1
|
Yang X, Yan K, Zhan Q, Chen H, Pei CZ, Zhu L. Exploration of Diagnostic Deubiquitinating Enzymes in Endometriosis and Its Immune Infiltration. Biochem Genet 2024; 62:4359-4379. [PMID: 38302849 DOI: 10.1007/s10528-023-10653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024]
Abstract
The mechanism involved in the pathogenesis of endometriosis is poorly understood. The purpose of this study is to identify key deubiquitinating enzymes (DUBs) for endometriosis diagnosis and elucidate the possible mechanism, offering novel insights for noninvasive early diagnosis and treatment. Four gene expression datasets were employed from the Gene Expression Omnibus to identify differentially expressed genes (DEGs) between endometriosis and normal controls. GO and KEGG pathways were performed for enrichment analysis. Calibration curves, ROC, DCA, and clinical impact curves verified the clinical usefulness of the nomogram model. In addition, the ssGSEA method was conducted to estimate 23 types of immune cells. A specific DUB gene signature was constructed with Lasso regression, univariate logistic regression, and SVM analysis. RT-qPCR validated the expression of biomarkers. A total of 85 endometriosis-related DUBs were identified in the eutopic endometrium. Among them, 20 DUBs were found to be correlated with the severity of endometriosis. A diagnostic risk model based on five DUB-related genes (USP21, USP48, ZRANB1, COPS5, and EIF3F) was developed using lasso-cox regression analysis. The nomogram model exhibited a strong predictive ability to diagnose endometriosis. KEGG analysis revealed that ubiquitin-mediated proteolysis was activated in patients suffering from severe symptoms. Analysis of immune cell infiltration revealed a positive correlation between USP21 and multiple immune cells in the eutopic endometrium. However, EIF3F showed an opposite relationship. Dysregulation of DUBs was related to the immune microenvironment in endometriosis. Results from RT-qPCR confirmed the expression of DEGs in clinical samples. In summary, the diagnostic model for endometriosis constructed using five differentially expressed DUB genes demonstrates strong diagnostic capability, suggesting that these genes could serve as potential candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xinyun Yang
- Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Kai Yan
- Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Qitao Zhan
- Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Chang-Zhu Pei
- Reproductive Medicine Center, Yanbian University Hospital, Yanji, Jilin, People's Republic of China.
| | - Linling Zhu
- Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Women's Hospital, Hangzhou, Zhejiang, People's Republic of China.
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Boo HJ, Yoon SP, Hyun JW. Oxidative Stress-Mediated RUNX3 Mislocalization Occurs Via Jun Activation Domain-Binding Protein 1 and Histone Modification. Appl Biochem Biotechnol 2024; 196:8082-8095. [PMID: 38683453 PMCID: PMC11645303 DOI: 10.1007/s12010-024-04944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | - Pincha Devage Sameera Madushan Fernando
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | | | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea.
| |
Collapse
|
3
|
Lv LX, Zhang Q, Zhao XF, Wang JX. Identification of COP9 signalosome (CSN) subunits and antiviral function analysis of CSN5 in shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109679. [PMID: 38844185 DOI: 10.1016/j.fsi.2024.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.
Collapse
Affiliation(s)
- Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Hua R, Ma YS, Yang L, Hao JJ, Hua QY, Shi LY, Yao XQ, Zhi HY, Liu Z. Experimental evidence for cancer resistance in a bat species. Nat Commun 2024; 15:1401. [PMID: 38360878 PMCID: PMC10869793 DOI: 10.1038/s41467-024-45767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Mammals exhibit different rates of cancer, with long-lived species generally showing greater resistance. Although bats have been suggested to be resistant to cancer due to their longevity, this has yet to be systematically examined. Here, we investigate cancer resistance across seven bat species by activating oncogenic genes in their primary cells. Both in vitro and in vivo experiments suggest that Myotis pilosus (MPI) is particularly resistant to cancer. The transcriptomic and functional analyses reveal that the downregulation of three genes (HIF1A, COPS5, and RPS3) largely contributes to cancer resistance in MPI. Further, we identify the loss of a potential enhancer containing the HIF1A binding site upstream of COPS5 in MPI, resulting in the downregulation of COPS5. These findings not only provide direct experimental evidence for cancer resistance in a bat species but also offer insights into the natural mechanisms of cancer resistance in mammals.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Shuo Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qin-Yang Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Ye Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Qing Yao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Yu Zhi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| |
