1
|
Martinho I, Braz M, Duarte J, Brás A, Oliveira V, Gomes NCM, Pereira C, Almeida A. The Potential of Phage Treatment to Inactivate Planktonic and Biofilm-Forming Pseudomonas aeruginosa. Microorganisms 2024; 12:1795. [PMID: 39338470 PMCID: PMC11433742 DOI: 10.3390/microorganisms12091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of hospital-acquired infections and exhibits a strong resistance to antibiotics. An alternative treatment option for bacterial infections is the use of bacteriophages (or phages). In this study, two distinct phages, VB_PaD_phPA-G (phPA-G) and VB_PaN_phPA-Intesti (phPA-Intesti), were used as single suspensions or in a phage cocktail to inactivate the planktonic cells and biofilms of P. aeruginosa. Preliminary experiments in culture medium showed that phage phPA-Intesti (reductions of 4.5-4.9 log CFU/mL) outperformed phPA-G (reductions of 0.6-2.6 log CFU/mL) and the phage cocktail (reduction of 4.2 log CFU/mL). Phage phPA-Intesti caused a maximum reduction of 5.5 log CFU/cm2 in the P. aeruginosa biofilm in urine after 4 h of incubation. The combination of phage phPA-Intesti and ciprofloxacin did not improve the efficacy of bacterial inactivation nor reduce the development of resistant mutants. However, the development of resistant bacteria was lower in the combined treatment with the phage and the antibiotic compared to treatment with the antibiotic alone. This phage lacks known toxins, virulence, antibiotic resistance, and integrase genes. Overall, the results suggest that the use of phage phPA-Intesti could be a potential approach to control urinary tract infections (UTIs), namely those caused by biofilm-producing and multidrug-resistant strains of P. aeruginosa.
Collapse
Affiliation(s)
- Inês Martinho
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Brás
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Zhou C, Wang Q, Cao H, Jiang J, Gao L. Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403362. [PMID: 38874860 DOI: 10.1002/adma.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Infectious diseases caused by bacterial, viral, and fungal pathogens present significant global health challenges. The rapid emergence of antimicrobial resistance exacerbates this issue, leading to a scenario where effective antibiotics are increasingly scarce. Traditional antibiotic development strategies are proving inadequate against the swift evolution of microbial resistance. Therefore, there is an urgent need to develop novel antimicrobial strategies with mechanisms distinct from those of existing antibiotics. Nanozybiotics, which are nanozyme-based antimicrobials, mimic the catalytic action of lysosomal enzymes in innate immune cells to kill infectious pathogens. This review reinforces the concept of nanozymes and provides a comprehensive summary of recent research advancements on potential antimicrobial candidates. Initially, nanozybiotics are categorized based on their activities, mimicking either oxidoreductase-like or hydrolase-like functions, thereby highlighting their superior mechanisms in combating antimicrobial resistance. The review then discusses the progress of nanozybiotics in treating bacterial, viral, and fungal infections, confirming their potential as novel antimicrobial candidates. The translational potential of nanozybiotic-based products, including hydrogels, nanorobots, sprays, bandages, masks, and protective clothing, is also considered. Finally, the current challenges and future prospects of nanozybiotic-related products are explored, emphasizing the design and antimicrobial capabilities of nanozybiotics for future applications.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| |
Collapse
|
3
|
Ristori MV, Guarrasi V, Soda P, Petrosillo N, Gurrieri F, Longo UG, Ciccozzi M, Riva E, Angeletti S. Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes (Basel) 2024; 15:908. [PMID: 39062687 PMCID: PMC11275270 DOI: 10.3390/genes15070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Emerging infectious diseases (EIDs) are newly emerging and reemerging infectious diseases. The National Institute of Allergy and Infectious Diseases identifies the following as emerging infectious diseases: SARS, MERS, COVID-19, influenza, fungal diseases, plague, schistosomiasis, smallpox, tick-borne diseases, and West Nile fever. The factors that should be taken into consideration are the genetic adaptation of microbial agents and the characteristics of the human host or environment. The new approach to identifying new possible pathogens will have to go through the One Health approach and omics integration data, which are capable of identifying high-priority microorganisms in a short period of time. New bioinformatics technologies enable global integration and sharing of surveillance data for rapid public health decision-making to detect and prevent epidemics and pandemics, ensuring timely response and effective prevention measures. Machine learning tools are being more frequently utilized in the realm of infectious diseases to predict sepsis in patients, diagnose infectious diseases early, and forecast the effectiveness of treatment or the appropriate choice of antibiotic regimen based on clinical data. We will discuss emerging microorganisms, omics techniques applied to infectious diseases, new computational solutions to evaluate biomarkers, and innovative tools that are useful for integrating omics data and electronic medical records data for the clinical management of emerging infectious diseases.
Collapse
Affiliation(s)
- Maria Vittoria Ristori
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
| | - Valerio Guarrasi
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
- Department of Diagnostic and Intervention, Radiation Physics, Biomedical Engineering, Umeå University, 901 87 Umeå, Sweden
| | - Nicola Petrosillo
- Infection Prevention Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
| | - Fiorella Gurrieri
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Elisabetta Riva
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Virology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Silvia Angeletti
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Research Unit of Clinical Laboratory Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
4
|
Guzel M, Yucefaydali A, Yetiskin S, Deniz A, Yaşar Tel O, Akçelik M, Soyer Y. Genomic analysis of Salmonella bacteriophages revealed multiple endolysin ORFs and importance of ligand-binding site of receptor-binding protein. FEMS Microbiol Ecol 2024; 100:fiae079. [PMID: 38816206 PMCID: PMC11180984 DOI: 10.1093/femsec/fiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Salmonella is a prevalent foodborne pathogen causing millions of global cases annually. Antimicrobial resistance is a growing public health concern, leading to search for alternatives like bacteriophages. A total of 97 bacteriophages, isolated from cattle farms (n = 48), poultry farms (n = 37), and wastewater (n = 5) samples in Türkiye, were subjected to host-range analysis using 36 Salmonella isolates with 18 different serotypes. The broadest host range belonged to an Infantis phage (MET P1-091), lysing 28 hosts. A total of 10 phages with the widest host range underwent further analysis, revealing seven unique genomes (32-243 kb), including a jumbophage (>200 kb). Except for one with lysogenic properties, none of them harbored virulence or antibiotic resistance genes, making them potential Salmonella reducers in different environments. Examining open reading frames (ORFs) of endolysin enzymes revealed surprising findings: five of seven unique genomes contained multiple endolysin ORFs. Despite sharing same endolysin sequences, phages exhibited significant differences in host range. Detailed analysis unveiled diverse receptor-binding protein sequences, with similar structures but distinct ligand-binding sites. These findings emphasize the importance of ligand-binding sites of receptor-binding proteins. Additionally, bacterial reduction curve and virulence index revealed that Enteritidis phages inhibit bacterial growth even at low concentrations, unlike Infantis and Kentucky phages.
Collapse
Affiliation(s)
- Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Hitit University, Corum 19030, Türkiye
| | - Aysenur Yucefaydali
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Segah Yetiskin
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysu Deniz
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Osman Yaşar Tel
- Faculty of Veterinary Medicine, Harran University, Şanlıurfa 63300, Türkiye
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Ankara 06100, Türkiye
| | - Yeşim Soyer
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| |
Collapse
|
5
|
Azam AH, Sato K, Miyanaga K, Nakamura T, Ojima S, Kondo K, Tamura A, Yamashita W, Tanji Y, Kiga K. Selective bacteriophages reduce the emergence of resistant bacteria in bacteriophage-antibiotic combination therapy. Microbiol Spectr 2024; 12:e0042723. [PMID: 38695573 PMCID: PMC11237537 DOI: 10.1128/spectrum.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2024] [Indexed: 06/06/2024] Open
Abstract
Escherichia coli O157:H7 is a globally important foodborne pathogen with implications for food safety. Antibiotic treatment for O157 may potentially contribute to the exacerbation of hemolytic uremic syndrome, and the increasing prevalence of antibiotic-resistant strains necessitates the development of new treatment strategies. In this study, the bactericidal effects and resistance development of antibiotic and bacteriophage monotherapy were compared with those of combination therapy against O157. Experiments involving continuous exposure of O157 to phages and antibiotics, along with genetic deletion studies, revealed that the deletion of glpT and uhpT significantly increased resistance to fosfomycin. Furthermore, we found that OmpC functions as a receptor for the PP01 phage, which infects O157, and FhuA functions as a receptor for the newly isolated SP15 phage, targeting O157. In the glpT and uhpT deletion mutants, additional deletion in ompC, the receptor for the PP01 phage, increased resistance to fosfomycin. These findings suggest that specific phages may contribute to antibiotic resistance by selecting the emergence of gene mutations responsible for both phage and antibiotic resistance. While combination therapy with phages and antibiotics holds promise for the treatment of bacterial infections, careful consideration of phage selection is necessary.IMPORTANCEThe combination treatment of fosfomycin and bacteriophages against Escherichia coli O157 demonstrated superior bactericidal efficacy compared to monotherapy, effectively suppressing the emergence of resistance. However, mutations selected by phage PP01 led to enhanced resistance not only to the phage but also to fosfomycin. These findings underscore the importance of exercising caution in selecting phages for combination therapy, as resistance selected by specific phages may increase the risk of developing antibiotic resistance.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Koji Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Tomohiro Nakamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Shinjiro Ojima
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Kohei Kondo
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Azumi Tamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Wakana Yamashita
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kotaro Kiga
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| |
Collapse
|
6
|
Jiang J, Lv X, Cheng H, Yang D, Xu W, Hu Y, Song Y, Zeng G. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater 2024; 177:1-19. [PMID: 38336269 DOI: 10.1016/j.actbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The emergence of drug-resistant bacteria has significantly diminished the efficacy of existing antibiotics in the treatment of bacterial infections. Consequently, the need for finding a strategy capable of effectively combating bacterial infections has become increasingly urgent. Photodynamic therapy (PDT) is considered one of the most promising emerging antibacterial strategies due to its non-invasiveness, low adverse effect, and the fact that it does not lead to the development of drug resistance. However, bacteria at the infection sites often exist in the form of biofilm instead of the planktonic form, resulting in a hypoxic microenvironment. This phenomenon compromises the treatment outcome of oxygen-dependent type-II PDT. Compared to type-II PDT, type-I PDT is not constrained by the oxygen concentration in the infected tissues. Therefore, in the treatment of bacterial infections, type-I PDT exhibits significant advantages over type-II PDT. In this review, we first introduce the fundamental principles of type-I PDT in details, including its physicochemical properties and how it generates reactive oxygen species (ROS). Next, we explore several specific antimicrobial mechanisms utilized by type-I PDT and summarize the recent applications of type-I PDT in antimicrobial treatment. Finally, the limitations and future development directions of type-I photosensitizers are discussed. STATEMENT OF SIGNIFICANCE: The misuse and overuse of antibiotics have accelerated the development of bacterial resistance. To achieve the effective eradication of resistant bacteria, pathfinders have devised various treatment strategies. Among these strategies, type I photodynamic therapy has garnered considerable attention owing to its non-oxygen dependence. The utilization of non-oxygen-dependent photodynamic therapy not only enables the effective elimination of drug-resistant bacteria but also facilitates the successful eradication of hypoxic biofilms, which exhibits promising prospects for treating biofilm-associated infections. Based on the current research status, we anticipate that the novel type I photodynamic therapy agent can surmount the biofilm barrier, enabling efficient treatment of hypoxic biofilm infections.
