1
|
Soleimani M. Acid base homeostasis and serum bicarbonate concentration in syndrome of inappropriate anti-diuretic hormone secretion (SIADH) with hyponatremia. Front Endocrinol (Lausanne) 2023; 14:1321338. [PMID: 38144560 PMCID: PMC10747299 DOI: 10.3389/fendo.2023.1321338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
The Syndrome of Inappropriate ADH secretion (SIADH) presents with excess ADH release caused by a range of conditions; including pneumonia, brain tumors, certain lung cancers, and diseases of the hypothalamus. It presents with significant reduction in both sodium and chloride concentrations in the blood. However, reports examining the acid base status indicate a normal serum bicarbonate concentration and systemic acid base homeostasis. The mechanisms for the absence of abnormalities in acid base homeostasis remain speculative. This mini review is highlighting the recent advances in renal molecular physiology to provide answers for the maintenance of acid base status and serum bicarbonate in a physiological range.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM, United States
| |
Collapse
|
2
|
Soleimani M. Not all kidney cysts are created equal: a distinct renal cystogenic mechanism in tuberous sclerosis complex (TSC). Front Physiol 2023; 14:1289388. [PMID: 38028758 PMCID: PMC10663234 DOI: 10.3389/fphys.2023.1289388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disease caused by mutations in either TSC1 or TSC2 genes. Approximately, two million individuals suffer from this disorder worldwide. TSC1 and TSC2 code for the proteins harmartin and tuberin, respectively, which form a complex that regulates the mechanistic target of rapamycin complex 1 (mTORC1) and prevents uncontrollable cell growth. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomas) and cysts whose presence eventually causes kidney failure. The factors promoting cyst formation and tumor growth in TSC are poorly understood. Recent studies on kidney cysts in various mouse models of TSC, including mice with principal cell- or pericyte-specific inactivation of TSC1 or TSC2, have identified a unique cystogenic mechanism. These studies demonstrate the development of numerous cortical cysts that are predominantly comprised of hyperproliferating A-intercalated (A-IC) cells that express both TSC1 and TSC2. An analogous cellular phenotype in cystic epithelium is observed in both humans with TSC and in TSC2+/- mice, confirming a similar kidney cystogenesis mechanism in TSC. This cellular phenotype profoundly contrasts with kidney cysts found in Autosomal Dominant Polycystic Kidney Disease (ADPKD), which do not show any notable evidence of A-IC cells participating in the cyst lining or expansion. RNA sequencing (RNA-Seq) and confirmatory expression studies demonstrate robust expression of Forkhead Box I1 (FOXI1) transcription factor and its downstream targets, including apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in the cyst epithelia of Tsc1 (or Tsc2) knockout (KO) mice, but not in Polycystic Kidney Disease (Pkd1) mutant mice. Deletion of FOXI1, which is vital to H+-ATPase expression and intercalated (IC) cell viability, completely inhibited mTORC1 activation and abrogated the cyst burden in the kidneys of Tsc1 KO mice. These results unequivocally demonstrate the critical role that FOXI1 and A-IC cells, along with H+-ATPase, play in TSC kidney cystogenesis. This review article will discuss the latest research into the causes of kidney cystogenesis in TSC with a focus on possible therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, New Mexico Veterans Health Care Center, Albuquerque, NM, United States
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
3
|
Bankir L, Guerrot D, Bichet DG. Vaptans or voluntary increased hydration to protect the kidney: how do they compare? Nephrol Dial Transplant 2023; 38:562-574. [PMID: 34586414 DOI: 10.1093/ndt/gfab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease have been well described. They depend on the antidiuretic action of AVP mediated by V2 receptors (V2R). Tolvaptan, a selective V2R antagonist, is now largely used for the treatment of patients with autosomal dominant polycystic kidney disease. Another way to reduce the adverse effects of AVP is to reduce endogenous AVP secretion by a voluntary increase in fluid intake. These two approaches differ in several ways, including the level of thirst and AVP. With voluntary increased drinking, plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also those mediated by V1a and V1b receptors (V1aR and V1bR). In contrast, selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus increase AVP's influence on V1a and V1b receptors. V1aR is expressed in the luminal side of the collecting duct (CD) and in inner medullary interstitial cells, and their activation induces the production of prostaglandins, mostly prostaglandin E2 (PGE2). Intrarenal PGE2 has been shown to reduce sodium and water reabsorption in the CD and increase blood flow in the renal medulla, both effects contributing to increase sodium and water excretion and reduce urine-concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have been shown to induce significant water and sodium retention and potentiate the antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do not take place with a voluntary increase in fluid intake. In summary, while both strategies may have beneficial effects, the information reviewed here leads us to assume that pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 production, may provide greater benefit than voluntary high water intake. The influence of tolvaptan on the PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than presently prescribed remain to be evaluated.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominique Guerrot
