1
|
Choi HI, Jung IA, Kim SW. Peroxiredoxin 5 Acts as a Negative Regulator of the Sodium-Chloride Cotransporter Involved in Alleviating Angiotensin II-Induced Hypertension. Antioxidants (Basel) 2025; 14:100. [PMID: 39857434 PMCID: PMC11761572 DOI: 10.3390/antiox14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic kidney disease (CKD) and hypertension are interconnected, worsening each other. Recent studies have shown that the reduction of peroxiredoxin 5 (Prdx5) accelerates kidney fibrosis, a hallmark of CKD. This study aims to observe whether the deficiency of Prdx5 also contributes to the worsening of CKD-related hypertension. Angiotensin II (Ang II, 1000 ng/kg/day) was infused into Prdx5 wild-type (WT) and Prdx5 knock out (KO) mice (each group; n = 6). The blood pressure was higher in the Ang-II-infused Prdx5 KO mice than in the WT mice. Ang-II-induced ROS/RNS generation and fibrotic marker expressions were also higher in the Prdx5 KO mice. In particular, the expression of the sodium-chloride cotransporter (NCC), an ion transport protein important for sodium retention in the distal convoluted tubule, and the NCC's phosphorylation at Thr53 were increased in the kidney of Ang-II-infused Prdx5 KO. The activity of an WNK4-SPAK/OSR1, upstream activator of the NCC, was also increased. In 209/mDCT cells, the knockdown of Prdx5 (siPrdx5) increased the activity of Ang-II-mediated WNK4-SPAK/OSR1-NCC signaling and Ang-II-mediated ROS generation, whereas Prdx5 overexpression showed opposite results. In conclusion, Prdx5 negatively regulates the WNK4-SPAK/OSR1-NCC signaling axis, indicating its potential as a candidate for antihypertensive drug development through NCC regulation.
Collapse
Affiliation(s)
| | | | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Republic of Korea; (H.-I.C.); (I.A.J.)
| |
Collapse
|
2
|
Yamamoto M, Takata T, Hanada H, Taniguchi S, Hamada S, Mae Y, Iyama T, Kanda T, Isomoto H. Zinc deficiency induces hypertension by paradoxically amplifying salt sensitivity under high salt intake in mice. Clin Exp Nephrol 2024; 28:728-739. [PMID: 38581621 DOI: 10.1007/s10157-024-02478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/15/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Hypertension is one of the major etiologies that cause chronic kidney disease (CKD) and can exacerbate kidney dysfunction. Zinc is an essential trace element playing a role in blood pressure regulation, and zinc deficiency, a common comorbidity in patients with CKD, can cause hypertension. However, the precise mechanism underlying zinc deficiency-induced hypertension is unknown. Sodium (Na+) retention due to inappropriate Na+ reabsorption in the renal tubule is the principal pathophysiology of hypertension. Therefore, this study aimed to investigate the association between zinc deficiency and salt sensitivity. METHODS Adult mice were fed a zinc-adequate (ZnA) or zinc-deficient (ZnD) diet combined with/without high salt in drinking water (HS) for 4 weeks (n = 6 each). Changes in blood pressure, urinary sodium excretion, and the expressions of the proximal tubular Na+ transporter, Na+/H+ exchanger 3 (NHE3), which mostly contributes to filtered Na+ reabsorption and the downstream Na+-Cl- transporter (NCC) were analyzed. RESULTS Urinary Na+ excretion significantly increased in ZnD mice, indicating that zinc deficiency causes natriuresis. NHE3 expressions were significantly suppressed, whereas NCC was upregulated in ZnD mice. Interestingly, the combination of high salt and ZnD diet (HS-ZnD) reversed the urinary Na+ loss. The NCC remained activated and NHE3 expressions paradoxically increased in HS-ZnD mice compared with those fed the combination of high salt and ZnA diet. In addition, blood pressure significantly increased only in HS-ZnD mice. CONCLUSION The combination of zinc deficiency and high salt causes hypertension. Zinc is associated with salt-sensitivity, potentially through NHE3 and NCC regulation.
Collapse
Affiliation(s)
- Marie Yamamoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan.
| | - Hinako Hanada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Sosuke Taniguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Shintaro Hamada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
3
|
Capolongo G, Damiano S, Suzumoto Y, Zacchia M, Rizzo M, Zona E, Pollastro RM, Simeoni M, Ciarcia R, Trepiccione F, Capasso G. Cyclosporin-induced hypertension is associated with the up-regulation of Na+-K+-2Cl- cotransporter (NKCC2). Nephrol Dial Transplant 2024; 39:297-304. [PMID: 37463050 PMCID: PMC10828191 DOI: 10.1093/ndt/gfad161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples, Naples, Italy
| | - Yoko Suzumoto
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Rizzo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Enrica Zona
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosa Maria Pollastro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples, Naples, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| |
Collapse
|
4
|
Zhao Y, Cao E. Structural Pharmacology of Cation-Chloride Cotransporters. MEMBRANES 2022; 12:1206. [PMID: 36557113 PMCID: PMC9784483 DOI: 10.3390/membranes12121206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Loop and thiazide diuretics have been cornerstones of clinical management of hypertension and fluid overload conditions for more than five decades. The hunt for their molecular targets led to the discovery of cation-chloride cotransporters (CCCs) that catalyze electroneutral movement of Cl- together with Na+ and/or K+. CCCs consist of two 1 Na+-1 K+-2 Cl- (NKCC1-2), one 1 Na+-1 Cl- (NCC), and four 1 K+-1 Cl- (KCC1-4) transporters in human. CCCs are fundamental in trans-epithelia ion secretion and absorption, homeostasis of intracellular Cl- concentration and cell volume, and regulation of neuronal excitability. Malfunction of NKCC2 and NCC leads to abnormal salt and water retention in the kidney and, consequently, imbalance in electrolytes and blood pressure. Mutations in KCC2 and KCC3 are associated with brain disorders due to impairments in regulation of excitability and possibly cell volume of neurons. A recent surge of structures of CCCs have defined their dimeric architecture, their ion binding sites, their conformational changes associated with ion translocation, and the mechanisms of action of loop diuretics and small molecule inhibitors. These breakthroughs now set the stage to expand CCC pharmacology beyond loop and thiazide diuretics, developing the next generation of diuretics with improved potency and specificity. Beyond drugging renal-specific CCCs, brain-penetrable therapeutics are sorely needed to target CCCs in the nervous system for the treatment of neurological disorders and psychiatric conditions.