Collapse
Affiliation(s)
- Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Huijuan Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wenjia Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648.
| |
Collapse
|
7
|
Park JM, Kim JH, Kim G, Sim HJ, Ahn SM, Choi KS, Kwon HJ. Rapid Antibacterial Activity Assessment of Chimeric Lysins. Int J Mol Sci 2024; 25:2430. [PMID: 38397110 PMCID: PMC10888538 DOI: 10.3390/ijms25042430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Various chimeric lysins have been developed as efficacious antibiotics against multidrug-resistant bacteria, but direct comparisons of their antibacterial activities have been difficult due to the preparation of multiple recombinant chimeric lysins. Previously, we reported an Escherichia coli cell-free expression method to better screen chimeric lysins against Staphylococcus aureus, but we still needed to increase the amounts of expressed proteins enough to be able to detect them non-isotopically for quantity comparisons. In this study, we improved the previous cell-free expression system by adding a previously reported artificial T7 terminator and reversing the different nucleotides between the T7 promoter and start codon to those of the T7 phage. The new method increased the expressed amount of chimeric lysins enough for us to detect them using Western blotting. Therefore, the qualitative comparison of activity between different chimeric lysins has become possible via the adjustment of the number of variables between samples without protein purification. We applied this method to select more active chimeric lysins derived from our previously reported chimeric lysin (ALS2). Finally, we compared the antibacterial activities of our selected chimeric lysins with reported chimeric lysins (ClyC and ClyO) and lysostaphin and determined the rank orders of antibacterial activities on different Staphylococcus aureus strains in our experimental conditions.
Collapse
Affiliation(s)
- Jin-Mi Park
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Jun-Hyun Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Gun Kim
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun-Ju Sim
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Min Ahn
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
| | - Kang-Seuk Choi
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Meng X, Xu Z, Wang C, Patitz J, Boccaccini AR, Burkovski A, Zheng K. Surface engineering of mesoporous bioactive glass nanoparticles with bacteriophages for enhanced antibacterial activity. Colloids Surf B Biointerfaces 2024; 234:113714. [PMID: 38128358 DOI: 10.1016/j.colsurfb.2023.113714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Binary SiO2-CaO mesoporous bioactive glass nanoparticles (MBGNs) are multifunctional biomaterials able to promote osteogenic, angiogenic, and immunomodulatory activities. MBGNs have been applied in a variety of tissue regeneration strategies. However, MBGNs lack strong antibacterial activity and current strategies (loading of antibacterial ions or antibiotics) toward enhanced antibacterial activity may cause cytotoxicity or antibiotic resistance. Here we engineered MBGNs using bacteriophages (phages) to enhance the antibacterial activity. Salmonella Typhimurium (S. T) phage PFPV25.1 that can infect Salmonella enterica serovar Typhimurium strain LT2 was used as a model phage to engineer MBGNs. MBGNs were first modified with amine groups to enhance the affinity between phages and MBGNs surfaces. Afterward, the physicochemical and antibacterial activity of phage-engineered MBGNs was evaluated. The results showed that S. T phage PFPV25.1 was successfully bound onto MBGNs surfaces without losing their bioactivity. A higher quantity of phages could be bounded onto amine-functionalized MBGNs than onto non-functionalized MBGNs. Phages on amine-functionalized MBGNs exhibited higher antibacterial activity. The stability test showed that phages could remain on amine-functionalized MBGNs for over 28 days. This work provides valuable information on developing phage-modified MBGNs as a new and effective antibacterial system for biomedical applications.
Collapse
Affiliation(s)
- Xiangjun Meng
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Zhiyan Xu
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chen Wang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jennifer Patitz
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
9
|
Nickodem CA, Arnold AN, Beck MR, Bush KJ, Gehring KB, Gill JJ, Le T, Proctor JA, Richeson JT, Scott HM, Smith JK, Taylor TM, Vinasco J, Norman KN. An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation. Animals (Basel) 2023; 13:3170. [PMID: 37893894 PMCID: PMC10603643 DOI: 10.3390/ani13203170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Post-harvest Salmonella mitigation techniques are insufficient at addressing Salmonella harbored in cattle lymph nodes, necessitating the exploration of pre-harvest alternatives that reduce Salmonella prior to dissemination to the lymph nodes. A 2 × 2, unbalanced experiment was conducted to determine the effectiveness of pre-harvest treatments applied to the pen surface for Salmonella mitigation in cattle. Treatments included manure slurry intended to mimic pen run-off water (n = 4 pens), a bacteriophage cocktail (n = 4), a combination of both treatments (n = 5), and a control group (n = 5) that received no treatment. Environment samples from 18 feedlot pens and fecal grabs, hide swabs, and subiliac lymph nodes from 178 cattle were collected and selectively enriched for Salmonella, and Salmonella isolates were sequenced. The combination treatment was most effective at reducing Salmonella, and the prevalence was significantly lower compared with the control group for rump swabs on Days 14 and 21. The treatment impact on Salmonella in the lymph nodes could not be determined due to low prevalence. The reduction on cattle hides suggests that bacteriophage or water treatments applied to the feedlot pen surface may reduce Salmonella populations in cattle during the pre-harvest period, resulting in reduced contamination during slaughter and processing.
Collapse
Affiliation(s)
- Colette A. Nickodem
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - Ashley N. Arnold
- Texas A&M Veterinary Diagnostic Laboratory, Texas A&M University, College Station, TX 77843, USA;
| | - Matthew R. Beck
- United States Department of Agriculture-Agriculture Research Service, Bushland, TX 79012, USA;
| | - K. Jack Bush
- Texas A&M AgriLife Research, Texas A&M University System, Amarillo, TX 79106, USA;
| | - Kerri B. Gehring
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (K.B.G.); (J.J.G.); (T.L.); (T.M.T.)
| | - Jason J. Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (K.B.G.); (J.J.G.); (T.L.); (T.M.T.)
- Center for Phage Technology, Texas A&M University, College Station, TX 77845, USA
| | - Tram Le
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (K.B.G.); (J.J.G.); (T.L.); (T.M.T.)
- Center for Phage Technology, Texas A&M University, College Station, TX 77845, USA
| | - Jarret A. Proctor
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (K.B.G.); (J.J.G.); (T.L.); (T.M.T.)
| | - John T. Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - H. Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (H.M.S.); (J.V.)
| | - Jason K. Smith
- Texas A&M AgriLife Extension, Department of Animal Science, Texas A&M University, Amarillo, TX 79106, USA;
| | - T. Matthew Taylor
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (K.B.G.); (J.J.G.); (T.L.); (T.M.T.)
| | - Javier Vinasco
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (H.M.S.); (J.V.)
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
10
|
Suladze T, Jaiani E, Darsavelidze M, Elizbarashvili M, Gorge O, Kusradze I, Kokashvili T, Lashkhi N, Tsertsvadze G, Janelidze N, Chubinidze S, Grdzelidze M, Tsanava S, Valade E, Tediashvili M. New Bacteriophages with Podoviridal Morphotypes Active against Yersinia pestis: Characterization and Application Potential. Viruses 2023; 15:1484. [PMID: 37515171 PMCID: PMC10385128 DOI: 10.3390/v15071484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Phages of highly pathogenic bacteria represent an area of growing interest for bacterial detection and identification and subspecies typing, as well as for phage therapy and environmental decontamination. Eight new phages-YpEc56, YpEc56D, YpEc57, YpEe58, YpEc1, YpEc2, YpEc11, and YpYeO9-expressing lytic activity towards Yersinia pestis revealed a virion morphology consistent with the Podoviridae morphotype. These phages lyse all 68 strains from 2 different sets of Y. pestis isolates, thus limiting their potential application for subtyping of Y. pestis strains but making them rather promising in terms of infection control. Two phages-YpYeO9 and YpEc11-were selected for detailed studies based on their source of isolation and lytic cross activity towards other Enterobacteriaceae. The full genome sequencing demonstrated the virulent nature of new phages. Phage YpYeO9 was identified as a member of the Teseptimavirus genus and YpEc11 was identified as a member of the Helsettvirus genus, thereby representing new species. A bacterial challenge assay in liquid microcosm with a YpYeO9/YpEc11 phage mixture showed elimination of Y. pestis EV76 during 4 h at a P/B ratio of 1000:1. These results, in combination with high lysis stability results of phages in liquid culture, the low frequency of formation of phage resistant mutants, and their viability under different physical-chemical factors indicate their potential for their practical use as an antibacterial mean.