- Départment de Néphrologie, Hôpital Universitaire de Rouen, Rouen, France.,Université de Normandie, UNIROUEN, INSERM U1096, Rouen, France
| | - Daniel G Bichet
- Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie, Département de Physiologie, and Département de Médecine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H +-ATPase Rich Ionocytes. Int J Mol Sci 2020; 21:ijms21113957. [PMID: 32486459 PMCID: PMC7312464 DOI: 10.3390/ijms21113957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/14/2023] Open
Abstract
Arginine vasopressin (Avp) is a conserved pleiotropic hormone that is known to regulate both water reabsorption and ion balance; however, many of the mechanisms underlying its effects remain unclear. Here, we used zebrafish embryos to investigate how Avp modulates ion and acid–base homeostasis. After incubating embryos in double-deionized water for 24 h, avp mRNA expression levels were significantly upregulated. Knockdown of Avp protein expression by an antisense morpholino oligonucleotide (MO) reduced the expression of ionocyte-related genes and downregulated whole-body Cl− content and H+ secretion, while Na+ and Ca2+ levels were not affected. Incubation of Avp antagonist SR49059 also downregulated the mRNA expression of sodium chloride cotransporter 2b (ncc2b), which is a transporter responsible for Cl− uptake. Correspondingly, avp morphants showed lower NCC and H+-ATPase rich (HR) cell numbers, but Na+/K+-ATPase rich (NaR) cell numbers remained unchanged. avp MO also downregulated the numbers of foxi3a- and p63-expressing cells. Finally, the mRNA expression levels of calcitonin gene-related peptide (cgrp) and its receptor, calcitonin receptor-like 1 (crlr1), were downregulated in avp morphants, suggesting that Avp might affect Cgrp and Crlr1 for modulating Cl− balance. Together, our results reveal a molecular/cellular pathway through which Avp regulates ion and acid–base balance, providing new insights into its function.
Collapse
|
5
|
Remote Ischemic Perconditioning Modulates Apelin Expression After Renal Ischemia-Reperfusion Injury. J Surg Res 2020; 247:429-437. [DOI: 10.1016/j.jss.2019.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
|
6
|
Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, Vallon V, Nagata D. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep 2020; 8:e14360. [PMID: 31994353 PMCID: PMC6987478 DOI: 10.14814/phy2.14360] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/25/2022] Open
Abstract
Most of the filtered glucose is reabsorbed in the early proximal tubule by the sodium-glucose cotransporter SGLT2. The glycosuric effect of the SGLT2 inhibitor ipragliflozin is linked to a diuretic and natriuretic effect that activates compensatory increases in fluid and food intake to stabilize body fluid volume (BFV). However, the compensatory mechanisms that are activated on the level of renal tubules remain unclear. Type 2 diabetic Goto-Kakizaki (GK) rats were treated with vehicle or 0.01% (in diet) ipragliflozin with free access to fluid and food. After 8 weeks, GK rats were placed in metabolic cages for 24-hr. Ipragliflozin decreased body weight, serum glucose and systolic blood pressure, and increased fluid and food intake, urinary glucose and Na+ excretion, urine volume, and renal osmolar clearance, as well as urine vasopressin and solute-free water reabsorption (TcH2O). BFV, measured by bioimpedance spectroscopy, and fluid balance were similar among the two groups. Urine vasopressin in ipragliflozin-treated rats was negatively and positively associated with fluid balance and TcH2O, respectively. Ipragliflozin increased the renal membrane protein expression of SGLT2, aquaporin (AQP) 2 phosphorylated at Ser269 and vasopressin V2 receptor. The expression of SGLT1, GLUT2, AQP1, and AQP2 was similar between the groups. In conclusion, the SGLT2 inhibitor ipragliflozin induced a sustained glucosuria, diuresis, and natriuresis, with compensatory increases in fluid intake and vasopressin-induced TcH2O in proportion to the reduced fluid balance to maintain BFV. These results indicate that the osmotic diuresis induced by SGLT2 inhibition stimulates compensatory fluid intake and renal water reabsorption to maintain BFV.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Shigeaki Muto
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Keiko Fukuda
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Minami Watanabe
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Ken Ohara
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and BiophysicsJulius‐von‐Sachs‐Institute of BiosciencesUniversity of WürzburgWürzburgBavariaGermany