Collapse
|
5
|
Alamandine alleviates hypertension and renal damage via oxidative-stress attenuation in Dahl rats. Cell Death Dis 2022; 8:22. [PMID: 35022384 PMCID: PMC8755846 DOI: 10.1038/s41420-022-00822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Alamandine (Ala) is a novel member of the renin-angiotensin-system (RAS) family. The present study aimed to explore the effects of Ala on hypertension and renal damage of Dahl salt-sensitive (SS) rats high-salt diet-induced, and the mechanisms of Ala on renal-damage alleviation. Dahl rats were fed with high-salt diets to induce hypertension and renal damage in vivo, and HK-2 cells were treated with sodium chloride (NaCl) to induce renal injury in vitro. Ala administration alleviated the high-salt diet-induced hypertension, renal dysfunction, and renal fibrosis and apoptosis in Dahl SS rats. The HK-2 cells' damage, and the increases in the levels of cleaved (c)-caspase3, c-caspase8, and c-poly(ADP-ribose) polymerase (PARP) induced by NaCl were inhibited by Ala. Ala attenuated the NaCl-induced oxidative stress in the kidney and HK-2 cells. DETC, an inhibitor of SOD, reversed the inhibitory effect of Ala on the apoptosis of HK-2 cells induced by NaCl. The NaCl-induced increase in the PKC level was suppressed by Ala in HK-2 cells. Notably, PKC overexpression reversed the moderating effects of Ala on the NaCl-induced apoptosis of HK-2 cells. These results show that Ala alleviates high-salt diet-induced hypertension and renal dysfunction. Ala attenuates the renal damage via inhibiting the PKC/reactive oxygen species (ROS) signaling pathway, thereby suppressing the apoptosis in renal tubular cells.
Collapse
|
6
|
Zacchia M, Blanco FDV, Torella A, Raucci R, Blasio G, Onore ME, Marchese E, Trepiccione F, Vitagliano C, Iorio VD, Alessandra P, Simonelli F, Nigro V, Capasso G, Viggiano D. Urine concentrating defect as presenting sign of progressive renal failure in Bardet-Biedl syndrome patients. Clin Kidney J 2021; 14:1545-1551. [PMID: 34084454 PMCID: PMC8162863 DOI: 10.1093/ckj/sfaa182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Urine concentrating defect is a common dysfunction in ciliopathies, even though its underlying mechanism and its prognostic meaning are largely unknown. This study assesses renal function in a cohort of 54 Bardet-Biedl syndrome (BBS) individuals and analyses whether renal hyposthenuria is the result of specific tubule dysfunction and predicts renal disease progression. METHODS The estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (ACR) and maximum urine osmolality (max-Uosm) were measured in all patients. Genetic analysis was conducted in 43 patients. Annual eGFR decline (ΔeGFR) was measured in patients with a median follow-up period of 6.5 years. Urine aquaporin-2 (uAQP2) excretion was measured and the furosemide test was performed in patients and controls. RESULTS At baseline, 33 (61.1%), 12 (22.2%) and 9 (16.7%) patients showed an eGFR >90, 60-90 and <60 mL/min/1.73 m2, respectively; 27.3% showed an ACR >30 mg/g and 55.8% of patients showed urine concentrating defect in the absence of renal insufficiency. Baseline eGFR, but not max-Uosm, correlated negatively with age. Conversely, truncating mutations affected max-Uosm and showed a trend towards a reduction in eGFR. Max-Uosm correlated with ΔeGFR (P < 0.005), suggesting that urine concentrating defect may predict disease progression. uAQP2 excretion and Na+ and Cl- fractional excretion after furosemide did not differ between hyposthenuric patients and controls, suggesting that specific collecting duct and thick ascending limb dysfunctions are unlikely to play a central role in the pathogenesis of hyposthenuria. CONCLUSIONS Hyposthenuria is a warning sign predicting poor renal outcome in BBS. The pathophysiology of this defect is most likely beyond defective tubular function.