Collapse
Affiliation(s)
- Tamar Suladze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Ekaterine Jaiani
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Marina Darsavelidze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Maia Elizbarashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Olivier Gorge
- French Armed Forces Biomedical Research Institute (IRBA), 1, Place du Général Valérie André-BP 73, 91223 Bretigny-sur-Orge, France
| | - Ia Kusradze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Tamar Kokashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
- School of Science and Technology, University of Georgia, 77a, Kostava Str., 0171 Tbilisi, Georgia
| | - Nino Lashkhi
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - George Tsertsvadze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Nino Janelidze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
- School of Science and Technology, University of Georgia, 77a, Kostava Str., 0171 Tbilisi, Georgia
| | - Svetlana Chubinidze
- National Center for Disease Control and Pubic Health (NCDC), 99, Kakheti Highway, 0109 Tbilisi, Georgia
| | - Marina Grdzelidze
- National Center for Disease Control and Pubic Health (NCDC), 99, Kakheti Highway, 0109 Tbilisi, Georgia
| | - Shota Tsanava
- National Center for Disease Control and Pubic Health (NCDC), 99, Kakheti Highway, 0109 Tbilisi, Georgia
| | - Eric Valade
- French Armed Forces Biomedical Research Institute (IRBA), 1, Place du Général Valérie André-BP 73, 91223 Bretigny-sur-Orge, France
| | - Marina Tediashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
- School of Science and Technology, University of Georgia, 77a, Kostava Str., 0171 Tbilisi, Georgia
| |
Collapse
|
11
|
Wang X, Tang J, Dang W, Xie Z, Zhang F, Hao X, Sun S, Liu X, Luo Y, Li M, Gu Y, Wang Y, Chen Q, Shen X, Xu L. Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential. Microbiol Spectr 2023; 11:e0463622. [PMID: 37125933 PMCID: PMC10269630 DOI: 10.1128/spectrum.04636-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
As one of the most common pathogens of opportunistic and hospital-acquired infections, Pseudomonas aeruginosa is associated with resistance to diverse antibiotics, which represents a significant challenge to current treatment modalities. Phage therapy is considered a promising alternative to conventional antimicrobials. The characterization and isolation of new bacteriophages and the concurrent evaluation of their therapeutic potential are fundamental for phage therapy. In this study, we employed an enrichment method and a double-layer agar overlay to isolate bacteriophages that infect P. aeruginosa strains PAO1 and PA14. Three phages (named PA_LZ01, PA_LZ02, and PA_LZ03) were isolated and showed icosahedral heads and contractile tails. Following full-genome sequencing, we found that phage PA_LZ01 contained a genome of 65,367 bp in size and harbored 90 predicted open reading frames (ORFs), phage PA_LZ02 contained a genome of 57,243 bp in size and harbored 75 predicted ORFs, and phage PA_LZ03 contained a genome of 57,367 bp in size and carried 77 predicted ORFs. Further comparative analysis showed that phage PA_LZ01 belonged to the genus Pbunavirus genus, phage PA_LZ02 belonged to the genus Pamexvirus, and phage PA_LZ03 belonged to the family Mesyanzhinovviridae. Next, we demonstrated that these phages were rather stable at different temperatures and pHs. One-step growth curves showed that the burst size of PA_LZ01 was 15 PFU/infected cell, and that of PA_LZ02 was 50 PFU/infected cell, while the titer of PA_LZ03 was not elevated. Similarly, the biofilm clearance capacities of PA_LZ01 and PA_LZ02 were also higher than that of PA_LZ03. Therapeutically, PA_LZ01 and PA_LZ02 treatment led to decreased bacterial loads and inflammatory responses in a mouse model. In conclusion, we isolated three phages that can infect P. aeruginosa, which were stable in different environments and could reduce bacterial biofilms, suggesting their potential as promising candidates to treat P. aeruginosa infections. IMPORTANCE Phage therapy is a promising therapeutic option for treating bacterial infections that do not respond to common antimicrobial treatments. Biofilm-mediated infections are particularly difficult to treat with traditional antibiotics, and the emergence of antibiotic-resistant strains has further complicated the situation. Pseudomonas aeruginosa is a bacterial pathogen that causes chronic infections and is highly resistant to many antibiotics. The library of phages that target P. aeruginosa is expanding, and the isolation of new bacteriophages is constantly required. In this study, three bacteriophages that could infect P. aeruginosa were isolated, and their biological characteristics were investigated. In particular, the isolated phages are capable of reducing biofilms formed by P. aeruginosa. Further analysis indicates that treatment with PA_LZ01 and PA_LZ02 phages reduces bacterial loads and inflammatory responses in vivo. This study isolated and characterized bacteriophages that could infect P. aeruginosa, which offers a resource for phage therapy.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingjing Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuhua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanchao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Al-Madboly LA, Abdelaziz AA, Abo-Kamer AM, Nosair AM, Abdelkader K. Characterization and genomic analysis of novel bacteriophage NK20 to revert colistin resistance and combat pandrug-resistant Klebsiella pneumoniae in a rat respiratory infection model. Life Sci 2023; 322:121639. [PMID: 37001805 DOI: 10.1016/j.lfs.2023.121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
AIM We investigated the therapeutic capacity of the isolated Klebsiella bacteriophage NK20 against pandrug-resistant strains. Moreover, we assessed the impact of resistance development on the overall therapeutic outcome both in vitro and in vivo. MAIN METHODS The pandrug-resistant K. pneumoniae Kp20 is used as a host strain for the isolation of bacteriophages using sewage samples. Spot assay was then used to compare the spectra of the isolated phages, while kinetic and genomic analysis of the phage with the broadest spectrum was assessed. Antibacterial potential of the phage was assessed using turbidimetric assay and MIC with and without colistin. Finally, the therapeutic efficacy was evaluated in vivo using a rat respiratory infection model. KEY FINDINGS The isolated lytic bacteriophage (NK20) showed a relatively broad spectrum and an acceptable genomic profile. In vitro antibacterial assay revealed bacterial resistance development after 12 h. Colistin inhibited bacterial regrowth and reduced pandrug-resistant strains' colistin MICs. Despite the isolation of resistant clones, intranasal administration of NK20 significantly (p < 0.05) reduced the bacterial load in both the pulmonary and blood compartments and rescued 100 % of challenged rats. Histological and immunological analysis of treated animals' lung tissue revealed less inflammation and lower TNF-α and caspase-3 expression. SIGNIFICANCE NK20 is a promising candidate that rescued rats from untreatable, pan-drug-resistant K. pneumoniae Kp20. Moreover, it steers the evolution of resistant mutants with higher sensitivity to colistin and less virulence, opening the door for using phages as sensitizing and anti-virulence entities rather than direct killer.
Collapse
|
13
|
McCammon S, Makarovs K, Banducci S, Gold V. Phage therapy and the public: Increasing awareness essential to widespread use. PLoS One 2023; 18:e0285824. [PMID: 37200291 PMCID: PMC10194857 DOI: 10.1371/journal.pone.0285824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Today, the antimicrobial resistance (AMR) crisis is shaping a world where previously treatable infections can kill. This has revitalised the development of antibiotic alternatives, such as phage therapy. The therapeutic use of phages, viruses that infect and kill bacteria, was first explored over a century ago. However, most of the Western world abandoned phage therapy in favour of antibiotics. While the technical feasibility of phage therapy has been increasingly investigated in recent years, there has been minimal effort to understand and tackle the social challenges that may hinder its development and implementation. In this study, we assess the UK public's awareness, acceptance, preferences and opinions regarding phage therapy using a survey, fielded on the Prolific online research platform. The survey contained two embedded experiments: a conjoint and framing experiment (N = 787). We demonstrate that acceptance of phage therapy among the lay public is already moderate, with a mean likelihood of acceptance of 4.71 on a scale of 1 (not at all likely to accept phage therapy) to 7 (very likely to accept phage therapy). However, priming participants to think about novel medicines and antibiotic resistance significantly increases their likelihood of using phage therapy. Moreover, the conjoint experiment reveals that success and side effect rate, treatment duration, and where the medicine has been approved for use has a statistically significant effect on participants' treatment preferences. Investigations altering the framing of phage therapy, to highlight positive and negative aspects, reveal a higher acceptance of the treatment when described without using perceived harsh words, such as "kill" and "virus". Combined, this information provides an initial insight into how phage therapy could be developed and introduced in the UK to maximise acceptance rate.
Collapse
Affiliation(s)
- Sophie McCammon
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Kirils Makarovs
- The Department of Social and Political Sciences, Philosophy and Anthropology, University of Exeter, Exeter, United Kingdom
| | - Susan Banducci
- The Department of Social and Political Sciences, Philosophy and Anthropology, University of Exeter, Exeter, United Kingdom
| | - Vicki Gold
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
14
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Teklemariam AD, Al-Hindi RR, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Esmael A, Harakeh S. Isolation and Characterization of a Novel Lytic Phage, vB_PseuP-SA22, and Its Efficacy against Carbapenem-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:497. [PMID: 36978364 PMCID: PMC10044225 DOI: 10.3390/antibiotics12030497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage had a podovirus morphology, which agreed with the results of whole genome sequencing. BLASTn search allowed us to classify vB_PseuP-SA22 into the genus Bruynoghevirus. The genome of vB_PseuP-SA22 consisted of 45,458 bp of double-stranded DNA, with a GC content of 52.5%. Of all the open reading frames (ORFs), only 26 (44.8%) were predicted to encode certain functional proteins, whereas the remaining 32 (55.2%) ORFs were annotated as sequences coding functionally uncharacterized hypothetical proteins. The genome lacked genes coding for toxins or markers of lysogenic phages, including integrases, repressors, recombinases, or excisionases. The phage produced round, halo plaques with a diameter of 1.5 ± 2.5 mm on the bacterial lawn. The TEM revealed that vB_PseuP-SA22 has an icosahedral head of 57.5 ± 4.5 nm in length and a short, non-contractile tail (19.5 ± 1.4 nm). The phage showed a latent period of 30 min, a burst size of 300 PFU/infected cells, and a broad host range. vB_PseuP-SA22 was found to be stable between 4-60 °C for 1 h, while the viability of the virus was reduced at temperatures above 60 °C. The phage showed stability at pH levels between 5 and 11. vB_PauP-SA22 reduced the number of live bacteria in P. aeruginosa biofilm by almost five logs. The overall results indicated that the isolated phage could be a candidate to control CRPA infections. However, experimental in vivo studies are essential to ensure the safety and efficacy of vB_PauP-SA22 before its use in humans.