| | - Volker Vallon
- Division of Nephrology and HypertensionDepartment of Medicine and PharmacologyUniversity of California San Diego &VA San Diego Healthcare SystemSan DiegoCAUSA
| | - Daisuke Nagata
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| |
Collapse
|
7
|
Giesecke T, Himmerkus N, Leipziger J, Bleich M, Koshimizu TA, Fähling M, Smorodchenko A, Shpak J, Knappe C, Isermann J, Ayasse N, Kawahara K, Schmoranzer J, Gimber N, Paliege A, Bachmann S, Mutig K. Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J Am Soc Nephrol 2019; 30:946-961. [PMID: 31097611 DOI: 10.1681/asn.2018080816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Antagonists of the V1a vasopressin receptor (V1aR) are emerging as a strategy for slowing progression of CKD. Physiologically, V1aR signaling has been linked with acid-base homeostasis, but more detailed information is needed about renal V1aR distribution and function. METHODS We used a new anti-V1aR antibody and high-resolution microscopy to investigate Va1R distribution in rodent and human kidneys. To investigate whether V1aR activation promotes urinary H+ secretion, we used a V1aR agonist or antagonist to evaluate V1aR function in vasopressin-deficient Brattleboro rats, bladder-catheterized mice, isolated collecting ducts, and cultured inner medullary collecting duct (IMCD) cells. RESULTS Localization of V1aR in rodent and human kidneys produced a basolateral signal in type A intercalated cells (A-ICs) and a perinuclear to subapical signal in type B intercalated cells of connecting tubules and collecting ducts. Treating vasopressin-deficient Brattleboro rats with a V1aR agonist decreased urinary pH and tripled net acid excretion; we observed a similar response in C57BL/6J mice. In contrast, V1aR antagonist did not affect urinary pH in normal or acid-loaded mice. In ex vivo settings, basolateral treatment of isolated perfused medullary collecting ducts with the V1aR agonist or vasopressin increased intracellular calcium levels in ICs and decreased luminal pH, suggesting V1aR-dependent calcium release and stimulation of proton-secreting proteins. Basolateral treatment of IMCD cells with the V1aR agonist increased apical abundance of vacuolar H+-ATPase in A-ICs. CONCLUSIONS Our results show that activation of V1aR contributes to urinary acidification via H+ secretion by A-ICs, which may have clinical implications for pharmacologic targeting of V1aR.
Collapse
Affiliation(s)
- Torsten Giesecke
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Shpak
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Knappe
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Isermann
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Niklas Ayasse
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jan Schmoranzer
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Niclas Gimber
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kerim Mutig
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Moscow, Russian Federation
| |
Collapse
|
8
|
Izumi Y, Inoue H, Nakayama Y, Eguchi K, Yasuoka Y, Matsuo N, Nonoguchi H, Kakizoe Y, Kuwabara T, Mukoyama M. TSS-Seq analysis of low pH-induced gene expression in intercalated cells in the renal collecting duct. PLoS One 2017; 12:e0184185. [PMID: 28859164 PMCID: PMC5578634 DOI: 10.1371/journal.pone.0184185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022] Open
Abstract
Metabolic acidosis often results from chronic kidney disease; in turn, metabolic acidosis accelerates the progression of kidney injury. The mechanisms for how acidosis facilitates kidney injury are not fully understood. To investigate whether low pH directly affects the expression of genes controlling local homeostasis in renal tubules, we performed transcription start site sequencing (TSS-Seq) using IN-IC cells, a cell line derived from rat renal collecting duct intercalated cells, with acid loading for 24 h. Peak calling identified 651 up-regulated and 128 down-regulated TSSs at pH 7.0 compared with those at pH 7.4. Among them, 424 and 38 TSSs were ≥ 1.0 and ≤ -1.0 in Log2 fold change, which were annotated to 193 up-regulated and 34 down-regulated genes, respectively. We used gene ontology analysis and manual curation to profile the up-regulated genes. The analysis revealed that many up-regulated genes are involved in renal fibrosis, implying potential molecular mechanisms induced by metabolic acidosis. To verify the activity of the ubiquitin-proteasome system (UPS), a candidate pathway activated by acidosis, we examined the expression of proteins from cells treated with a proteasome inhibitor, MG132. The expression of ubiquitinated proteins was greater at pH 7.0 than at pH 7.4, suggesting that low pH activates the UPS. The in vivo study demonstrated that acid loading increased the expression of ubiquitin proteins in the collecting duct cells in mouse kidneys. Motif analysis revealed Egr1, the mRNA expression of which was increased at low pH, as a candidate factor that possibly stimulates gene expression in response to low pH. In conclusion, metabolic acidosis can facilitate renal injury and fibrosis during kidney disease by locally activating various pathways in the renal tubules.