Collapse
|
5
|
Du WQ, Zhu ZM, Jiang X, Kang MJ, Pei DS. COPS6 promotes tumor progression and reduces CD8 + T cell infiltration by repressing IL-6 production to facilitate tumor immune evasion in breast cancer. Acta Pharmacol Sin 2023; 44:1890-1905. [PMID: 37095198 PMCID: PMC10462724 DOI: 10.1038/s41401-023-01085-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Due to poor T cell infiltration, tumors evade immune surveillance. Increased CD8+ T cell infiltration in breast cancer suggests a satisfactory response to immunotherapy. COPS6 has been identified as an oncogene, but its role in regulating antitumor immune responses has not been defined. In this study, we investigated the impact of COPS6 on tumor immune evasion in vivo. Tumor transplantation models were established in C57BL/6 J mice and BALB/c nude mice. Flow cytometry was conducted to identify the role of COPS6 on tumor-infiltrating CD8+ T cells. By analyzing the TCGA and GTEx cohort, we found that COPS6 expression was significantly up-regulated in a variety of cancers. In human osteosarcoma cell line U2OS and non-small cell lung cancer cell line H1299, we showed that p53 negatively regulated COPS6 promoter activity. In human breast cancer MCF-7 cells, COPS6 overexpression stimulated p-AKT expression as well as the proliferation and malignant transformation of tumor cells, whereas knockdown of COPS6 caused opposite effects. Knockdown of COPS6 also significantly suppressed the growth of mouse mammary cancer EMT6 xenografts in BALB/c nude mice. Bioinformatics analysis suggested that COPS6 was a mediator of IL-6 production in the tumor microenvironment and a negative regulator of CD8+ T cell tumor infiltration in breast cancer. In C57BL6 mice bearing EMT6 xenografts, COPS6 knockdown in the EMT6 cells increased the number of tumor-infiltrating CD8+ T cells, while knockdown of IL-6 in COPS6KD EMT6 cells diminished tumor infiltrating CD8+ T cells. We conclude that COPS6 promotes breast cancer progression by reducing CD8+ T cell infiltration and function via the regulation of IL-6 secretion. This study clarifies the role of p53/COPS6/IL-6/CD8+ tumor infiltrating lymphocytes signaling in breast cancer progression and immune evasion, opening a new path for development of COPS6-targeting therapies to enhance tumor immunogenicity and treat immunologically "cold" breast cancer.
Collapse
Affiliation(s)
- Wen-Qi Du
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Jiang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng-Jie Kang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
6
|
Yang Y, Song R, Gao Y, Yu H, Wang S. Regulatory mechanisms and therapeutic potential of JAB1 in neurological development and disorders. Mol Med 2023; 29:80. [PMID: 37365502 DOI: 10.1186/s10020-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Ruying Song
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Yiming Gao
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
7
|
Huang Q, Man Y, Li W, Zhou Q, Yuan S, Yap YT, Nayak N, Zhang L, Song S, Dunbar J, Leff T, Yang X, Zhang Z. Inactivation of Cops5 in Smooth Muscle Cells Causes Abnormal Reproductive Hormone Homeostasis and Development in Mice. Endocrinology 2023; 164:bqad062. [PMID: 37067025 PMCID: PMC10164660 DOI: 10.1210/endocr/bqad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
COP9 constitutive photomorphogenic homolog subunit 5 (COPS5), also known as Jab1 or CSN5, has been implicated in a wide variety of cellular and developmental processes. By analyzing male germ cell-specific COPS5-deficient mice, we have demonstrated previously that COPS5 is essential to maintain male germ survival and acrosome biogenesis. To further determine the role of Cops5 in peritubular myoid cells, a smooth muscle lineage surrounding seminiferous tubules, we herein derived mice conditionally deficient for the Cops5 gene in smooth muscle cells using transgenic Myh11-Cre mice. Although these conditional Cops5-deficient mice were born at the expected Mendelian ratio and appeared to be normal within the first week after birth, the homozygous mice started to show growth retardation after 1 week. These mice also exhibited a variety of developmental and reproductive disorders, including failure of development of reproductive organs in both males and females, spermatogenesis defects, and impaired skeletal development and immune functions. Furthermore, conditional Cops5-deficient mice revealed dramatic impairment of the endocrine system associated with testicular functions, including a marked reduction in serum levels of gonadotropins (follicle-stimulating hormone, luteinizing hormone), testosterone, insulin-like growth factor 1, and glucose, but not vasopressin. All homozygous mice died before age 67 days in the study. Collectively, our results provide novel evidence that Cops5 in smooth muscle lineage plays an essential role in postnatal development and reproductive functions.