Collapse
Affiliation(s)
- Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Elbehiry A, Marzouk E, Abalkhail A, El-Garawany Y, Anagreyyah S, Alnafea Y, Almuzaini AM, Alwarhi W, Rawway M, Draz A. The Development of Technology to Prevent, Diagnose, and Manage Antimicrobial Resistance in Healthcare-Associated Infections. Vaccines (Basel) 2022; 10:2100. [PMID: 36560510 PMCID: PMC9780923 DOI: 10.3390/vaccines10122100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
There is a growing risk of antimicrobial resistance (AMR) having an adverse effect on the healthcare system, which results in higher healthcare costs, failed treatments and a higher death rate. A quick diagnostic test that can spot infections resistant to antibiotics is essential for antimicrobial stewardship so physicians and other healthcare professionals can begin treatment as soon as possible. Since the development of antibiotics in the last two decades, traditional, standard antimicrobial treatments have failed to treat healthcare-associated infections (HAIs). These results have led to the development of a variety of cutting-edge alternative methods to combat multidrug-resistant pathogens in healthcare settings. Here, we provide an overview of AMR as well as the technologies being developed to prevent, diagnose, and control healthcare-associated infections (HAIs). As a result of better cleaning and hygiene practices, resistance to bacteria can be reduced, and new, quick, and accurate instruments for diagnosing HAIs must be developed. In addition, we need to explore new therapeutic approaches to combat diseases caused by resistant bacteria. In conclusion, current infection control technologies will be crucial to managing multidrug-resistant infections effectively. As a result of vaccination, antibiotic usage will decrease and new resistance mechanisms will not develop.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Yasmine El-Garawany
- Clinical Pharmacy Program, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Yaser Alnafea
- Department of Statistics, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Alwarhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
17
|
Safi Samghabadi F, Slim AH, Smith MW, Chabi M, Conrad JC. Dynamics of Filamentous Viruses in Polyelectrolyte Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Ali H. Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maxwell W. Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maede Chabi
- Department of Biomedical Engineering, University of Houston, Houston, Texas77204, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
18
|
Mirzaei A, Wagemans J, Nasr Esfahani B, Lavigne R, Moghim S. A Phage Cocktail To Control Surface Colonization by Proteus mirabilis in Catheter-Associated Urinary Tract Infections. Microbiol Spectr 2022; 10:e0209222. [PMID: 36194151 PMCID: PMC9602741 DOI: 10.1128/spectrum.02092-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022] Open
Abstract
Proteus mirabilis is a biofilm-forming bacterium and one of the most common causes of catheter-associated urinary tract infections (CAUTIs). The rapid spread of multidrug-resistant P. mirabilis represents a severe threat to management of nosocomial infections. This study aimed to isolate a potent phage cocktail and assess its potential to control urinary tract infections caused by biofilm-forming P. mirabilis. Two lytic phages, Isf-Pm1 and Isf-Pm2, were isolated and characterized by proteome analysis, transmission electron microscopy, and whole-genome sequencing. The host range and effect of the phage cocktail to reduce the biofilm formation were assessed by a cell adhesion assay in Vero cells and a phantom bladder model. The samples treated with the phage cocktail showed a significant reduction (65%) in the biofilm mass. Anti-quorum sensing and quantitative real-time PCR assays were also used to assess the amounts of transcription of genes involved in quorum sensing and biofilm formation. Furthermore, the phage-treated samples showed a downregulation of genes involved in the biofilm formation. In conclusion, these results highlight the efficacy of two isolated phages to control the biofilms produced by P. mirabilis CAUTIs. IMPORTANCE The rapid spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterial strains and biofilm formation of bacteria have severely restricted the use of antibiotics and become a challenging issue in hospitals. Therefore, there is a necessity for alternative or complementary treatment measures, such as the use of virulent bacteriophages (phages), as effective therapeutic strategies.
Collapse
Affiliation(s)
- Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Bahram Nasr Esfahani
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Sharareh Moghim
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Zhang Y, Lin Y, Galgano S, Houdijk J, Xie W, Jin Y, Lin J, Song W, Fu Y, Li X, Chui W, Kan W, Jia C, Hu G, Li T. Recent Progress in Phage Therapy to Modulate Multidrug-Resistant Acinetobacter baumannii, including in Human and Poultry. Antibiotics (Basel) 2022; 11:1406. [PMID: 36290064 PMCID: PMC9598230 DOI: 10.3390/antibiotics11101406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems. Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage therapy has gained particular importance for the treatment of bacterial infections. This review summarizes the different phage-therapy approaches currently in use for multiple-drug resistant Acinetobacter baumannii, including single phage therapy, phage cocktails, phage-antibiotic combination therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies based on phage interventions. Although phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered questions, especially in regard to its in vivo applications, before possible routine clinical use.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Yuanqing Lin
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Salvatore Galgano
- Monogastric Science Research Centre, Scotland’s Rural College, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - Jos Houdijk
- Monogastric Science Research Centre, Scotland’s Rural College, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - Weiquan Xie
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yajie Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jiameng Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Wuqiang Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yijuan Fu
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Xiuying Li
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Wenting Chui
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Wei Kan
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Cai Jia
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Guangwei Hu
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| |
Collapse
|
20
|
Development of a Bacteriophage Cocktail against Pectobacterium carotovorum Subsp. carotovorum and Its Effects on Pectobacterium Virulence. Appl Environ Microbiol 2022; 88:e0076122. [PMID: 36165651 PMCID: PMC9552609 DOI: 10.1128/aem.00761-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.
Collapse
|
21
|
Rai P, Shetty SS, Prabell S, Kuntar A, Pinto D, Kumar BK, Divyashree M, Raj JRM, Premanath R, Deekshit VK, Karunasagar I, Karunasagar I. Characterisation of broad-spectrum phiKZ like jumbo phage and its utilisation in controlling multidrug-resistant Pseudomonas aeruginosa isolates. Microb Pathog 2022; 172:105767. [PMID: 36096457 DOI: 10.1016/j.micpath.2022.105767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022]
Abstract
The emergence of highly virulent multidrug-resistant P. aeruginosa has become increasingly evident among hospital-acquired infections and has raised the need for alternative therapies. Phage therapy can be one such alternative to antibiotic therapy to combat multidrug-resistant pathogenic bacteria, but this requires the availability of phages with a broad host range. In this study, isolation and molecular characterisation of P. aeruginosa specific phages were carried out. A total of 17 phages isolated showed different spectra of activity and efficiency of lysis against 82 isolates of P. aeruginosa obtained from clinical samples (n = 13), hospital effluent (n = 46) and fish processing plant effluent (n = 23). Antibiotic susceptibility test results revealed multi-drug resistance in 61 of the total 82 isolates. Three new jumbo lytic P. aeruginosa specific broad host range phages were isolated and characterised in this present study belonged to the family Myoviridae (order Caudovirales). The genetic analysis of ɸU5 revealed that phage has a genome size of 282.6 kbp with 373 putative open reading frames (ORFs), and its genetic architecture is similar to phiKZ like jumbo phages infecting P. aeruginosa. The bacteriophages isolated in this study had lytic ability against biofilm-forming and multidrug-resistant P. aeruginosa and could be candidates for further studies towards phage therapy.
Collapse
Affiliation(s)
- Praveen Rai
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India.
| | - Shruthi Seetharam Shetty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Sujana Prabell
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Akshatha Kuntar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Deepak Pinto
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Mithoor Divyashree
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Juliet Roshini Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Ramya Premanath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
22
|
Ataee S, Brochet X, Peña-Reyes CA. Bacteriophage Genetic Edition Using LSTM. FRONTIERS IN BIOINFORMATICS 2022; 2:932319. [PMID: 36353213 PMCID: PMC9639385 DOI: 10.3389/fbinf.2022.932319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 09/16/2023] Open
Abstract
Bacteriophages are gaining increasing interest as antimicrobial tools, largely due to the emergence of multi-antibiotic-resistant bacteria. Although their huge diversity and virulence make them particularly attractive for targeting a wide range of bacterial pathogens, it is difficult to select suitable phages due to their high specificity which limits their host range. In addition, other challenges remain such as structural fragility under certain environmental conditions, immunogenicity of phage therapy, or development of bacterial resistance. The use of genetically engineered phages may reduce characteristics that hinder prophylactic and therapeutic applications of phages. Nowadays, there is no systematic method to modify a given phage genome conferring its sought characteristics. We explore the use of artificial intelligence for this purpose as it has the potential to both guide and accelerate genome modification to generate phage variants with unique properties that overcome the limitations of natural phages. We propose an original architecture composed of two deep learning-driven components: a phage-bacterium interaction predictor and a phage genome-sequence generator. The former is a multi-branch 1-D convolutional neural network (1D-CNN) that analyses phage and bacterial genomes to predict interactions. The latter is a recurrent neural network, more particularly a long short-term memory (LSTM), that performs genomic modifications to a phage to offer substantial host range improvement. For this component, we developed two different architectures composed of one or two stacked LSTM layers with 256 neurons each. These generators are used to modify, more precisely to rewrite, the genome sequence of 42 selected phages, while the predictor is used to estimate the host range of the modified bacteriophages across 46 strains of Pseudomonas aeruginosa. The proposed generators, trained with an average accuracy of 96.1%, are able to improve the host range for an average of 18 phages among the 42 under study, increasing both their average host range, by 73.0 and 103.7%, and the maximum host ranges from 21 to 24 and 29, respectively. These promising results showed that the use of deep learning methodologies allows genetic modification of phages to extend, for instance, their host range, confirming the potential of these approaches to guide bacteriophage engineering.