Collapse
Affiliation(s)
- Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Raucci
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giancarlo Blasio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Emanuela Marchese
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- CEINGE, Advanced Biotechnologies, Naples, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem Scarl, Ariano Irpino, Italy
| | - Caterina Vitagliano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Valentina Di Iorio
- Multidisciplinary Department of Medical, Eye Clinic, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Perna Alessandra
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Eye Clinic, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem Scarl, Ariano Irpino, Italy
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
7
|
Suzumoto Y, Columbano V, Gervasi L, Giunta R, Mattina T, Trimarchi G, Capolongo G, Simeoni M, Perna AF, Zacchia M, Toriello G, Pollastro RM, Rapisarda F, Capasso G, Trepiccione F. A case series of adult patients affected by EAST/SeSAME syndrome suggests more severe disease in subjects bearing KCNJ10 truncating mutations. Intractable Rare Dis Res 2021; 10:95-101. [PMID: 33996354 PMCID: PMC8122315 DOI: 10.5582/irdr.2020.03158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
EAST/SeSAME syndrome is a rare disease affecting the Central Nervous System (CNS), inner ear, and kidney. The syndrome is due to loss-of-function mutations in the KCNJ10 gene encoding the inward-rectifying potassium channel Kir4.1. EAST/SeSAME syndrome is mainly diagnosed during childhood with a tonic-clonic seizure being the usual first symptom. Due to a limited number of patients and recent identification of the disease, few data are available on the clinical progress of this disease in adulthood. In particular, neurologic and nephrological outcomes have not been reported. We present a case series of 4 adult patients harbouring homozygous missense mutation p.Ala167Val and homozygous frameshift mutations p.Asn232Glnfs*14 and p.Gly275Valfs*7. Effects of these mutations were predicted by in silico modelling and bioinformatic tools. Patients with truncating mutations were associated with more severe outcomes, both in tubulopathy severity and neurological symptomatology. Conversely, either missense or truncating mutations were correlated with similar severity of epilepsy, with a long free-of-event period up to 20 years old. No eGFR decline was documented. Modelling predicted that truncating mutations lead to complete Kir4.1 dysfunction. Finally, all patients had a mild increase in urinary protein excretion. Our study indicates that the prognosis of patients suffering from EAST/SeSAME syndrome is related to the severity of the mutation causing the disease. As predicted by in silico modelling, truncating mutations of KCNJ10 are associated with more severe disease, with recurrence of symptomatic hypokalemia and more severe neurological phenotype. The type of mutation should be considered for the therapy tailored to patients' phenotype.
Collapse
Affiliation(s)
| | - Valeria Columbano
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Luciano Gervasi
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Rosa Giunta
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Gabriele Trimarchi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Rosa M. Pollastro
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Francesco Rapisarda
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Giovambattista Capasso
- Biogem Research Institute, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Francesco Trepiccione
- Biogem Research Institute, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
- Address correspondence to:Francesco Trepiccione, Department of Translational Medical Sciences University of Campania "L.Vanvitelli", Via Pansini n5, 80131 Naples, Italy. E-mail:
| |
Collapse
|
8
|
Urinary proteomics reveals key markers of salt sensitivity in hypertensive patients during saline infusion. J Nephrol 2021; 34:739-751. [PMID: 33398797 DOI: 10.1007/s40620-020-00877-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hypertension is a complex disease and is the major cause of cardiovascular complications. In the vast majority of individuals, the aetiology of elevated blood pressure (BP) cannot be determined, thus impairing optimized therapies and prognosis for individual patients. A more precise understanding of the molecular pathogenesis of hypertension remains a pressing priority for both basic and translational research. Here we investigated the effect of salt on naive hypertensive patients in order to better understand the salt intake-blood pressure relationship. METHODS Patients underwent an acute saline infusion and were defined as salt-sensitive or salt-resistant according to mean blood pressure changes. Urinary proteome changes during the salt load test were analysed by a label-free quantitative proteomics approach. RESULTS Our data show that salt-sensitive patients display equal sodium reabsorption as salt-resistant patients, as major sodium transporters show the same behaviour during the salt load. However, salt-sensitive patients regulate the renin angiotensin system (RAS) differently from salt-resistant patients, and upregulate proteins, as epidermal growth factor (EGF) and plasminogen activator, urokinase (PLAU), involved in the regulation of epithelial sodium channel ENaC activity. CONCLUSIONS Salt-sensitive and salt-resistant subjects have similar response to a saline/volume infusion as detected by urinary proteome. However, we identified glutamyl aminopeptidase (ENPEP), PLAU, EGF and Xaa-Pro aminopeptidase 2 precursor XPNPEP2 as key molecules of salt-sensitivity, through modulation of ENaC-dependent sodium reabsorption along the distal tubule.
Collapse
|
9
|
Li SL, Li ZF, Cao QW, Wang WZ. SLC12A8 plays a key role in bladder cancer progression and EMT. Open Med (Wars) 2020; 16:58-67. [PMID: 33364434 PMCID: PMC7739378 DOI: 10.1515/med-2021-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system. The intention of the present research is to explore the prognostic value and biological function of solute carrier family 12 member 8 (SLC12A8) in bladder cancer. The analysis based on the TCGA and ONCOMINE database revealed that the expression of SLC12A8 in bladder cancer was notably increased compared with the normal group. SLC12A8 expression was notably correlated with the age, pathological stage, T-stage, and lymph node metastasis of bladder cancer patients. Moreover, the patients’ overall survival was notably shorter in the high SLC12A8 group. Compared with the control, SLC12A8 upregulation enhanced the proliferative, invasive, and migratory capacities of bladder cancer cells and promoted the expression of epithelial–mesenchymal transition (EMT) protein markers including β-catenin, vimentin, snail, and slug, while reduced the expression of E-cadherin. In the case of downregulated SLC12A8 expression, the proliferative, invasive, and migratory capacities of bladder cancer cells and the expression of EMT protein markers presented the opposite trend. This study demonstrated that SLC12A8 was highly correlated with oncogenesis and progression of bladder cancer, indicating that SLC12A8 may be a meaningful biomarker for initial diagnosis and early treatment of bladder cancer.
