1
|
Chemical Treatments for Insect Cell Differentiation: The Effects of 20-Hydroxyecdysone and Veratridine on Cultured Spodoptera frugiperda (Sf21) Insect Cell Ultrastructure. INSECTS 2021; 13:insects13010032. [PMID: 35055875 PMCID: PMC8778880 DOI: 10.3390/insects13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Cultured insect Sf21 cells treated with the hormone 20-hydroxyecdysone grow long processes and resemble neurons. They also make physical contact with one another and appear to have the potential to form synapses, areas in which nerve cells are in close contact and communicate with one another electrically or by the release of chemical transmitters. This study uses electron microscopy to look for structural evidence of synapses in 20-hydroxyexdysone treated Sf21 cell cultures. Unfortunately, no evidence of synaptic structures were observed, suggesting that other factors are required for the formation of functional synapses in these cultures. Abstract Previous studies have shown that insect cell cultures stop dividing, form clumps, and can be induced to grow processes reminiscent of axons, when the culture medium is supplemented with 20-hydroxyecdysone, insulin, or an agent that mimics their action, such as the ecdysone agonist, methoxyfenozide. Those cell growing processes resemble nerve cells, and the present study evaluates the ultrastructure of these cultures by transmission electron microscopy. Sf21 cells treated with 20-hydroxyecdysone (with or without veratridine amendment) and subjected to ultrastructural analysis had a similar somatic appearance to control cells, with slight changes in organelles and organization, such as a greater number of cytoplasmic vacuoles and mitochondrial granules. Finger-like projections were observed between control and treated cells. However, no structural markers of synaptic contacts (e.g., vesicles or synaptic thickenings) were observed in controls, 20-hydroxyecdysone, or 20-hydroxyecdysone + veratridine treated cells. It is concluded that additional agents would be required to induce functional synaptogenesis in Sf21 cells.
Collapse
|
2
|
Muema JM, Bargul JL, Mutunga JM, Obonyo MA, Asudi GO, Njeru SN. Neurotoxic Zanthoxylum chalybeum root constituents invoke mosquito larval growth retardation through ecdysteroidogenic CYP450s transcriptional perturbations. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104912. [PMID: 34446188 DOI: 10.1016/j.pestbp.2021.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Intracellular effects exerted by phytochemicals eliciting insect growth-retarding responses during vector control intervention remain largely underexplored. We studied the effects of Zanthoxylum chalybeum Engl. (Rutaceae) (ZCE) root derivatives against malaria (Anopheles gambiae) and arbovirus vector (Aedes aegypti) larvae to decipher possible molecular targets. We report dose-dependent biphasic effects on larval response, with transient exposure to ZCE and its bioactive fraction (ZCFr.5) inhibiting acetylcholinesterase (AChE) activity, inducing larval lethality and growth retardation at sublethal doses. Half-maximal lethal concentrations (LC50) for ZCE against An. gambiae and Ae. aegypti larvae after 24-h exposure were 9.00 ppm and 12.26 ppm, respectively. The active fraction ZCFr.5 exerted LC50 of 1.58 ppm and 3.21 ppm for An. gambiae and Ae. aegypti larvae, respectively. Inhibition of AChE was potentially linked to larval toxicity afforded by 2-tridecanone, palmitic acid (hexadecanoic acid), linoleic acid ((Z,Z)-9,12-octadecadienoic acid), sesamin, β-caryophyllene among other compounds identified in the bioactive fraction. In addition, the phenotypic larval retardation induced by ZCE root constituents was exerted through transcriptional modulation of ecdysteroidogenic CYP450 genes. Collectively, these findings provide an explorative avenue for developing potential mosquito control agents from Z. chalybeum root constituents.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya; Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya
| | - James M Mutunga
- Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry & Molecular Biology, Egerton University, Egerton, Kenya
| | - George O Asudi
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
| |
Collapse
|
3
|
Electrophysiological evidence of RML12 mosquito cell line towards neuronal differentiation by 20-hydroxyecdysdone. Sci Rep 2018; 8:10109. [PMID: 29973702 PMCID: PMC6031678 DOI: 10.1038/s41598-018-28357-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023] Open
Abstract