Collapse
Affiliation(s)
- Shabnam Ataee
- Institute of Information and Communication Technology (IICT), School of Management and Engineering Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland
- HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland
- CI4CB—Computational Intelligence for Computational Biology, SIB—Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xavier Brochet
- Institute of Information and Communication Technology (IICT), School of Management and Engineering Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland
- HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland
- CI4CB—Computational Intelligence for Computational Biology, SIB—Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Carlos Andrés Peña-Reyes
- Institute of Information and Communication Technology (IICT), School of Management and Engineering Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland
- HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland
- CI4CB—Computational Intelligence for Computational Biology, SIB—Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
23
|
Han P, Zhang W, Pu M, Li Y, Song L, An X, Li M, Li F, Zhang S, Fan H, Tong Y. Characterization of the Bacteriophage BUCT603 and Therapeutic Potential Evaluation Against Drug-Resistant Stenotrophomonas maltophilia in a Mouse Model. Front Microbiol 2022; 13:906961. [PMID: 35865914 PMCID: PMC9294509 DOI: 10.3389/fmicb.2022.906961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is a common opportunistic pathogen that is resistant to many antibiotics. Bacteriophages are considered to be an effective alternative to antibiotics for the treatment of drug-resistant bacterial infections. In this study, we isolated and characterized a phage, BUCT603, infecting drug-resistant S. maltophilia. Genome sequencing showed BUCT603 genome was composed of 44,912 bp (32.5% G + C content) with 64 predicted open reading frames (ORFs), whereas no virulence-related genes, antibiotic-resistant genes or tRNA were identified. Whole-genome alignments showed BUCT603 shared 1% homology with other phages in the National Center for Biotechnology Information (NCBI) database, and a phylogenetic analysis indicated BUCT603 can be classified as a new member of the Siphoviridae family. Bacteriophage BUCT603 infected 10 of 15 S. maltophilia and used the TonB protein as an adsorption receptor. BUCT603 also inhibited the growth of the host bacterium within 1 h in vitro and effectively increased the survival rate of infected mice in a mouse model. These findings suggest that bacteriophage BUCT603 has potential for development as a candidate treatment of S. maltophilia infection.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjing Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Shuyan Zhang
- Department of Medical Technology Support, Jingdong Medical District of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuyan Zhang,
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Huahao Fan,
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong,
| |
Collapse
|
24
|
Demirci S, Sahiner N. Polyethyleneimine based Cerium(III) and Ce(NO3)3 metal-organic frameworks with blood compatible, antioxidant and antimicrobial properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr 2022; 63:8919-8938. [PMID: 35400249 DOI: 10.1080/10408398.2022.2059442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in modern technologies, various foodborne outbreaks have continuously threatened the food safety. The overuse of and abuse/misuse of antibiotics have escalated this threat due to the prevalence of multidrug-resistant (MDR) pathogens. Therefore, the development of new methodologies for controlling microbial contamination is extremely important to ensure the food safety. As an alternative to antibiotics, bacteriophages(phages) and derived endolysins have been proposed as novel, effective, and safe antimicrobial agents and applied for the prevention and/or eradication of bacterial contaminants even in foods and food processing facilities. In this review, we describe recent genetic and protein engineering tools for phages and endolysins. The major aim of engineering is to overcome limitations such as a narrow host range, low antimicrobial activity, and low stability of phages and endolysins. Phage engineering also aims to deter the emergence of phage resistance. In the case of endolysin engineering, enhanced antibacterial ability against Gram-negative and Gram-positive bacteria is another important goal. Here, we summarize the successful studies of phages and endolysins treatment in different types of food. Moreover, this review highlights the recent advances in engineering techniques for phages and endolysins, discusses existing challenges, and suggests technical opportunities for further development, especially in terms of antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Ndayishimiye J, Kumeria T, Popat A, Falconer JR, Blaskovich MAT. Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infect Dis 2022; 8:693-712. [PMID: 35343231 DOI: 10.1021/acsinfecdis.1c00660] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infections are a significant cause of mortality and morbidity worldwide, despite decades of use of numerous existing antibiotics and constant efforts by researchers to discover new antibiotics. The emergence of infections associated with antibiotic-resistant bacterial strains, has amplified the pressure to develop additional bactericidal therapies or new unorthodox approaches that can deal with antimicrobial resistance. Nanomaterial-based strategies, particularly those that do not rely on conventional small-molecule antibiotics, offer promise in part due to their ability to dodge existing mechanisms used by drug-resistant bacteria. Therefore, the use of nanomaterial-based formulations has attracted attention in the field of antibiotic therapy. In this Review, we highlight novel and emerging nanomaterial-based formulations along with details about the mechanisms by which nanoparticles can target bacterial infections and antimicrobial resistance. A detailed discussion about types and the activities of nanoparticles is presented, along with how they can be used as either delivery systems or as inherent antimicrobials, or a combination of both. Lastly, we highlight some toxicological concerns for the use of nanoparticles in antibiotic therapies.
Collapse
Affiliation(s)
- John Ndayishimiye
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Center for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirali Popat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
27
|
Wang Q, Jiang J, Gao L. Catalytic antimicrobial therapy using nanozymes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1769. [PMID: 34939348 DOI: 10.1002/wnan.1769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/18/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which catalyze the conversion of enzyme substrates and follow enzymatic kinetics under physiological conditions. As a new generation of artificial enzymes, nanozymes provide alternative approaches for those upon enzymatic catalysis. Compared with natural enzymes, nanozymes have the advantages of simple preparation, good stability and low cost, which makes nanozymes promising for application in many fields, such as antimicrobial infection treatment. Many studies have reported that nanozymes are capable of killing a number of pathogenic bacteria with resistance, fungi as well as viruses, and have shown great curative effects for diseases caused by these pathogens. Herein, we summarize the application of nanozymes for antibacterial, antiviral, and antifungal therapies and outline the issues needing resolution in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Qian Wang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Graduate School of University of Chinese Academy of Sciences, Beijing, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Laumen JGE, Abdellati S, Manoharan-Basil SS, Van Dijck C, Van den Bossche D, De Baetselier I, de Block T, Malhotra-Kumar S, Soentjes P, Pirnay JP, Kenyon C, Merabishvili M. Screening of Anorectal and Oropharyngeal Samples Fails to Detect Bacteriophages Infecting Neisseria gonorrhoeae. Antibiotics (Basel) 2022; 11:268. [PMID: 35203870 PMCID: PMC8868155 DOI: 10.3390/antibiotics11020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
There are real concerns that Neisseria gonorrhoeae may become untreatable in the near future due to the rapid emergence of antimicrobial resistance. Alternative therapies are thus urgently required. Bacteriophages active against N. gonorrhoeae could play an important role as an antibiotic-sparing therapy. To the best of our knowledge, no bacteriophages active against N. gonorrhoeae have ever been found. The aim of this study was to screen for bacteriophages able to lyse N. gonorrhoeae in oropharyngeal and anorectal swabs of 74 men who have sex with men attending a sexual health clinic in Antwerp, Belgium. We screened 210 swabs but were unable to identify an anti-gonococcal bacteriophage. This is the first report of a pilot screening that systematically searched for anti-gonococcal phages directly from clinical swabs. Further studies may consider screening for phages at other anatomical sites (e.g., stool samples, urine) or in environmental settings (e.g., toilet sewage water of sex clubs or sexually transmitted infection clinics) where N. gonorrhoeae can be found.
Collapse
Affiliation(s)
- Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium;
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
| | - Sheeba Santhini Manoharan-Basil
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium;
| | - Dorien Van den Bossche
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
| | - Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium;
| | - Patrick Soentjes
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
- Center for Infectious Diseases, Queen Astrid Military Hospital, Neder-over-Heembeek, 1120 Brussels, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, 1120 Brussels, Belgium; (J.-P.P.); (M.M.)
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (S.S.M.-B.); (C.V.D.); (D.V.d.B.); (I.D.B.); (T.d.B.); (P.S.); (C.K.)
- Department of Medicine, University of Cape Town, Cape Town 7701, South Africa
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, 1120 Brussels, Belgium; (J.-P.P.); (M.M.)
- Microbiology and Virology (EIBMV), Eliava Institute of Bacteriophage, Tbilisi 0162, Georgia
| |
Collapse
|
29
|
Sisakhtpour B, Mirzaei A, Karbasizadeh V, Hosseini N, Shabani M, Moghim S. The characteristic and potential therapeutic effect of isolated multidrug-resistant Acinetobacter baumannii lytic phage. Ann Clin Microbiol Antimicrob 2022; 21:1. [PMID: 34996464 PMCID: PMC8742398 DOI: 10.1186/s12941-022-00492-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Widespread misuse of antibiotics caused bacterial resistance increasingly become a serious threat. Bacteriophage therapy promises alternative treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated and characterized a novel, potent lytic bacteriophage against multi-drug resistant (MDR) Acinetobacter baumannii and described the lytic capability and endolysin activity of the phage to evaluate the potential in phage therapy. METHODS A novel phage, pIsf-AB02, was isolated from hospital sewage. The morphological analysis, its host range, growth characteristics, stability under various conditions, genomic restriction pattern were systematically investigated. The protein pattern of the phage was analyzed, and the endolysin activity of the phage was determined under the non-denaturing condition on SDS-PAGE. The optimal lytic titer of phage was assessed by co-culture of the phage with clinical MDR A. baumannii isolates. Finally, HeLa cells were used to examine the safety of the phage. RESULTS The morphological analysis revealed that the pIsf-AB02 phage displays morphology resembling the Myoviridae family. It can quickly destroy 56.3% (27/48) of clinical MDR A. baumannii isolates. This virulent phage could decrease the bacterial host cells (from 108 CFU/ml to 103 CFU/ml) in 30 min. The optimum stability of the phage was observed at 37 °C. pH 7 is the most suitable condition to maintain phage stability. The 15 kDa protein encoded by pIsf-AB02 was detected to have endolysin activity. pIsf-AB02 did not show cytotoxicity to HeLa cells, and it can save HeLa cells from A. baumannii infection. CONCLUSION In this study, we isolated a novel lytic MDR A. baumannii bacteriophage, pIsf-AB02. This phage showed suitable stability at different temperatures and pHs, and demonstrated potent in vitro endolysin activity. pIsf-AB02 may be a good candidate as a therapeutic agent to control nosocomial infections caused by MDR A. baumannii.
Collapse
Affiliation(s)
- Behnam Sisakhtpour
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran
| | - Arezoo Mirzaei
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran
| | - Vajihe Karbasizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran
| | - Nafiseh Hosseini
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran
| | - Mehdi Shabani
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran
| | - Sharareh Moghim
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| |
Collapse
|
30
|
Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Front Microbiol 2021; 12:750662. [PMID: 34992583 PMCID: PMC8724557 DOI: 10.3389/fmicb.2021.750662] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Klebsiella species cause infections at multiple sites, including lung, urinary tract, bloodstream, wound or surgical site, and brain. These infections are more likely to occur in people with preexisting health conditions. Klebsiella pneumoniae (K. pneumoniae) has emerged as a major pathogen of international concern due to the increasing incidences of hypervirulent and carbapenem-resistant strains. It is imperative to understand risk factors, prevention strategies, and therapeutic avenues to treat multidrug-resistant Klebsiella infections. Here, we highlight the epidemiology, risk factors, and control strategies against K. pneumoniae infections to highlight the grave risk posed by this pathogen and currently available options to treat Klebsiella-associated diseases.
Collapse
Affiliation(s)
- De Chang
- Department of Pulmonary and Critical Care Medicine, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Charles S. Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Dong Zhang
- Department of Oncology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Tuberculosis Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Lin W, Li D, Gao M, Qin W, Xu L, Pan L, Liu W, Fan H, Mi Z, Tong Y. Isolation, characterization and biocontrol efficacy of a T4-like phage virulent to multidrug-resistant Enterobacter hormaechei. DISEASES OF AQUATIC ORGANISMS 2021; 147:97-109. [PMID: 34913439 DOI: 10.3354/dao03622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enterobacter hormaechei is an important emerging pathogen, often exhibiting resistance to multiple clinically important antibiotics. In this study, E. hormaechei was found, for the first time, to be lethal to fish. Bacteriophages are considered potential treatments for bacterial infections. The lytic phage vB_EhoM-IME523 (abbreviated 'IME523') infecting multidrug-resistant E. hormaechei was isolated from hospital sewage. IME523 exhibits T4-like morphology, including a prolate icosahedral head 110 ± 1.89 nm (mean ± SD) long and 82 ± 0.75 nm wide, and a contractile tail of ca. 110 ± 0.91 nm in length. The complete genome length of phage IME523 is 172763 bp, with a G + C content of 39.97%. The whole genome sequence of IME523 has a 93.10% average nucleotide identity (ANI) and a 53.3% in silico DNA-DNA hybridization (isDDH) value with the closest-related Enterobacter phage vB_EclM_CIP9 ('CIP9'). ANI and isDDH values between IME523 and other phages were lower than 78 and 22%, respectively. IME523 and CIP9 formed a monophyletic branch in a phylogenetic tree based on the terminase large subunit, DNA polymerase protein and whole genome phylogenetic analysis. Results suggest that IME523 is a novel species in the subfamily Tevenvirinae and forms a novel genus together with CIP9. No IME523 open reading frame was found to be associated with virulence factors or antibiotic resistance genes. IME523 showed promising protection to zebrafish and brocade carp against E. hormaechei challenge.