Collapse
Affiliation(s)
- Shun-Lai Li
- The Fifth People's Hospital of Jinan, Department of Urology, No. 24297, Jingshi Road, Huaiyin District, Jinan, Shandong, China
| | - Zheng-Feng Li
- The Fifth People's Hospital of Jinan, Department of Urology, No. 24297, Jingshi Road, Huaiyin District, Jinan, Shandong, China
| | - Qing-Wei Cao
- Shandong Provincial Hospital, Department of Urology, No. 9677, Jingshi Road, Lixia District, Jinan, Shandon, China
| | - Wen-Zhen Wang
- The Fifth People's Hospital of Jinan, Department of Urology, No. 24297, Jingshi Road, Huaiyin District, Jinan, Shandong, China
| |
Collapse
|
10
|
Bovée DM, Cuevas CA, Zietse R, Danser AHJ, Mirabito Colafella KM, Hoorn EJ. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am J Physiol Renal Physiol 2020; 319:F729-F745. [DOI: 10.1152/ajprenal.00407.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) causes salt-sensitive hypertension that is often resistant to treatment and contributes to the progression of kidney injury and cardiovascular disease. A better understanding of the mechanisms contributing to salt-sensitive hypertension in CKD is essential to improve these outcomes. This review critically explores these mechanisms by focusing on how CKD affects distal nephron Na+ reabsorption. CKD causes glomerulotubular imbalance with reduced proximal Na+ reabsorption and increased distal Na+ delivery and reabsorption. Aldosterone secretion further contributes to distal Na+ reabsorption in CKD and is not only mediated by renin and K+ but also by metabolic acidosis, endothelin-1, and vasopressin. CKD also activates the intrarenal renin-angiotensin system, generating intratubular angiotensin II to promote distal Na+ reabsorption. High dietary Na+ intake in CKD contributes to Na+ retention by aldosterone-independent activation of the mineralocorticoid receptor mediated through Rac1. High dietary Na+ also produces an inflammatory response mediated by T helper 17 cells and cytokines increasing distal Na+ transport. CKD is often accompanied by proteinuria, which contains plasmin capable of activating the epithelial Na+ channel. Thus, CKD causes both local and systemic changes that together promote distal nephron Na+ reabsorption and salt-sensitive hypertension. Future studies should address remaining knowledge gaps, including the relative contribution of each mechanism, the influence of sex, differences between stages and etiologies of CKD, and the clinical relevance of experimentally identified mechanisms. Several pathways offer opportunities for intervention, including with dietary Na+ reduction, distal diuretics, renin-angiotensin system inhibitors, mineralocorticoid receptor antagonists, and K+ or H+ binders.
Collapse
Affiliation(s)
- Dominique M. Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Catharina A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Characterization of five novel vasopressin V2 receptor mutants causing nephrogenic diabetes insipidus reveals a role of tolvaptan for M272R-V2R mutation. Sci Rep 2020; 10:16383. [PMID: 33009446 PMCID: PMC7532466 DOI: 10.1038/s41598-020-73089-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare tubulopathy characterized by urinary concentration defect due to renal resistance to vasopressin. Loss-of-function mutations of vasopressin V2 receptor (V2R) gene (AVPR2) is the most common cause of the disease. We have identified five novel mutations L86P, R113Q, C192S, M272R, and W323_I324insR from NDI-affected patients. Functional characterization of these mutants revealed that R113Q and C192S were normally localized at the basolateral membrane of polarized Madin-Darby Canine Kidney (MDCK) cells and presented proper glycosylation maturation. On the other side, L86P, M272R, and W323_I324insR mutants were retained in endoplasmic reticulum and exhibited immature glycosylation and considerably reduced stability. All five mutants were resistant to administration of vasopressin analogues as evaluated by defective response in cAMP release. In order to rescue the function of the mutated V2R, we tested VX-809, sildenafil citrate, ibuprofen and tolvaptan in MDCK cells. Among these, tolvaptan was effective in rescuing the function of M272R mutation, by both allowing proper glycosylation maturation, membrane sorting and response to dDAVP. These results show an important proof of concept for the use of tolvaptan in patients affected by M272R mutation of V2R causing NDI.
Collapse
|
12
|
Wang S, Liu J, Cai H, Liu K, He Y, Liu S, Guo Y, Guo L. High salt diet elevates the mean arterial pressure of SLC14α1 gene depletion mice. Life Sci 2020; 254:117751. [PMID: 32387413 DOI: 10.1016/j.lfs.2020.117751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 01/01/2023]
Abstract
AIMS Urea transporter B (UTB) is encoded by the SLC14α1 gene, and exerts its activity in the choroid plexus (CP) by regulating [Na+] in the cerebrospinal fluid (CSF) and maintaining normal blood pressure in mice fed on high salt diet. The aim of this study is to investigate the effect of high salt diet on the mean arterial pressure (MAP) in SLC14α1 depletion mice and its possible molecular mechanism. MAIN METHODS Adult male mice were divided into four groups: 1) UTB+/+(wild type) mice + normal salt diet (0.3% NaCl, NS); 2) UTB+/+ mice + high salt diet (8% NaCl, HS); 3) UTB-/- (SLC14α1 knockout) mice + NS; 4) UTB-/- mice + HS, each group consisted of 6 mice. The MAP of mice was measured by non-invasive detection method after HS diet for 4 weeks, followed by euthanization for brain and blood collection. KEY FINDINGS HS significantly elevated the MAP and CSF [Na+] in UTB-/- mice in comparison with wild type mice; however, NS didn't alter the MAP and CSF [Na+] in either wild type mice or UTB-/- mice. HS also induced the expression of ENaC-α and α1-Na+-K+-ATPase in UTB-/- mice as confirmed by RT-PCR and Western blot. SIGNIFICANCE These results suggest that the depletion of SLC14α1 gene in mice may contribute to the HS-induced abnormality of sodium transportation in the CSF, and lead to the elevation of MAP, which eventually promote the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Song Wang
- Nursing School of Jilin University, Changchun, Jilin 130021, China; Liao Cheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Jinshu Liu
- Nursing School of Jilin University, Changchun, Jilin 130021, China
| | - Hongwei Cai
- Nursing School of Jilin University, Changchun, Jilin 130021, China
| | - Keyuan Liu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Yayu He
- Nursing School of Jilin University, Changchun, Jilin 130021, China
| | - Shuxiang Liu
- Nursing School of Jilin University, Changchun, Jilin 130021, China
| | - Yingze Guo
- Nursing School of Jilin University, Changchun, Jilin 130021, China
| | - Lirong Guo
- Nursing School of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
13
|
Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney. Cells 2020; 9:cells9071644. [PMID: 32659887 PMCID: PMC7407487 DOI: 10.3390/cells9071644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium transport. Apart from Ca2+ transport systems, CaSR signaling affects relevant distal Na+-(K+)-2Cl- cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1. Gain-of-function mutations within the WNK-SPAK/OSR1-NKCC2/NCC pathway lead to renal salt retention and hypertension, whereas loss-of-function mutations have been associated with salt-losing tubulopathies such as Bartter or Gitelman syndromes. A Bartter-like syndrome has been also described in patients carrying gain-of-function mutations in the CaSR gene. Recent work suggested that CaSR signals via the WNK-SPAK/OSR1 cascade to modulate salt reabsorption along the distal nephron. The review presented here summarizes the latest progress in understanding of functional interactions between CaSR and WNKs and their potential impact on the renal salt handling and blood pressure.