Continuous cell lines from insect larval tissues are widely used in different research domains, such as virology, insect immunity, gene expression, and bio pharmacology. Previous study showed that introduction of 20-hydroxyecdysone to Spodoptera cell line induced a neuron-like morphology with neurite extensions. Despite some results suggesting potential presence of neuro-receptors, no study so far has shown that these neuron-induced cells were functional. Here, using microelectrode arrays, we showed that the mosquito cell line, RML12, differentiated with 20-hydroxyecdysone, displays spontaneous electrophysiological activity. Results showed that these cells can be stimulated by GABAergic antagonist as well as nicotinic agonist. These results provide new evidence of neuron-like functionality of 20-hydroxyecdysone induced differentiated mosquito cell line. Finally, we used this new model to test the effects of two insecticides, temephos and permethrin. Our analysis revealed significant changes in the spiking activity after the introduction of these insecticides with prolonged effect on the neuronal activity. We believe that this differentiated mosquito neuronal cell model can be used for high-throughput screening of new pesticides on insect nervous system instead of primary neurons or in vivo studies.
Collapse
|
4
|
Jenson LJ, Sun B, Bloomquist JR. Voltage-sensitive potassium channels expressed after 20-Hydroxyecdysone treatment of a mosquito cell line. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:75-80. [PMID: 28668511 DOI: 10.1016/j.ibmb.2017.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The goal of this research was to express receptors and ion channels in hormone-treated insect cell lines. Treatment of Anopheles gambiae Sua1B cells with 20-hydroxyecdysone showed an inhibition of cell growth over a time course of three days, with no change in cellular morphology. The effect of 20-hydroxyecdysone was enhanced in the presence of the potassium channel blocker 4-aminopyridine, but not tetraethylammonium. Concentration-response curves of 4-aminopyridine in the presence of 42 μM (1 mg/ml) 20-hydroxyecdysone showed similar IC50 values (6-10 μM) across 3 day exposures. Whole cell patch clamp confirmed the expression of delayed-rectifier (Kv2) potassium channels in hormone-supplemented Sua1B cells, whereas untreated Sua1B cells showed no evidence of Kv2 expression. The hormone-induced expression of Kv2 channels occurred in as little as 4 h after treatment, but were not observed after 24 h of exposure to 20-hydroxyecdysone, suggesting they played a role in cell death. The expressed channels had current-voltage relationships diagnostic for the Kv2 subtype, and were inhibited with an IC50 = 13 mM of tetraethylammonium. Overall, these parameters were similar to Anopheles gambiae Kv2 potassium channels expressed in HEK-293 cells. The induced presence of ion channels (and possibly receptors) in these cells has potential utility for high throughput screening and basic neuroscience research.
Collapse
Affiliation(s)
- Lacey J Jenson
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32601, USA; Bedoukian Research Inc., 21 Finance Drive, Danbury, CT, 06810, USA
| | - Baonan Sun
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32601, USA
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
5
|
Jenson LJ, Anderson TD, Bloomquist JR. Insecticide sensitivity of native chloride and sodium channels in a mosquito cell line. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:59-64. [PMID: 27155485 DOI: 10.1016/j.pestbp.2015.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the utility of cultured Anopheles gambiae Sua1B cells for insecticide screening applications without genetic engineering or other treatments. Sua1B cells were exposed to the known insecticidal compounds lindane and DIDS, which inhibited cell growth at micromolar concentrations. In patch clamp studies, DIDS produced partial inhibition (69%) of chloride current amplitudes, and an IC50 of 5.1μM was determined for Sua1B cells. A sub-set of chloride currents showed no response to DIDS; however, inhibition (64%) of these currents was achieved using a low chloride saline solution, confirming their identity as chloride channels. In contrast, lindane increased chloride current amplitude (EC50=116nM), which was reversed when cells were bathed in calcium-free extracellular solution. Voltage-sensitive chloride channels were also inhibited by the presence of fenvalerate, a type 2 pyrethroid, but not significantly blocked by type 1 allethrin, an effect not previously shown in insects. Although no evidence of fast inward currents typical of sodium channels was observed, studies with fenvalerate in combination with veratridine, a sodium channel activator, revealed complete inhibition of cell growth that was best fit by a two-site binding model. The high potency effect was completely inhibited in the presence of tetrodotoxin, a specific sodium channel blocker, suggesting the presence of some type of sodium channel. Thus, Sua1B cells express native insect ion channels with potential utility for insecticide screening.