Collapse
Affiliation(s)
- Wei Lin
- Zhejiang Key Laboratory of Marine Biotechnology, Ningbo University, Ningbo 315832, Zhejiang, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The rumen ecosystem is a complex and dynamic environment, which hosts microorganisms including archaea, bacteria, protozoa, fungi, and viruses. These microorganisms interact with each other, altering the ruminal environment and substrates that will be available for the host digestion and metabolism. Viruses can infect the host and other microorganisms, which can drive changes in microorganisms' lysis rate, substrate availability, nutrient recycling, and population structure. The lysis of ruminal microorganisms' cells by viruses can release enzymes that enhance feedstuff fermentation, which may increase dietary nutrient utilization and feed efficiency. However, negative effects associated to viruses in the gastrointestinal tract have also been reported, in some cases, disrupting the dynamic stability of the ruminal microbiome, which can result in gastrointestinal dysfunctions. Therefore, the objective of this review is to summarize the current knowledge on ruminal virome, their interaction with other components of the microbiome and the effects on animal nutrition.
Collapse
Affiliation(s)
| | - Antonio P. Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Enwuru NV, Gill JJ, Anttonen KP, Enwuru CA, Young R, Coker AO, Cirillo JD. Isolation and characterization of novel phage (Podoviridae ɸParuNE1) and its efficacy against multi-drug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00137-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Bacterial pathogen (Pseudomonas aeruginosa) could form biofilm that conveys multi-drug resistance. Bacteriophage as an alternative to antibacterial resistance is useful against biofilm complications. This study evaluated antibacterial and biofilm removal activities of lytic phage, specific against multi-drug-resistant clinical P. aeruginosa.
Results
The phage showed a wide range of pH (5–10) and heat (7–44 °C) stability. Electron microscopy showed ɸPauNE1 phage head (60 nm in diameter) and non-contractile tail (12 nm in length by 8 nm in width); hence, the family Podoviridae and the order Caudovirales. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed structured protein of 55 kDa and double-stranded DNA of 45 kb. The phage was species specific and had broad host range activity. It inhibited bacterial growth at multiplicity of infection (MOI) 1–0.000001 pfu/ml. Inhibition was maximal at both low (1 × 105) and high (1 × 109) bacterial CFU/ml. Biofilm removal test showed that the phage removed more than 60% cell biomass within CFU/ml of 1.5 × 108, 6.0 × 108 and l.0 × 109.
Conclusion
Phage (ɸPauNE1) was unique and had broad host range activity. The phage exhibited strong bacteriolytic activity against biofilm forming multi-drug-resistant strains. It had no lytic effect on the heterogeneous strains and so a promising bioagent.
Collapse
|
34
|
Alomari MMM, Dec M, Urban-Chmiel R. Bacteriophages as an Alternative Method for Control of Zoonotic and Foodborne Pathogens. Viruses 2021; 13:2348. [PMID: 34960617 PMCID: PMC8709489 DOI: 10.3390/v13122348] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
The global increase in multidrug-resistant infections caused by various pathogens has raised concerns in human and veterinary medicine. This has renewed interest in the development of alternative methods to antibiotics, including the use of bacteriophages for controlling bacterial infections. The aim of this review is to present potential uses of bacteriophages as an alternative to antibiotics in the control of bacterial infections caused by multidrug-resistant bacteria posing a risk to humans, with particular emphasis on foodborne and zoonotic pathogens. A varied therapeutic and immunomodulatory (activation or suppression) effect of bacteriophages on humoral and cellular immune response mechanisms has been demonstrated. The antibiotic resistance crisis caused by global antimicrobial resistance among bacteria creates a compelling need for alternative safe and selectively effective antibacterial agents. Bacteriophages have many properties indicating their potential suitability as therapeutic and/or prophylactic agents. In many cases, bacteriophages can also be used in food quality control against microorganisms such as Salmonella, Escherichia coli, Listeria, Campylobacter and others. Future research will provide potential alternative solutions using bacteriophages to treat infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| |
Collapse
|
35
|
Deka D, Annapure US, Shirkole SS, Thorat BN. Bacteriophages: An organic approach to food decontamination. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darshana Deka
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| | - U. S. Annapure
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - S. S. Shirkole
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| | - B. N. Thorat
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| |
Collapse
|
36
|
Won YK, Kim SJ, Han JH. The protective effect of dietary supplementation of Salmonella-specific bacteriophages in post-weaning piglets challenged with Salmonella typhimurium. J Adv Vet Anim Res 2021; 8:440-447. [PMID: 34722739 PMCID: PMC8520146 DOI: 10.5455/javar.2021.h529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/03/2022] Open
Abstract
Objective The efficacy of Salmonella typhimurium-specific bacteriophage STP-1 on S. typhimurium infection in weaning piglets was evaluated in this study. Material and Methods Twenty-eight weaning piglets were randomly allocated to four groups (Group A: non-challenged/basal; Group B: non-challenged/+phage; Group C: challenged/basal; Group D: challenged/+phage) according to S. typhimurium infection or bacteriophage administration. The total experimental period (14 days) was subdivided in to non-challenged periods (phase I; day 1-7) and challenged periods (phase II; day 7-14) based on the challenging date (day 7). Each group was fed with basal feed or feed supplemented with bacteriophage STP-1 [1.0 × 109 plaque-forming unit (PFU)/kg] during the whole period (day 1-14). Body weights (BW) were measured to evaluate growth performance. Clinical symptoms (rectal temperatures and fecal consistency) induced by S. typhimurium were regularly checked. Bacteria colonization levels in feces and intestinal tissue samples were measured using real-time polymerase chain reaction (PCR). After necropsy, small intestine samples (jejunum) were collected. Villus height and crypt depth (CD) were measured through histological examination with H&E staining. Results The supplementation of bacteriophage significantly reduced bacterial colonization and intestine damage in the piglets infected with S. typhimurium. In the antigen concentrations of the feces and jejunum, Group C showed 5.8 ± 0.6, 5.7 ± 0.6, and 1.2 ± 2.0 log colony-forming unit (CFU)/ml on 1, 3, and 7 days post-inoculation (DPI) and 2.8 ± 1.3 log CFU/ml, whereas Group D showed 3.5 ± 1.7, 2.2 ± 2.1, and 0.3 ± 0.9 log CFU/ml on 1, 3, and 7 DPI and 5.1 ± 0.9 log CFU/ml. In the villous height, Groups C and D showed 266.3 ± 24.1 and 324.6 ± 18.0 μm, respectively. In the goblet cell density of villi and crypts, Group C showed 10.0 ± 1.8 and 16.0 ± 3.7, while Group D showed 15.0 ± 4.8 and 21.1 ± 5.4. Also, the supplementation of bacteriophage significantly improved the growth performance in the infected piglets. The average daily gains of Groups C and D were 91 ± 24 and 143 ± 23, respectively, during the period after inoculation with S. typhimurium. Conclusion The dietary supplementation of the phage was effective for alleviating S. typhimurium infection in post-weaning piglets.
Collapse
Affiliation(s)
- Yong-Kwan Won
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.,These authors contributed equally to this work
| | - Sung-Jae Kim
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.,These authors contributed equally to this work
| | - Jeong-Hee Han
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
37
|
Marques AT, Tanoeiro L, Duarte A, Gonçalves L, Vítor JMB, Vale FF. Genomic Analysis of Prophages from Klebsiella pneumoniae Clinical Isolates. Microorganisms 2021; 9:2252. [PMID: 34835377 PMCID: PMC8617712 DOI: 10.3390/microorganisms9112252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is an increasing threat to public health and represents one of the most concerning pathogens involved in life-threatening infections. The resistant and virulence determinants are coded by mobile genetic elements which can easily spread between bacteria populations and co-evolve with its genomic host. In this study, we present the full genomic sequences, insertion sites and phylogenetic analysis of 150 prophages found in 40 K. pneumoniae clinical isolates obtained from an outbreak in a Portuguese hospital. All strains harbored at least one prophage and we identified 104 intact prophages (69.3%). The prophage size ranges from 29.7 to 50.6 kbp, coding between 32 and 78 putative genes. The prophage GC content is 51.2%, lower than the average GC content of 57.1% in K. pneumoniae. Complete prophages were classified into three families in the order Caudolovirales: Myoviridae (59.6%), Siphoviridae (38.5%) and Podoviridae (1.9%). In addition, an alignment and phylogenetic analysis revealed nine distinct clusters. Evidence of recombination was detected within the genome of some prophages but, in most cases, proteins involved in viral structure, transcription, replication and regulation (lysogenic/lysis) were maintained. These results support the knowledge that prophages are diverse and widely disseminated in K. pneumoniae genomes, contributing to the evolution of this species and conferring additional phenotypes. Moreover, we identified K. pneumoniae prophages in a set of endolysin genes, which were found to code for proteins with lysozyme activity, cleaving the β-1,4 linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in the peptidoglycan network and thus representing genes with the potential for lysin phage therapy.