Collapse
Affiliation(s)
- Qian Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yonghong Man
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Qi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Shuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Neha Nayak
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Shizheng Song
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Joseph Dunbar
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI 48210, USA
| | - Xu Yang
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY 10021, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48210, USA
| |
Collapse
|
8
|
RUNX3 Meets the Ubiquitin-Proteasome System in Cancer. Cells 2023; 12:cells12050717. [PMID: 36899853 PMCID: PMC10001085 DOI: 10.3390/cells12050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
RUNX3 is a transcription factor with regulatory roles in cell proliferation and development. While largely characterized as a tumor suppressor, RUNX3 can also be oncogenic in certain cancers. Many factors account for the tumor suppressor function of RUNX3, which is reflected by its ability to suppress cancer cell proliferation after expression-restoration, and its inactivation in cancer cells. Ubiquitination and proteasomal degradation represent a major mechanism for the inactivation of RUNX3 and the suppression of cancer cell proliferation. On the one hand, RUNX3 has been shown to facilitate the ubiquitination and proteasomal degradation of oncogenic proteins. On the other hand, RUNX3 can be inactivated through the ubiquitin-proteasome system. This review encapsulates two facets of RUNX3 in cancer: how RUNX3 suppresses cell proliferation by facilitating the ubiquitination and proteasomal degradation of oncogenic proteins, and how RUNX3 is degraded itself through interacting RNA-, protein-, and pathogen-mediated ubiquitination and proteasomal degradation.
Collapse
|
9
|
Lazewski D, Kucinska M, Potapskiy E, Kuzminska J, Popenda L, Tezyk A, Goslinski T, Wierzchowski M, Murias M. Enhanced Cytotoxic Activity of PEGylated Curcumin Derivatives: Synthesis, Structure-Activity Evaluation, and Biological Activity. Int J Mol Sci 2023; 24:ijms24021467. [PMID: 36674983 PMCID: PMC9867315 DOI: 10.3390/ijms24021467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Curcumin has been modified in various ways to broaden its application in medicine and address its limitations. In this study, we present a series of curcumin-based derivatives obtained by replacing the hydroxy groups in the feruloyl moiety with polyethylene glycol (PEG) chains and the addition of the BF2 moiety to the carbonyl groups. Tested compounds were screened for their cytotoxic activity toward two bladder cancer cell lines, 5637 and SCaBER, and a noncancerous cell line derived from lung fibroblasts (MRC-5). Cell viability was analyzed under normoxic and hypoxic conditions (1% oxygen). Structure-activity relationships (SARs) are discussed, and curcumin derivatives equipped within feruloyl moieties with 3-methoxy and 4-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy} substituents (5) were selected for further analysis. Compound 5 did not affect the viability of MRC-5 cells and exerted a stronger cytotoxic effect under hypoxic conditions. However, the flow cytometry studies showed that PEGylation did not improve cellular uptake. Another observation was that the lack of serum proteins limits the intracellular uptake of curcumin derivative 5. The preliminary mechanism of action studies indicated that compound 5 under hypoxic conditions induced G2/M arrest in a dose-dependent manner and increased the expression of stress-related proteins such as p21/CIP1, phosphorylated HSP27, ADAMTS-1, and phosphorylated JNK. In summary, the results of the studies indicated that PEGylated curcumin is a more potent compound against bladder cancer cell lines than the parent compound, and derivative 5 is worthy of further investigation to clarify its mechanism of anticancer action under hypoxic conditions.
Collapse
Affiliation(s)
- Dawid Lazewski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland
| | - Edward Potapskiy
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Joanna Kuzminska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3 Street, 61-614 Poznan, Poland
| | - Artur Tezyk
- Department of Forensic Medicine, Poznan University of Medical Sciences, Rokietnicka 10 Street, 60-806 Poznan, Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10 Street, 61-614 Poznan, Poland
| |
Collapse
|
10
|
Wang L, Wang D, Yang L, Zeng X, Zhang Q, Liu G, Pan Y. Cuproptosis related genes associated with Jab1 shapes tumor microenvironment and pharmacological profile in nasopharyngeal carcinoma. Front Immunol 2022; 13:989286. [PMID: 36618352 PMCID: PMC9816571 DOI: 10.3389/fimmu.2022.989286] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is the most common subcategory of head and neck squamous cell carcinoma (HNSCC). This study focused on the roles of cuproptosis related genes and Jab1 in the tumor microenvironment of NPC and HNSCC. Methods Differential expression analysis of Jab1 and cuproptosis related genes in tumor cell enriched region (PanCK-expressing) and immune cell enriched region (CD45-expressing) of NPC microenvironment were performed by packages of R software. Survival analysis was performed using the survival and survminer packages. Corrplot package was used for correlation analysis. ConsensusClusterPlus package was used for cluster clustering among different regions of NPC, and functional enrichment analysis was performed using GSVA, GSEABase, clusterProfiler, org.Hs.eg.db and enrichplot packages. The pRRophetic package was used to predict drug sensitivity in NPC and HNSCC. Results Relationships exist between cuproptosis related genes and Jab1 in the NPC microenvironment. The expression of cuproptosis related genes and Jab1 differed between tumor cell enriched region and immune cell enriched region. AKT inhibitor VIII, Doxorubicin, Bleomycin and Etoposide showed higher sensitivity to tumor cell than immune cell. In the high Jab1 group, higher expression of ATP7A, DBT, DLD and LIAS were associated with better prognosis of HNSCC patients. In contrast, in the low Jab1 group, higher expression of these genes is associated with worse prognosis of HNSCC patients. Conclusions Prognostic cuproptosis related genes and Jab1 provided a basis for targeted therapy and drug development.