Collapse
Affiliation(s)
- Lacey J Jenson
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32601, United States; Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, VA 24061, United States
| | - Troy D Anderson
- Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, VA 24061, United States
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32601, United States.
| |
Collapse
|
6
|
Jenson LJ, Bloomquist JR. ROLE OF SERUM AND ION CHANNEL BLOCK ON GROWTH AND HORMONALLY-INDUCED DIFFERENTIATION OF Spodoptera frugiperda (Sf21) INSECT CELLS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:131-139. [PMID: 26183110 DOI: 10.1002/arch.21249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A neuronal morphological phenotype can be induced in cultured Spodoptera frugiperda insect cells (Sf21) by supplementing serum-containing media with 20-hydroxyecdysone (20-HE) and/or insulin. In this study, the primary objectives were to determine any role of ion channels in mediating the morphological change in cells treated with 20-HE and insulin, and whether serum was required to observe this effect. Results showed serum-free media also induced growth of processes in Sf21 cells, but at a lower percentage than that found previously in cells bathed in serum-containing media. Veratridine, a sodium channel activator, increased cell survival when applied in combination with 20-HE to Sf21 cells, and the effect was blocked by tetrodotoxin (1 μM) a known sodium channel blocker. Cobalt, a calcium channel blocker, showed significant inhibition of cell process growth when applied in combination with both 20-HE and 20-HE plus veratridine. Cobalt also showed significant inhibition of cell process growth when applied in combination with insulin. Thus, some type of sodium channel, as well as a mechanism for transmembrane calcium ion movement, are apparently expressed in Sf21 cells and are involved in the differentiation process. These cell lines may be used in a wide variety of endeavors, including the screening of insecticides, as well as foster basic studies of neurodevelopment and ecdysone action.
Collapse
Affiliation(s)
- Lacey J Jenson
- Neurotoxicology Laboratory, Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey R Bloomquist
- Neurotoxicology Laboratory, Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Oliver JD, Chávez ASO, Felsheim RF, Kurtti TJ, Munderloh UG. An Ixodes scapularis cell line with a predominantly neuron-like phenotype. EXPERIMENTAL & APPLIED ACAROLOGY 2015; 66:427-442. [PMID: 25894426 PMCID: PMC4449809 DOI: 10.1007/s10493-015-9908-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
The Ixodes scapularis embryo-derived cell line ISE6 is the most widely utilized tick-derived cell line due to its susceptibility to a wide variety of tick- and non-tick-vectored pathogens. Little is known about its tissue origin or biological background. Protein expression of ISE6 cells was compared with that of another I. scapularis-derived cell line, IDE12, and dissected tick synganglia. Results demonstrated the presence of a neuronal marker protein, type 3 β-tubulin, in all three samples, as well as other shared and unique neuronal and immune response-associated proteins. Of neuronal proteins shared between the two cell lines, ISE6 expressed several in significantly greater quantities than IDE12. Stimulation of ISE6 cells by in vivo exposure to the hemocoel environment in unfed larval and molting nymphal ticks, but not unfed nymphal ticks, resulted in the development of neuron-like morphologic characteristics in the implanted cells.
Collapse
Affiliation(s)
- Jonathan D Oliver
- Department of Entomology, University of Minnesota, 219 Hodson Hall, St. Paul, MN, 55108, USA,
| | | | | | | | | |
Collapse
|