Collapse
Affiliation(s)
- Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Monte da Caparica, Portugal
| | - Luisa Gonçalves
- Clinical Pathology Unit, Hospital SAMS, Cidade de Gabela, 1849-017 Lisboa, Portugal;
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| |
Collapse
|
38
|
Kim K, Islam MM, Kim D, Yun SH, Kim J, Lee JC, Shin M. Characterization of a Novel Phage ΦAb1656-2 and Its Endolysin with Higher Antimicrobial Activity against Multidrug-Resistant Acinetobacter baumannii. Viruses 2021; 13:v13091848. [PMID: 34578429 PMCID: PMC8473069 DOI: 10.3390/v13091848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen, which is a problem worldwide due to the emergence of a difficult-to-treat multidrug-resistant A. baumannii (MDRAB). Endolysins are hydrolytic enzymes produced by a bacteriophage that can be used as a potential therapeutic agent for multidrug-resistant bacterial infection in replacing antibiotics. Here, we isolated a novel bacteriophage through prophage induction using mitomycin C from clinical A. baumannii 1656-2. Morphologically, ΦAb1656-2 was identified as a Siphoviridae family bacteriophage, which can infect MDRAB. The whole genome of ΦAb1656-2 was sequenced, and it showed that it is 50.9 kb with a G + C content of 38.6% and 68 putative open reading frames (ORFs). A novel endolysin named AbEndolysin with an N-acetylmuramidase-containing catalytic domain was identified, expressed, and purified from ΦAb1656-2. Recombinant AbEndolysin showed significant antibacterial activity against MDRAB clinical strains without any outer membrane permeabilizer. These results suggest that AbEndolysin could represent a potential antimicrobial agent for treating MDRAB clinical isolates.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Dooyoung Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Korea Basic Science Institute,162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28119, Korea;
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
- Correspondence: ; Tel.: +82-53-420-4841
| |
Collapse
|
39
|
Bacteriophage Technology and Modern Medicine. Antibiotics (Basel) 2021; 10:antibiotics10080999. [PMID: 34439049 PMCID: PMC8388951 DOI: 10.3390/antibiotics10080999] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The bacteriophage (or phage for short) has been used as an antibacterial agent for over a century but was abandoned in most countries after the discovery and broad use of antibiotics. The worldwide emergence and high prevalence of antimicrobial-resistant (AMR) bacteria have led to a revival of interest in the long-forgotten antibacterial therapy with phages (phage therapy) as an alternative approach to combatting AMR bacteria. The rapid progress recently made in molecular biology and genetic engineering has accelerated the generation of phage-related products with superior therapeutic potentials against bacterial infection. Nowadays, phage-based technology has been developed for many purposes, including those beyond the framework of antibacterial treatment, such as to suppress viruses by phages, gene therapy, vaccine development, etc. Here, we highlighted the current progress in phage engineering technology and its application in modern medicine.
Collapse
|
40
|
Vieira MS, Duarte da Silva J, Ferro CG, Cunha PC, Vidigal PMP, Canêdo da Silva C, Oliveira de Paula S, Dias RS. A highly specific Serratia-infecting T7-like phage inhibits biofilm formation in two different genera of the Enterobacteriaceae family. Res Microbiol 2021; 172:103869. [PMID: 34333135 DOI: 10.1016/j.resmic.2021.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
Due to the emergence of multidrug-resistant bacteria, bacteriophages have become a viable alternative in controlling bacterial growth or biofilm formation. Biofilm is formed by extracellular polymeric substances (EPS) and is one of the factors responsible for increasing bacterial resistance. Bacteriophages have been studied as a bacterial control agent by use of phage enzymes or due to their bactericidal activities. A specific phage against Serratia marcescens was isolated in this work and was evaluated its biological and genomic aspects. The object of this study was UFV01, a bacteriophage belonging to the Podoviridae family, genus Teseptimavirus (group of lytic viruses), specific to the species Serratia marcescens, which may be related to several amino acid substitutions in the virus tail fibers. Despite this high specificity, the phage reduced the biofilm formation of several Escherichia coli strains without infecting them. UFV01 presents a relationship with phages of the genus Teseptimavirus, although it does not infect any of the Escherichia coli strains evaluated, as these others do. All the characteristics make the phage an interesting alternative in biofilm control in hospital environments since small breaks in the biofilm matrix can lead to a complete collapse.
Collapse
Affiliation(s)
- Marcella Silva Vieira
- Laboratório de Imunovirologia Molecular, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Jéssica Duarte da Silva
- Laboratório de Imunovirologia Molecular, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Camila Geovana Ferro
- Laboratório de Virologia Vegetal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 13418-900, Piracicaba, Brazil
| | - Paloma Cavalcante Cunha
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Pedro Marcus P Vidigal
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Vila Gianetti, 36570-900, Viçosa, Brazil
| | - Cynthia Canêdo da Silva
- Laboratório de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Sérgio Oliveira de Paula
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Roberto Sousa Dias
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil.
| |
Collapse
|
41
|
Yang X, Haque A, Matsuzaki S, Matsumoto T, Nakamura S. The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis. Front Microbiol 2021; 12:682255. [PMID: 34290683 PMCID: PMC8287650 DOI: 10.3389/fmicb.2021.682255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of multi-drug resistant Pseudomonas aeruginosa necessitates the search for treatment options other than antibiotic use. The use of bacteriophages is currently being considered as an alternative to antibiotics for the treatment of bacterial infections. A number of bacteriophages were introduced to treat pneumonia in past reports. However, there are still lack of knowledge regarding the dosages, application time, mechanism and safety of phage therapy against P. aeruginosa pneumonia. We used the bacteriophage KPP10 against P. aeruginosa strain D4-induced pneumonia mouse models and observed their outcomes in comparison to control models. We found that the nasal inhalation of highly concentrated KPP10 (MOI = 80) significantly improved survival rate in pneumonia models (P < 0.01). The number of viable bacteria in both lungs and in serum were significantly decreased (P < 0.01) in phage-treated mice in comparison to the control mice. Pathological examination showed that phage-treated group had significantly reduced bleeding, inflammatory cell infiltration, and mucus secretion in lung interstitium. We also measured inflammatory cytokine levels in the serum and lung homogenates of mice. In phage-treated models, serum TNFα, IL-1β, and IFN-γ levels were significantly lower (P < 0.05, P < 0.01, and P < 0.05, respectively) than those in the control models. In the lung homogenate, the mean IL-1β level in phage-treated models was significantly lower (P < 0.05) than that of the control group. We confirmed the presence of phage in blood and lungs, and evaluated the safety of bacteriophage use in living models since bacteriophage mediated bacterial lysis arise concern of endotoxic shock. The study results suggest that phage therapy can potentially be used in treating lung infections caused by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xu Yang
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Anwarul Haque
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Infectious Diseases, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Kochi Gakuen University, Kochi, Japan
| | - Tetsuya Matsumoto
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Infectious Diseases, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
42
|
Ge H, Xu Y, Hu M, Zhang K, Zhang S, Jiao X, Chen X. Isolation, Characterization, and Application in Poultry Products of a Salmonella-Specific Bacteriophage, S55. J Food Prot 2021; 84:1202-1212. [PMID: 33710342 DOI: 10.4315/jfp-20-438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
ABSTRACT Salmonellosis occurs frequently worldwide, causing serious threats to public health. The abuse of antibiotics is increasing antibiotic resistance in bacteria, thereby making the prevention and control of Salmonella more difficult. A phage can help control the spread of bacteria. In this study, the lytic phage S55, whose host bacterium is Salmonella Pullorum, was isolated from fecal samples obtained from poultry farms. This phage belongs to the Siphoviridae and has a polyhedral head and a retraction-free tail. S55 lysed most cells of Salmonella Pullorum (58 of 60 strains, 96.67%) and Salmonella Enteritidis (97 of 104 strains, 93.27%). One-step growth kinetics revealed that the latent period was 10 min, the burst period was 80 min, and the burst size was 40 PFU per cell. The optimal multiplicity of infection was 0.01, and the phage was able to survive at pH values of 4 to 11 and temperatures of 40 to 60°C for 60 min. Complete genome sequence analysis revealed that the S55 genome consists of 42,781 bp (50.28% GC content) and 58 open reading frames, including 25 frames with known or assumed functions without tRNA genes. S55 does not carry genes that encode virulence or resistance factors. At 4 and 25°C, S55 reduced the populations of Salmonella Pullorum and Salmonella Enteritidis on chicken skin surfaces. S55 may be useful as a biological agent for the prevention and control of Salmonella infections. HIGHLIGHTS
Collapse
Affiliation(s)
- Haojie Ge
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Yanping Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Kai Zhang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Shuxuan Zhang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, People's Republic of China
| |
Collapse
|
43
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
44
|
Sabzali S, Bouzari M. Isolation, identification and some characteristics of two lytic bacteriophages against Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium from various food sources. FEMS Microbiol Lett 2021; 368:6217424. [PMID: 33830213 DOI: 10.1093/femsle/fnab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Salmonellosis is an important worldwide food-borne disease. Increasing resistance to Salmonella spp. has been reported in recent years, and now the prevalence of multidrug-resistant Salmonella spp. is a worldwide problem. This necessitates alternative approaches like phage therapy. This study aimed to isolate bacteriophages specific for Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium isolated from different sources (chicken meat, beef and eggshells). The antibiotic resistance profiles of the bacteria were determined by phenotypic and genotypic methods. The prevalence of extended-spectrum β-lactamase genes was examined by polymerase chain reaction. In total, 75% of the isolated Salmonella strains were resistant to tetracycline, whereas 70% of them were resistant to azithromycin. All of the isolates from beef were resistant to nalidixic acid. The most common extended-spectrum β-lactamase genes among the isolates were blaSHV (15%) followed by blaTEM (10%) and blaCTX (5%). Two specific bacteriophages were isolated and characterized. The host range for vB_SparS-ui was Salmonella Paratyphi B, S. enterica serovar Paratyphi A and S. enterica, while that for vB_StyS-sam phage was Salmonella Typhimurium and S. enterica serovar Enteritidis. The characteristics of the isolated phages indicate that they are proper candidates to be used to control some foodstuff contaminations and also phage therapy of infected animals.
Collapse
Affiliation(s)
- Somaieh Sabzali
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Majid Bouzari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| |
Collapse
|
45
|
El-Telbany M, El-Didamony G, Askora A, Ariny E, Abdallah D, Connerton IF, El-Shibiny A. Bacteriophages to Control Multi-Drug Resistant Enterococcus faecalis Infection of Dental Root Canals. Microorganisms 2021; 9:microorganisms9030517. [PMID: 33802385 PMCID: PMC7998577 DOI: 10.3390/microorganisms9030517] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
Phage therapy is an alternative treatment to antibiotics that can overcome multi-drug resistant bacteria. In this study, we aimed to isolate and characterize lytic bacteriophages targeted against Enterococcus faecalis isolated from root canal infections obtained from clinics at the Faculty of Dentistry, Ismalia, Egypt. Bacteriophage, vB_ZEFP, was isolated from concentrated wastewater collected from hospital sewage. Morphological and genomic analysis revealed that the phage belongs to the Podoviridae family with a linear double-stranded DNA genome, consisting of 18,454, with a G + C content of 32.8%. Host range analysis revealed the phage could infect 10 of 13 E. faecalis isolates exhibiting a range of antibiotic resistances recovered from infected root canals with efficiency of plating values above 0.5. One-step growth curves of this phage showed that it has a burst size of 110 PFU per infected cell, with a latent period of 10 min. The lytic activity of this phage against E. faecalis biofilms showed that the phage was able to control the growth of E. faecalis in vitro. Phage vB_ZEFP could also prevent ex-vivo E. faecalis root canal infection. These results suggest that phage vB_ZEFP has potential for application in phage therapy and specifically in the prevention of infection after root canal treatment.
