preventing acidification of lysosomes in colon cancer cells. Diminished macroautophagy was evidenced by the accumulation of undegraded LC3 protein. Suppression of macroautophagy by bafilomycin A(1) induced G(0)/G(1) cell cycle arrest and apoptosis which were accompanied by the down-regulation of cyclin D(1) and cyclin E, the up-regulation of p21(Cip1) as well as cleavages of caspases-3, -7, -8, and -9 and PARP. Further investigation revealed that bafilomycin A(1) increased the phosphorylation of ERK, JNK, and p38. In this regard, p38 inhibitor partially reversed the anti-proliferative effect of bafilomycin A(1). To conclude, inhibition of macroautophagy by bafilomycin A(1) lowers G(1)-S transition and induces apoptosis in colon cancer cells. Our results not only indicate that inhibitors of macroautophagy may be used therapeutically to inhibit cancer growth, but also delineate the relationship between macroautophagy and apoptosis.
Collapse
|
30
|
Brüning A, Burger P, Vogel M, Rahmeh M, Friese K, Lenhard M, Burges A. Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis. Invest New Drugs 2008; 27:543-51. [PMID: 19039521 DOI: 10.1007/s10637-008-9206-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Bortezomib, an approved drug for the treatment of certain haematological neoplasms, is currently being tested in clinical trials as a potential therapeutic agent against several types of solid cancer, including ovarian cancer. We have analyzed the effect of bortezomib on ovarian cancer cells and tissue explants either as a single agent or in combination with carboplatin, taxol, or TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Bortezomib alone efficiently induced apoptosis in ovarian cancer cells. Apoptosis was preceded by an upregulation of the endoplasmic reticulum stress sensor ATF3, and increased the expression of cytoplasmic heat shock proteins. Bortezomib enhanced the sensitivity of ovarian cancer cells and tissue explants to an apoptosis-inducing TRAIL receptor antibody by upregulating the TRAIL receptor DR5. In contrast to the synergistic effect observed for TRAIL, the efficacy of the taxol treatment was reduced by bortezomib, and bortezomib inhibited the G2/M phase accumulation of ovarian cancer cells treated with taxol. Bortezomib alone or in combination with taxol induced a cell cycle arrest within the S phase, and downregulation of cdk1, a cyclin-dependent kinase that is necessary for the entry into the M phase. Thus, bortezomib can be regarded as a promising agent for the treatment of ovarian cancer and could either be administered as a single agent or in combination with TRAIL. However, a combination treatment with taxanes may not be beneficial and may even be less effective.
Collapse
Affiliation(s)
- Ansgar Brüning
- Department of Obstetrics/Gynecology, University Hospital Munich, Maistrasse 11, 80337, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Wu WKK, Wu YC, Yu L, Li ZJ, Sung JJY, Cho CH. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells. Biochem Biophys Res Commun 2008; 374:258-63. [PMID: 18638451 DOI: 10.1016/j.bbrc.2008.07.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 07/03/2008] [Indexed: 11/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G(2)/M cell cycle arrest which was associated with the formation of LC3(+) autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3(+) autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.
Collapse
Affiliation(s)
- William Ka Kei Wu
- Department of Pharmacology, Basic Medical Sciences Building, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
32
|
Ribatti D, Vacca A. Angiogenesis and anti-angiogenesis in haematological diseases. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2008. [DOI: 10.1007/s12254-008-0008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|