Collapse
Affiliation(s)
- Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, the Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Liu Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China,*Correspondence: Guohong Liu, ; Yunbao Pan,
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China,*Correspondence: Guohong Liu, ; Yunbao Pan,
| |
Collapse
|
11
|
Pandey P, Khan F, Alzahrani FA, Qari HA, Oves M. A Novel Approach to Unraveling the Apoptotic Potential of Rutin (Bioflavonoid) via Targeting Jab1 in Cervical Cancer Cells. Molecules 2021; 26:molecules26185529. [PMID: 34577000 PMCID: PMC8472561 DOI: 10.3390/molecules26185529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 01/29/2023] Open
Abstract
Rutin has been well recognized for possessing numerous pharmacological and biological activities in several human cancer cells. This research has addressed the inhibitory potential of rutin against the Jab1 oncogene in SiHa cancer cells, which is known to inactivate various tumor suppressor proteins including p53 and p27. Further, the inhibitory efficacy of rutin via Jab1 expression modulation in cervical cancer has not been yet elucidated. Hence, we hypothesized that rutin could exhibit strong inhibitory efficacy against Jab1 and, thereby, induce significant growth arrest in SiHa cancer cells in a dose-dependent manner. In our study, the cytotoxic efficacy of rutin on the proliferation of a cervical cancer cell line (SiHa) was exhibited using MTT and LDH assays. The correlation between rutin and Jab1 mRNA expression was assessed by RT-PCR analysis and the associated events (a mechanism) with this downregulation were then explored via performing ROS assay, DAPI analysis, and expression analysis of apoptosis-associated signaling molecules such as Bax, Bcl-2, and Caspase-3 and -9 using qRT-PCR analysis. Results exhibit that rutin produces anticancer effects via inducing modulation in the expression of oncogenes as well as tumor suppressor genes. Further apoptosis induction, caspase activation, and ROS generation in rutin-treated SiHa cancer cells explain the cascade of events associated with Jab1 downregulation in SiHa cancer cells. Additionally, apoptosis induction was further confirmed by the FITC-Annexin V/PI double staining method. Altogether, our research supports the feasibility of developing rutin as one of the potent drug candidates in cervical cancer management via targeting one such crucial oncogene associated with cervical cancer progression.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India; or
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India; or
- Correspondence: or (F.K.); or (M.O.); Tel.: +91-8923580628 (F.K.); +966-650399857 (M.O.)
| | - Faisal Abdulrahman Alzahrani
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cells Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Huda A. Qari
- Department of biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or (F.K.); or (M.O.); Tel.: +91-8923580628 (F.K.); +966-650399857 (M.O.)
| |
Collapse
|
12
|
De Santis C, Götte M. The Role of microRNA Let-7d in Female Malignancies and Diseases of the Female Reproductive Tract. Int J Mol Sci 2021; 22:ijms22147359. [PMID: 34298978 PMCID: PMC8305730 DOI: 10.3390/ijms22147359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Let-7d is a microRNA of the conserved let-7 family that is dysregulated in female malignancies including breast cancer, ovarian cancer, endometrial cancer, and cervical cancer. Moreover, a dysregulation is observed in endometriosis and pregnancy-associated diseases such as preeclampsia and fetal growth restriction. Let-7d expression is regulated by cytokines and steroids, involving transcriptional regulation by OCT4, MYC and p53, as well as posttranscriptional regulation via LIN28 and ADAR. By downregulating a wide range of relevant mRNA targets, let-7d affects cellular processes that drive disease progression such as cell proliferation, apoptosis (resistance), angiogenesis and immune cell function. In an oncological context, let-7d has a tumor-suppressive function, although some of its functions are context-dependent. Notably, its expression is associated with improved therapeutic responses to chemotherapy in breast and ovarian cancer. Studies in mouse models have furthermore revealed important roles in uterine development and function, with implications for obstetric diseases. Apart from a possible utility as a diagnostic blood-based biomarker, pharmacological modulation of let-7d emerges as a promising therapeutic concept in a variety of female disease conditions.
Collapse
MESH Headings
- Aging
- Animals
- Biomarkers
- Biomarkers, Tumor
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Female
- Fertility/genetics
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/genetics
- Genital Neoplasms, Female/drug therapy
- Genital Neoplasms, Female/genetics
- Humans
- Mice
- MicroRNAs/genetics
- MicroRNAs/physiology
- Molecular Targeted Therapy
- Pregnancy
- Pregnancy Complications/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/physiology
Collapse
|