Collapse
Affiliation(s)
- Mohamed El-Telbany
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Gamal El-Didamony
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Eman Ariny
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Dalia Abdallah
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismaïlia 41522, Egypt;
| | - Ian F. Connerton
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
- Correspondence: (I.F.C.); (A.E.-S.); Tel.: +44-115-9516119 (I.F.C.)
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
- Correspondence: (I.F.C.); (A.E.-S.); Tel.: +44-115-9516119 (I.F.C.)
| |
Collapse
|
46
|
Modelling the spatiotemporal complexity of interactions between pathogenic bacteria and a phage with a temperature-dependent life cycle switch. Sci Rep 2021; 11:4382. [PMID: 33623124 PMCID: PMC7902855 DOI: 10.1038/s41598-021-83773-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
We apply mathematical modelling to explore bacteria-phage interaction mediated by condition-dependent lysogeny, where the type of the phage infection cycle (lytic or lysogenic) is determined by the ambient temperature. In a natural environment, daily and seasonal variations of the temperature cause a frequent switch between the two infection scenarios, making the bacteria-phage interaction with condition-dependent lysogeny highly complex. As a case study, we explore the natural control of the pathogenic bacteria Burkholderia pseudomallei by its dominant phage. B. pseudomallei is the causative agent of melioidosis, which is among the most fatal diseases in Southeast Asia and across the world. We assess the spatial aspect of B. pseudomallei-phage interactions in soil, which has been so far overlooked in the literature, using the reaction-diffusion PDE-based framework with external forcing through daily and seasonal parameter variation. Through extensive computer simulations for realistic biological parameters, we obtain results suggesting that phages may regulate B. pseudomallei numbers across seasons in endemic areas, and that the abundance of highly pathogenic phage-free bacteria shows a clear annual cycle. The model predicts particularly dangerous soil layers characterised by high pathogen densities. Our findings can potentially help refine melioidosis prevention and monitoring practices.
Collapse
|
47
|
Speck PG, Warner MS, Bihari S, Bersten AD, Mitchell JG, Tucci J, Gordon DL. Potential for bacteriophage therapy for Staphylococcus aureus pneumonia with influenza A coinfection. Future Microbiol 2021; 16:135-142. [PMID: 33538181 DOI: 10.2217/fmb-2020-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ability of influenza A virus to evolve, coupled with increasing antimicrobial resistance, could trigger an influenza pandemic with great morbidity and mortality. Much of the 1918 influenza pandemic mortality was likely due to bacterial coinfection, including Staphylococcus aureus pneumonia. S. aureus resists many antibiotics. The lack of new antibiotics suggests alternative antimicrobials, such as bacteriophages, are needed. Potential delivery routes for bacteriophage therapy (BT) include inhalation and intravenous injection. BT has recently been used successfully in compassionate access pulmonary infection cases. Phage lysins, enzymes that hydrolyze bacterial cell walls and which are bactericidal, are efficacious in animal pneumonia models. Clinical trials will be needed to determine whether BT can ameliorate disease in influenza and S. aureus coinfection.
Collapse
Affiliation(s)
- Peter G Speck
- Flinders University of South Australia, College of Science and Engineering, Bedford Park, SA, 5042, Australia
| | - Morgyn S Warner
- The Queen Elizabeth Hospital, Infectious Diseases Unit, Woodville, SA, 5011, Australia.,Microbiology & Infectious Diseases Directorate, SA Pathology, Adelaide, SA, 5000, Australia.,University of Adelaide, Faculty of Health & Medical Sciences, Adelaide, SA, 5006, Australia
| | - Shailesh Bihari
- Flinders Medical Centre, Intensive & Critical Care Unit, Bedford Park, SA, 5042, Australia.,Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia
| | - Andrew D Bersten
- Flinders Medical Centre, Intensive & Critical Care Unit, Bedford Park, SA, 5042, Australia.,Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia
| | - James G Mitchell
- Flinders University of South Australia, College of Science and Engineering, Bedford Park, SA, 5042, Australia
| | - Joseph Tucci
- Department of Pharmacy & Biomedical Science, LaTrobe University, La Trobe Institute for Molecular Science, Bendigo, Victoria, 3552, Australia
| | - David L Gordon
- Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia.,Department of Microbiology and Infectious Diseases, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| |
Collapse
|
48
|
A Novel Group of Promiscuous Podophages Infecting Diverse Gammaproteobacteria from River Communities Exhibits Dynamic Intergenus Host Adaptation. mSystems 2021; 6:6/1/e00773-20. [PMID: 33531404 PMCID: PMC7857530 DOI: 10.1128/msystems.00773-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phages are generally described as species specific or even strain specific, implying an inherent limitation for some to be maintained and spread in diverse bacterial communities. Moreover, phage isolation and host range determination rarely consider the phage ecological context, likely biasing our notion on phage specificity. Here we isolated and characterized a novel group of six promiscuous phages, named Atoyac, existing in rivers and sewage by using a diverse collection of over 600 bacteria retrieved from the same environments as potential hosts. These podophages isolated from different regions in Mexico display a remarkably broad host range, infecting bacteria from six genera: Aeromonas, Pseudomonas, Yersinia, Hafnia, Escherichia, and Serratia Atoyac phage genomes are ∼42 kb long and highly similar to each other, but not to those currently available in genome and metagenome public databases. Detailed comparison of the phages' efficiency of plating (EOP) revealed variation among bacterial genera, implying a cost associated with infection of distant hosts, and between phages, despite their sequence similarity. We show, through experimental evolution in single or alternate hosts of different genera, that efficiency of plaque production is highly dynamic and tends toward optimization in hosts rendering low plaque formation. However, adaptation to distinct hosts differed between similar phages; whereas one phage optimized its EOP in all tested hosts, the other reduced plaque production in one host, suggesting that propagation in multiple bacteria may be key to maintain promiscuity in some viruses. Our study expands our knowledge of the virosphere and uncovers bacterium-phage interactions overlooked in natural systems.IMPORTANCE In natural environments, phages coexist and interact with a broad variety of bacteria, posing a conundrum for narrow-host-range phage maintenance in diverse communities. This context is rarely considered in the study of host-phage interactions, typically focused on narrow-host-range viruses and their infectivity in target bacteria isolated from sources distinct to where the phages were retrieved from. By studying phage-host interactions in bacteria and viruses isolated from river microbial communities, we show that novel phages with promiscuous host range encompassing multiple bacterial genera can be found in the environment. Assessment of hundreds of interactions in diverse hosts revealed that similar phages exhibit different infection efficiency and adaptation patterns. Understanding host range is fundamental in our knowledge of bacterium-phage interactions and their impact on microbial communities. The dynamic nature of phage promiscuity revealed in our study has implications in different aspects of phage research such as horizontal gene transfer or phage therapy.
Collapse
|
49
|
Sinha S, Samaddar S, Das Gupta SK, Roy S. Network approach to mutagenesis sheds insight on phage resistance in mycobacteria. Bioinformatics 2021; 37:213-220. [PMID: 33416849 DOI: 10.1093/bioinformatics/btaa1103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 12/08/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023] Open
Abstract
MOTIVATION A rigorous yet general mathematical approach to mutagenesis, especially one capable of delivering systems-level perspectives would be invaluable. Such systems-level understanding of phage resistance is also highly desirable for phage-bacteria interactions and phage therapy research. Independently, the ability to distinguish between two graphs with a set of common or identical nodes and identify the implications thereof, is important in network science. RESULTS Herein we propose a measure called shortest path alteration fraction (SPAF) to compare any two networks by shortest paths, using sets. When SPAF is one, it can identify node pairs connected by at least one shortest path, which are present in either network but not both. Similarly, SPAF equaling zero identifies identical shortest paths, which are simultaneously present between a node pair in both networks. We study the utility of our measure theoretically in five diverse microbial species, to capture reported effects of well-studied mutations and predict new ones. We also scrutinise the effectiveness of our procedure through theoretical and experimental tests on Mycobacterium smegmatis mc2155 and by generating a mutant of mc2155, which is resistant to mycobacteriophage D29. This mutant of mc2155, which is resistant to D29 exhibits significant phenotypic alterations. Whole-genome sequencing identifies mutations, which cannot readily explain the observed phenotypes. Exhaustive analyses of protein-protein interaction network of the mutant and wild-type, using the machinery of topological metrics and differential networks does not yield a clear picture. However, SPAF coherently identifies pairs of proteins at the end of a subset of shortest paths, from amongst hundreds of thousands of viable shortest paths in the networks. The altered functions associated with the protein pairs are strongly correlated with the observed phenotypes.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, WB, 700009, India
| | - Sourabh Samaddar
- Department of Microbiology, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kolkata, WB, 700 054, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kolkata, WB, 700 054, India
| | - Soumen Roy
- Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, WB, 700009, India
| |
Collapse
|
50
|
Van Belleghem JD, Manasherob R, Miȩdzybrodzki R, Rogóż P, Górski A, Suh GA, Bollyky PL, Amanatullah DF. The Rationale for Using Bacteriophage to Treat and Prevent Periprosthetic Joint Infections. Front Microbiol 2020; 11:591021. [PMID: 33408703 PMCID: PMC7779626 DOI: 10.3389/fmicb.2020.591021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Prosthetic joint infection (PJI) is a devastating complication after a joint replacement. PJI and its treatment have a high monetary cost, morbidity, and mortality. The lack of success treating PJI with conventional antibiotics alone is related to the presence of bacterial biofilm on medical implants. Consequently, surgical removal of the implant and prolonged intravenous antibiotics to eradicate the infection are necessary prior to re-implanting a new prosthetic joint. Growing clinical data shows that bacterial predators, called bacteriophages (phages), could be an alternative treatment strategy or prophylactic approach for PJI. Phages could further be exploited to degrade biofilms, making bacteria more susceptible to antibiotics and enabling potential combinatorial therapies. Emerging research suggests that phages may also directly interact with the innate immune response. Phage therapy may play an important, and currently understudied, role in the clearance of PJI, and has the potential to treat thousands of patients who would either have to undergo revision surgery to attempt to clear an infections, take antibiotics for a prolonged period to try and suppress the re-emerging infection, or potentially risk losing a limb.
Collapse
Affiliation(s)
- Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ryszard Miȩdzybrodzki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Rogóż
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Derek F. Amanatullah
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|