Collapse
Affiliation(s)
- Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yushi Nakayama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- * E-mail:
| | - Koji Eguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naomi Matsuo
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hiroshi Nonoguchi
- Department of Internal Medicine and Education & Research Center, Kitasato University Medical Center, Kitamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
9
|
Affiliation(s)
- Tianxin Yang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City; and Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Stimulation of V1a receptor increases renal uric acid clearance via urate transporters: insight into pathogenesis of hypouricemia in SIADH. Clin Exp Nephrol 2016; 20:845-852. [PMID: 26935049 DOI: 10.1007/s10157-016-1248-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/11/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hypouricemia is pathognomonic in syndrome of inappropriate secretion of antidiuretic hormone (SIADH) but the underlying mechanism remains unclear. Based on the previous studies, we hypothesized that V1a receptor may play a principal role in inducing hypouricemia in SIADH and examined uric acid metabolism using a rat model. METHODS Terlipressin (25 ng/h), a selective V1a agonist, was subcutaneously infused to 7-week-old male Wistar rats (n = 9). Control rats were infused with normal saline (n = 9). The rats were sacrificed to obtain kidney tissues 3 days after treatment. In addition to electrolyte metabolism, changes in expressions of the urate transporters including URAT1 (SLC22A12), GLUT9 (SLC2A9), ABCG2 and NPT1 (SLC17A1) were examined by western blotting and immunohistochemistry. RESULTS In the terlipressin-treated rats, serum uric acid (UA) significantly decreased and the excretion of urinary UA significantly increased, resulting in marked increase in fractional excretion of UA. Although no change in the expression of URAT1, GLUT9 expression significantly decreased whereas the expressions of ABCG2 and NPT1 significantly increased in the terlipressin group. The results of immunohistochemistry corroborated with those of the western blotting. Aquaporin 2 expression did not change in the medulla, suggesting the independence of V2 receptor stimulation. CONCLUSION Stimulation of V1a receptor induces the downregulation of GLUT9, reabsorption urate transporter, together with the upregulation of ABCG2 and NPT1, secretion urate transporters, all changes of which clearly lead to increase in renal UA clearance. Hypouricemia seen in SIADH is attributable to V1a receptor stimulation.
Collapse
|
11
|
Wasilewski MA, Myers VD, Recchia FA, Feldman AM, Tilley DG. Arginine vasopressin receptor signaling and functional outcomes in heart failure. Cell Signal 2015; 28:224-233. [PMID: 26232615 DOI: 10.1016/j.cellsig.2015.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/27/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Melissa A Wasilewski
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Valerie D Myers
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fabio A Recchia
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Yasuoka Y, Sato Y, Healy JM, Nonoguchi H, Kawahara K. pH-sensitive expression of calcium-sensing receptor (CaSR) in type-B intercalated cells of the cortical collecting ducts (CCD) in mouse kidney. Clin Exp Nephrol 2014; 19:771-82. [PMID: 25500736 DOI: 10.1007/s10157-014-1063-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/22/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The localization and role of the calcium-sensing receptor (CaSR) along the nephron including the collecting ducts is still open to debate. METHODS Using the quantitative, highly sensitive in situ hybridization technique and a double-staining immunohistochemistry technique, we investigated the axial distribution and expression of CaSR along the nephron in mice (C57B/6J) treated for 6 days with acid or alkali diets. RESULTS Under control condition, CaSR was specifically localized in the cortical and medullary thick ascending limb of Henle's loop (CTAL and MTAL), macula densa (MD), distal convoluted tubule (DCT), and CCD (TALs, MD > DCT, CCD). Along the CCD, CaSR was co-localized with an anion exchanger type 4 (AE4), a marker of the basolateral membrane of type-B intercalated cell (IC-B) in mice. On the contrary, CaSR was not detected either in principal cells (PC) or in type-A intercalated cell (IC-A). CaSR expression levels in IC-B significantly (P < 0.005) decreased when mice were fed NH4Cl (acid) diets and increased when animals were given NaHCO3 (alkali) diets. As expected, cell heights of IC-A and IC-B significantly (P < 0.005) increased in the above experimental conditions. Surprisingly, single infusion (ip) of neomycin, an agonist of CaSR, significantly (P < 0.005) increased urinary Ca excretion without further increasing the hourly urine volume and significantly (P < 0.05) decreased urine pH. CONCLUSION CaSR, cloned from rat kidney, was localized in the basolateral membrane of IC-B and was more expressed during alkali-loading. Its alkali-sensitive expression may promote urinary alkali secretion for body acid-base balance.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.,Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0374, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, 252-0374, Japan
| | - Jillian M Healy
- ALESS Program, Komaba Organizational for Educational Excellence, College of Art and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto, 364-8501, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan. .,Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0374, Japan.