Collapse
|
14
|
Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet-Biedl Syndrome. Kidney Int Rep 2020; 5:1403-1415. [PMID: 32954066 PMCID: PMC7486190 DOI: 10.1016/j.ekir.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic inherited disorder known as a ciliopathy. Kidney disease is a cardinal clinical feature; however, it is one of the less investigated traits. This study is a comprehensive analysis of the literature aiming to collect available information providing mechanistic insights into the pathogenesis of kidney disease by analyzing clinical and basic science studies focused on this issue. The analysis revealed that the syndrome is either clinically and genetically heterogenous, with 24 genes discovered to date, but with 3 genes (BBS1, BBS2, and BBS10) accounting for almost 50% of diagnoses; genotype–phenotype correlation studies showed that patients with BBS1 mutations have a less severe renal phenotype than the other 2 most common loci; in addition, truncating rather than missense mutations are more likely to cause kidney disease. However, significant intrafamilial clinical variability has been described, with no clear explanation to date. In mice kidneys, Bbs genes have relative low expression levels, in contrast with other common affected organs, like the retina; surprisingly, Bbs1 is the only locus with basal overexpression in the kidney. In vitro studies indicate that signalling pathways involved in embryonic kidney development and repair are affected in the context of BBS depletion; in mice, kidney disease does not have a full penetrance; when present, it resembles human phenotype and shows an age-dependent progression. Data on the exact contribution of local versus systemic consequences of Bbs dysfunction are scanty and further investigations are required to get firm conclusions.
Collapse
|
15
|
Capolongo G, Zacchia M, Beneduci A, Costantini S, Cinque P, Spasiano A, De Luca G, Di Pietro ME, Ricchi P, Trepiccione F, Capasso G, Filosa A. Urinary Metabolic Profile of Patients with Transfusion-Dependent β-Thalassemia Major Undergoing Deferasirox Therapy. Kidney Blood Press Res 2020; 45:455-466. [PMID: 32434200 DOI: 10.1159/000507369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Renal dysfunction is a frequent complication in patients suffering from β-thalassemia major (β-TM). The aim of this study was to analyze the renal function and urine metabolomic profile of β-TM patients undergoing transfusions and deferasirox (DFX) therapy, in order to better characterize and shed light on the pathogenesis of renal disease in this setting. METHODS AND SUBJECTS 40 patients affected by β-TM treated with DFX and 35 age- and gender-matched healthy controls were enrolled in the study. Renal function was assessed. Glomerular filtration rate (GFR) was estimated with CKD-EPI and Schwartz formula for adults and children, respectively. Renal tubular function and maximal urine concentration ability were tested. Urine specimens were analyzed by nuclear magnetic resonance spectroscopy to identify the urinary metabolite profiles. RESULTS The study of renal function in β-TM patients revealed normal estimated (e)GFR mean values and the albumin-to-creatinine ratio was <30 mg/g. The analysis of tubular function showed normal basal plasma electrolyte levels; 60% of patients presented hypercalciuria and many subjects showed defective urine concentration. Several amino acids, N-methyl compounds, and organic acids were overexcreted in the urine of thalassemic patients compared with controls. DISCUSSION The major finding of this work is that β-TM patients and controls exhibit different concentrations of some metabolites in the urine. Early recognition of urinary abnormalities may be useful to detect and prevent kidney damage.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy,
| | - Amerigo Beneduci
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | - Patrizia Cinque
- Rare Blood Cell Disease Unit, "Cardarelli" Hospital, Naples, Italy
| | - Anna Spasiano
- Rare Blood Cell Disease Unit, "Cardarelli" Hospital, Naples, Italy
| | - Giuseppina De Luca
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Enrica Di Pietro
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Paolo Ricchi
- Rare Blood Cell Disease Unit, "Cardarelli" Hospital, Naples, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Scarl, Ariano Irpino, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Scarl, Ariano Irpino, Italy
| | - Aldo Filosa
- Rare Blood Cell Disease Unit, "Cardarelli" Hospital, Naples, Italy
| |
Collapse
|
16
|
Capolongo G, Suzumoto Y, D'Acierno M, Simeoni M, Capasso G, Zacchia M. ERK1,2 Signalling Pathway along the Nephron and Its Role in Acid-base and Electrolytes Balance. Int J Mol Sci 2019; 20:E4153. [PMID: 31450703 PMCID: PMC6747339 DOI: 10.3390/ijms20174153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are intracellular molecules regulating a wide range of cellular functions, including proliferation, differentiation, apoptosis, cytoskeleton remodeling and cytokine production. MAPK activity has been shown in normal kidney, and its over-activation has been demonstrated in several renal diseases. The extracellular signal-regulated protein kinases (ERK 1,2) signalling pathway is the first described MAPK signaling. Intensive investigations have demonstrated that it participates in the regulation of ureteric bud branching, a fundamental process in establishing final nephron number; in addition, it is also involved in the differentiation of the nephrogenic mesenchyme, indicating a key role in mammalian kidney embryonic development. In the present manuscript, we show that ERK1,2 signalling mediates several cellular functions also in mature kidney, describing its role along the nephron and demonstrating whether it contributes to the regulation of ion channels and transporters implicated in acid-base and electrolytes homeostasis.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | | | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Biogem Scarl, 83031 Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| |