| |
Collapse
|
13
|
Hus-Citharel A, Bodineau L, Frugière A, Joubert F, Bouby N, Llorens-Cortes C. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology 2014; 155:4483-93. [PMID: 25157454 DOI: 10.1210/en.2014-1257] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apelin receptors (ApelinRs) are expressed along an increasing cortico-medullary gradient in collecting ducts (CDs). We showed here that iv injection of apelin 17 (K17F) in lactating rats characterized by increases in both synthesis and release of arginine vasopressin (AVP) increased diuresis concomitantly with a significant decrease in urine osmolality and no change in Na(+) and K(+) excretion. Under these conditions, we also observed a significant decrease in apical aquaporin-2 immunolabeling in CD, with a cortico-medullary gradient, suggesting that K17F-induced diuresis could be linked to a direct action of apelin on CD. We then examined the potential cross talk between V1a AVP receptor (V1a-R), V2 AVP receptor (V2-R) and ApelinR signaling pathways in outer medullary CD (OMCD) and inner medullary CD microdissected rat CD. In OMCD, expressing the 3 receptors, K17F inhibited cAMP production and Ca(2+) influx induced by 1-desamino-8-D-arginine vasopressin a V2-R agonist. Similar effects were observed in inner medullary CD expressing only V2-R and ApelinR. In contrast, in OMCD, K17F increased by 51% the Ca(2+) influx induced by the stimulation of V1a-R by AVP in the presence of the V2-R antagonist SR121463B, possibly enhancing the physiological antagonist effect of V1a-R on V2-R. Thus, the diuretic effect of apelin is not only due to a central effect by inhibiting AVP release in the blood circulation as previously shown but also to a direct action of apelin on CD, by counteracting the antidiuretic effect of AVP occurring via V2-R.
Collapse
Affiliation(s)
- Annette Hus-Citharel
- Centre Interdisciplinaire de Recherche en Biologie (CIRB) (A.H.-C., L.B., A.F., F.J., C.L.-C.), Collège de France, 75005 Paris, France; Inserm Unit 1050 (A.H.-C., L.B., A.F., F.J., C.L.-C.), 75005 Paris, France; Université Pierre et Marie Curie (A.H.-C., L.B., A.F., F.J., N.B., C.L.-C.), 75005 Paris, France; Unité Mixte de Recherche Scientifique (UMRS) 1138 (N.B.), Centre de Recherche des Cordeliers, 75005 Paris, France; and Université Paris Descartes (N.B.), 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Nagai T, Yasuoka Y, Izumi Y, Horikawa K, Kimura M, Nakayama Y, Uematsu T, Fukuyama T, Yamazaki T, Kohda Y, Hasuike Y, Nanami M, Kuragano T, Kobayashi N, Obinata M, Tomita K, Tanoue A, Nakanishi T, Kawahara K, Nonoguchi H. Reevaluation of erythropoietin production by the nephron. Biochem Biophys Res Commun 2014; 449:222-8. [PMID: 24832733 DOI: 10.1016/j.bbrc.2014.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/13/2023]
Abstract
Erythropoietin production has been reported to occur in the peritubular interstitial fibroblasts in the kidney. Since the erythropoietin production in the nephron is controversial, we reevaluated the erythropoietin production in the kidney. We examined mRNA expressions of erythropoietin and HIF PHD2 using high-sensitive in situ hybridization system (ISH) and protein expression of HIF PHD2 using immunohistochemistry in the kidney. We further investigated the mechanism of erythropoietin production by hypoxia in vitro using human liver hepatocell (HepG2) and rat intercalated cell line (IN-IC cells). ISH in mice showed mRNA expression of erythropoietin in proximal convoluted tubules (PCTs), distal convoluted tubules (DCTs) and cortical collecting ducts (CCDs) but not in the peritubular cells under normal conditions. Hypoxia induced mRNA expression of erythropoietin largely in peritubular cells and slightly in PCTs, DCTs, and CCDs. Double staining with AQP3 or AE1 indicated that erythropoietin mRNA expresses mainly in β-intercalated or non α/non β-intercalated cells of the collecting ducts. Immunohistochemistry in rat showed the expression of HIF PHD2 in the collecting ducts and peritubular cells and its increase by anemia in peritubular cells. In IN-IC cells, hypoxia increased mRNA expression of erythropoietin, erythropoietin concentration in the medium and protein expression of HIF PHD2. These data suggest that erythropoietin is produced by the cortical nephrons mainly in the intercalated cells, but not in the peritubular cells, in normal hematopoietic condition and by mainly peritubular cells in hypoxia, suggesting the different regulation mechanism between the nephrons and peritubular cells.