Collapse
|
17
|
Santelli A, Sun IO, Eirin A, Abumoawad AM, Woollard JR, Lerman A, Textor S, Puranik AS, Lerman LO. Senescent Kidney Cells in Hypertensive Patients Release Urinary Extracellular Vesicles. J Am Heart Assoc 2019; 8:e012584. [PMID: 31433703 PMCID: PMC6585370 DOI: 10.1161/jaha.119.012584] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Background Hypertension may be associated with renal cellular injury. Cells in distress release extracellular vesicles (EVs), and their numbers in urine may reflect renal injury. Cellular senescence, an irreversible growth arrest in response to a noxious milieu, is characterized by release of proinflammatory cytokines. We hypothesized that EVs released by senescent nephron cells can be identified in urine of patients with hypertension. Methods and Results We recruited patients with essential hypertension (EH) or renovascular hypertension and healthy volunteers (n=14 each). Renal oxygenation was assessed using magnetic resonance imaging and blood samples collected from both renal veins for cytokine-level measurements. EVs isolated from urine samples were characterized by imaging flow cytometry based on specific markers, including p16 (senescence marker), calyxin (podocytes), urate transporter 1 (proximal tubules), uromodulin (ascending limb of Henle's loop), and prominin-2 (distal tubules). Overall percentage of urinary p16+ EVs was elevated in EH and renovascular hypertension patients compared with healthy volunteers and correlated inversely with renal function and directly with renal vein cytokine levels. Urinary levels of p16+/urate transporter 1+ were elevated in all hypertensive subjects compared with healthy volunteers, whereas p16+/prominin-2+ levels were elevated only in EH versus healthy volunteers and p16+/uromodulin+ in renovascular hypertension versus EH. Conclusions Levels of p16+ EVs are elevated in urine of hypertensive patients and may reflect increased proximal tubular cellular senescence. In EH, EVs originate also from distal tubules and in renovascular hypertension from Henle's loop. Hence, urinary EVs levels may be useful to identify intrarenal sites of cellular senescence.
Collapse
Affiliation(s)
- Adrian Santelli
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
- Department of PhysiopathologyHospital de ClinicasMontevideoUruguay
| | - In O. Sun
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
| | - Alfonso Eirin
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
| | | | | | - Amir Lerman
- Department of Cardiovascular DiseasesMayo ClinicRochesterMN
| | | | | | | |
Collapse
|
18
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
19
|
Trepiccione F, Soukaseum C, Baudrie V, Kumai Y, Teulon J, Villoutreix B, Cornière N, Wangemann P, Griffith AJ, Byung Choi Y, Hadchouel J, Chambrey R, Eladari D. Acute genetic ablation of pendrin lowers blood pressure in mice. Nephrol Dial Transplant 2018; 32:1137-1145. [PMID: 28064162 DOI: 10.1093/ndt/gfw393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/02/2016] [Indexed: 11/14/2022] Open
Abstract
Background Pendrin, the chloride/bicarbonate exchanger of β-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. Methods Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. Results We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. Conclusion By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.
Collapse
Affiliation(s)
- Francesco Trepiccione
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Christelle Soukaseum
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Veronique Baudrie
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Yusuke Kumai
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Jacques Teulon
- CNRS ERL 8228, INSERM UMRS 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Bruno Villoutreix
- INSERM U973, MTi-Bioinformatics; University Paris Diderot, Paris, France
| | - Nicolas Cornière
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, KS, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yoon Byung Choi
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juliette Hadchouel
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Regine Chambrey
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| |
Collapse
|
20
|
Zacchia M, Capolongo G, Rinaldi L, Capasso G. The importance of the thick ascending limb of Henle's loop in renal physiology and pathophysiology. Int J Nephrol Renovasc Dis 2018; 11:81-92. [PMID: 29497325 PMCID: PMC5818843 DOI: 10.2147/ijnrd.s154000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The thick ascending limb (TAL) of Henle’s loop is a crucial segment for many tasks of the nephron. Indeed, the TAL is not only a mainstay for reabsorption of sodium (Na+), potassium (K+), and divalent cations such as calcium (Ca2+) and magnesium (Mg2+) from the luminal fluid, but also has an important role in urine concentration, overall acid–base homeostasis, and ammonia cycle. Transcellular Na+ transport along the TAL is a prerequisite for Na+, K+, Ca2+, Mg2+ homeostasis, and water reabsorption, the latter through its contribution in the generation of the cortico-medullar osmotic gradient. The role of this nephron site in acid–base balance, via bicarbonate reabsorption and acid secretion, is sometimes misunderstood by clinicians. This review describes in detail these functions, reporting in addition to the well-known molecular mechanisms, some novel findings from the current literature; moreover, the pathophysiology and the clinical relevance of primary or acquired conditions caused by TAL dysfunction are discussed. Knowing the physiology of the TAL is fundamental for clinicians, for a better understanding and management of rare and common conditions, such as tubulopathies, hypertension, and loop diuretics abuse.