Collapse
Affiliation(s)
- Takanori Nagai
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Chuo-ku Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Kahori Horikawa
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Miho Kimura
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yushi Nakayama
- Department of Nephrology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Chuo-ku Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Takashi Fukuyama
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Taiga Yamazaki
- Research Center for Medical Environment, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yukimasa Kohda
- Department of Nephrology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Chuo-ku Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Yukiko Hasuike
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayoshi Nanami
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Takahiro Kuragano
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Noritada Kobayashi
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Masuo Obinata
- Department of Cell Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryoumachi, Aoba-ku, Sendai 890-8575, Japan
| | - Kimio Tomita
- Department of Nephrology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Chuo-ku Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Ookura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takeshi Nakanishi
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroshi Nonoguchi
- Department of Internal Medicine, and Education and Research Center, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan.
| |
Collapse
|
15
|
Nonoguchi H, Izumi Y, Nakayama Y, Matsuzaki T, Yasuoka Y, Inoue T, Inoue H, Mouri T, Kawahara K, Saito H, Tomita K. Effects of atrial natriuretic peptide on bicarbonate transport in long- and short-looped medullary thick ascending limbs of rats. PLoS One 2013; 8:e83146. [PMID: 24376658 PMCID: PMC3871552 DOI: 10.1371/journal.pone.0083146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is known to influence NaCl transport in the medullary thick ascending limbs (MAL), where the largest NaCl reabsorption occurs among distal nephron segments in response to arginine vasopressin (AVP). In the present study, we investigated the effect of ANP on bicarbonate (HCO3−) transport in the MAL using an isolated tubule perfusion technique. The HCO3− concentration was measured using free-flow ultramicro-fluorometer. We first observed basal HCO3− reabsorption in both long- and short-looped MALs (lMALs, and sMALs, respectively). AVP inhibited HCO3− reabsorption in both lMALs and sMALs, whereas ANP did not change HCO3− transport. However, in the presence of AVP, ANP restored the HCO3− reabsorption inhibited by AVP both in lMAL and sMAL. The effects of ANP on HCO3− transport was mimicked by cyclic GMP. The mRNA expression level of the vasopressin V2 receptor in lMALs was significantly higher than in sMALs, whereas expression of the V1a receptor was unchanged. In summary, AVP inhibits HCO3− transport, and ANP counteracts the action of AVP on HCO3− transport both in lMALs and sMALs.
Collapse
Affiliation(s)
- Hiroshi Nonoguchi
- Department of Internal Medicine and Education & Research Center, Kitasato University Medical Center, Kitamoto, Saitama, Japan
- * E-mail:
| | - Yuichiro Izumi
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yushi Nakayama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Takanobu Matsuzaki
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeaki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Tomohiko Mouri
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideyuki Saito
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Kimio Tomita
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| |
Collapse
|