Collapse
Affiliation(s)
- Miriam Zacchia
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Capolongo
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Luca Rinaldi
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
21
|
Zacchia M, Capolongo G, Trepiccione F, Marion V. Impact of Local and Systemic Factors on Kidney Dysfunction in Bardet-Biedl Syndrome. Kidney Blood Press Res 2017; 42:784-793. [PMID: 29161709 DOI: 10.1159/000484301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 11/19/2022] Open
Abstract
Bardet Biedl syndrome (BBS) is a rare inherited syndromic condition characterized by renal and extra-renal disorders. Renal defect, at either structural or functional level, is one of the cardinal clinical features, and is a major cause of morbidity. However, the pathogenic mechanism underlying its dysfunction remains largely unknown, and to date only symptomatic treatment with no specific therapy is available for these patients. Elucidating aberrant cellular and/or systemic processes that impact kidney function is therefore a prerequisite to develop targeted innovative therapeutic strategies for the BBS patients. Given the proven role of BBS proteins in the function of the primary cilium (PC) and considering the clinical overlapping of BBS with other ciliopathies, BBS is considered the result of disruption of ciliary activities. The present review aims at giving an updated overview of the spectrum of renal abnormalities in BBS patients according to the existing scientific literature, and discusses the possible role of intrinsic PC dysfunction into the pathogenesis of renal defects based on the most recent findings demonstrating a possible role of systemic factors in favoring the progression of renal disease.
Collapse
Affiliation(s)
- Miriam Zacchia
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Capolongo
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Trepiccione
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincent Marion
- INSERM, U1112, Laboratoire de Génétique Médicale , Ciliopathies modeling and associated therapies team, Faculté de Medecine, Strasbroug Cedex, France
| |
Collapse
|
22
|
Mun EG, Sohn HS, Kim MS, Cha YS. Antihypertensive effect of Ganjang (traditional Korean soy sauce) on Sprague-Dawley Rats. Nutr Res Pract 2017; 11:388-395. [PMID: 28989575 PMCID: PMC5621361 DOI: 10.4162/nrp.2017.11.5.388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/17/2017] [Accepted: 09/15/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/OBJECTIVES Although Korean fermented foods contain large amounts of salt, which is known to exacerbate health problems, these foods still have beneficial effects such as anti-hypertension, anti-cancer, and anti-colitis properties. We hypothesized that ganjang may have different effects on blood pressure compared to same concentrations of salt. MATERIALS/METHODS Sprague-Dawley rats were divided into control (CT), NaCl (NC), and ganjang (GJ) groups and orally administered with 8% NaCl concentration for 9 weeks. The systolic blood pressure (SBP), serum chemistry, Na+ and K+ concentrations and renal gene expressions were measured. RESULTS The SBP was significantly increased in the NC group compared to the GJ and CT groups. In addition, the Na+ concentration in urine was higher in the GJ and NC groups than the CT group, but the urine volume was increased in the GJ group compared to the other groups. The serum renin levels were decreased in the GJ group compared to the CT group, while the serum aldosterone level was decreased in the GJ group relative to the NC group. The mRNA expression of the renin, angiotensin II type I receptor, and mineralocorticoid receptor were significantly lower in the GJ group compared to other groups. Furthermore, GJ group showed the lowest levels of genes for Na+ transporter in kidney cortex such as Na+/K+ ATPaseα1 (NKAα1), Na+/H+ exchanger 3 (NHE3), Na+/HCO3- co-exchanger (NBC), and carbonic anhydrases II (CAII). CONCLUSIONS The decreased SBP in the GJ could be due to decreased renin and aldosterone levels in serum and increased urinary volume and excretion of Na+ with its transporter gene alteration. Therefore, ganjang may have antihypertensive effect despite its high contents of salt.
Collapse
Affiliation(s)
- Eun-Gyung Mun
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| | - Hee-Sook Sohn
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| | - Mi-Sun Kim
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| |
Collapse
|
23
|
Trepiccione F, Prosperi F, de la Motte LR, Hübner CA, Chambrey R, Eladari D, Capasso G. New Findings on the Pathogenesis of Distal Renal Tubular Acidosis. KIDNEY DISEASES 2017; 3:98-105. [PMID: 29344504 DOI: 10.1159/000478781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Indexed: 12/23/2022]
Abstract
Background Distal renal tubular acidosis (dRTA) is characterized by an impairment of the urinary acidification process in the distal nephron. Complete or incomplete metabolic acidosis coupled with inappropriately alkaline urine are the hallmarks of this condition. Genetic forms of dRTA are caused by loss of function mutations of either SLC4A1, encoding the AE1 anion exchanger, or ATP6V1B1 and ATP6V0A4, encoding for the B1 and a4 subunits of the vH+ATPase, respectively. These genes are crucial for the function of A-type intercalated cells (A-IC) of the distal nephron. Summary Alterations of acid-base homeostasis are variably associated with hypokalemia, hypercalciuria, nephrocalcinosis or nephrolithiasis, and a salt-losing phenotype. Here we report the diagnostic test and the underlying physiopathological mechanisms. The molecular mechanisms identified so far can explain the defect in acid secretion, but do not explain all clinical features. We review the latest experimental findings on the pathogenesis of dRTA, reporting mechanisms that are instrumental for the clinician and potentially inspiring a novel therapeutic strategy. Key Message Primary dRTA is usually intended as a single-cell disease because the A-IC are mainly affected. However, novel evidence shows that different cell types of the nephron may contribute to the signs and symptoms, moving the focus from a single-cell towards a renal disease.
Collapse
Affiliation(s)
- Francesco Trepiccione
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Federica Prosperi
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| | - Luigi Regenburgh de la Motte
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Regine Chambrey
- Inserm U1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, Saint-Denis, Ile de la Réunion, France
| | - Giovambattista Capasso
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| |
Collapse
|
24
|
Matafora V, Zagato L, Ferrandi M, Molinari I, Zerbini G, Casamassima N, Lanzani C, Delli Carpini S, Trepiccione F, Manunta P, Bachi A, Capasso G. Quantitative proteomics reveals novel therapeutic and diagnostic markers in hypertension. BBA CLINICAL 2014; 2:79-87. [PMID: 26672470 PMCID: PMC4633972 DOI: 10.1016/j.bbacli.2014.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023]
Abstract
Hypertension is a prevalent disorder in the world representing one of the major risk factors for heart attack and stroke. These risks are increased in salt sensitive individuals. Hypertension and salt sensitivity are complex phenotypes whose pathophysiology remains poorly understood and, remarkably, salt sensitivity is still laborious to diagnose. Here we present a urinary proteomic study specifically designed to identify urinary proteins relevant for the pathogenesis of hypertension and salt sensitivity. Despite previous studies that underlined the association of UMOD gene variants with hypertension, this work provides novel evidence showing different uromodulin protein level in the urine of hypertensive patients compared to healthy individuals. Notably, we also show that patients with higher level of uromodulin are homozygous for UMOD risk variant and display a decreased level of salt excretion, highlighting the essential role of UMOD in the regulation of salt reabsorption in hypertension. Additionally, we found that urinary nephrin 1, a marker of glomerular slit diaphragm, may predict a salt sensitive phenotype and positively correlate with increased albuminuria associated with this type of hypertension. We identified urinary proteins differently excreted in hypertensive patients. Nephrin 1 might predict salt sensitive phenotype and glomerular complications. Uromodulin impacts salt homeostasis in hypertension. We provide new insights into the pathogenesis of hypertension and salt sensitivity.
Collapse
Key Words
- BMI, body mass index
- BP, blood pressure
- DBP, diastolic BP
- GO, Gene Ontology
- Glomerular injury
- LC–MS/MS, liquid chromatography coupled to tandem mass spectrometry
- MBP, mean BP.
- MQ, MaxQuant
- Nephrinuria
- Quantitative proteomics
- SBP, systolic BP
- SR, salt resistant
- SS, salt sensitive
- Salt homeostasis
- Salt sensitive hypertension
- Urinary biomarker
- Uromodulin
Collapse
Affiliation(s)
- Vittoria Matafora
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy ; Chair of Nephrology, Department of Cardio-Vascular Medicine, Second University of Naples, Naples, Italy
| | - Laura Zagato
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics & Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Mara Ferrandi
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics & Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Isabella Molinari
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics & Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Nunzia Casamassima
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics & Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics & Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Simona Delli Carpini
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics & Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Trepiccione
- Chair of Nephrology, Department of Cardio-Vascular Medicine, Second University of Naples, Naples, Italy
| | - Paolo Manunta
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics & Cell Biology, San Raffaele Scientific Institute, Milan, Italy ; Chair of Nephrology, University Vita-Salute San Raffaele, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovambattista Capasso
- Chair of Nephrology, Department of Cardio-Vascular Medicine, Second University of Naples, Naples, Italy
| |
Collapse
|
25
|
Markadieu N, Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch 2014; 466:91-105. [PMID: 24097229 PMCID: PMC3877717 DOI: 10.1007/s00424-013-1370-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023]
Abstract
The electroneutral Na(+)-K(+)-Cl(-) cotransporters NKCC1 (encoded by the SLC12A2 gene) and NKCC2 (SLC12A1 gene) belong to the Na(+)-dependent subgroup of solute carrier 12 (SLC12) family of transporters. They mediate the electroneutral movement of Na(+) and K(+), tightly coupled to the movement of Cl(-) across cell membranes. As they use the energy of the ion gradients generated by the Na(+)/K(+)-ATPase to transport Na(+), K(+), and Cl(-) from the outside to the inside of a cell, they are considered secondary active transport mechanisms. NKCC-mediated transport occurs in a 1Na(+), 1K(+), and 2Cl(-) ratio, although NKCC1 has been shown to sometimes mediate partial reactions. Both transporters are blocked by bumetanide and furosemide, drugs which are commonly used in clinical medicine. NKCC2 is the molecular target of loop diuretics as it is expressed on the apical membrane of thick ascending limb of Henle epithelial cells, where it mediates NaCl reabsorption. NKCC1, in contrast, is found on the basolateral membrane of Cl(-) secretory epithelial cells, as well as in a variety of non-epithelial cells, where it mediates cell volume regulation and participates in Cl(-) homeostasis. Following their molecular identification two decades ago, much has been learned about their biophysical properties, their mode of operation, their regulation by kinases and phosphatases, and their physiological relevance. However, despite this tremendous amount of new information, there are still so many gaps in our knowledge. This review summarizes information that constitutes consensus in the field, but it also discusses current points of controversy and highlights many unanswered questions.
Collapse
Affiliation(s)
- Nicolas Markadieu
- Department of Anesthesiology, Vanderbilt University School of Medicine, MCN T-4202, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | | |
Collapse
|
26
|
Damiano S, Trepiccione F, Ciarcia R, Scanni R, Spagnuolo M, Manco L, Borrelli A, Capasso C, Mancini R, Schiattarella A, Iervolino A, Zacchia E, Bata-Csere A, Florio S, Anastasio P, Pollastro R, Mancini A, Capasso G. A new recombinant MnSOD prevents the Cyclosporine A-induced renal impairment. Nephrol Dial Transplant 2013; 28:2066-72. [DOI: 10.1093/ndt/gft020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Kotlo K, Bhattacharyya S, Yang B, Feferman L, Tejaskumar S, Linhardt R, Danziger R, Tobacman JK. Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin. Glycoconj J 2013; 30:667-76. [PMID: 23385884 DOI: 10.1007/s10719-013-9468-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.
Collapse
Affiliation(s)
- Kumar Kotlo
- University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Saha S, Verma RJ. Efficacy Study of Dolichos biflorus in the Management of Nephrotoxicity. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60440-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|