The Coda of the Transient Response in a Sensitive Cochlea: A Computational Modeling Study.
PLoS Comput Biol 2016;
12:e1005015. [PMID:
27380177 PMCID:
PMC4933343 DOI:
10.1371/journal.pcbi.1005015]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/07/2016] [Indexed: 11/19/2022] Open
Abstract
In a sensitive cochlea, the basilar membrane response to transient excitation of any kind–normal acoustic or artificial intracochlear excitation–consists of not only a primary impulse but also a coda of delayed secondary responses with varying amplitudes but similar spectral content around the characteristic frequency of the measurement location. The coda, sometimes referred to as echoes or ringing, has been described as a form of local, short term memory which may influence the ability of the auditory system to detect gaps in an acoustic stimulus such as speech. Depending on the individual cochlea, the temporal gap between the primary impulse and the following coda ranges from once to thrice the group delay of the primary impulse (the group delay of the primary impulse is on the order of a few hundred microseconds). The coda is physiologically vulnerable, disappearing when the cochlea is compromised even slightly. The multicomponent sensitive response is not yet completely understood. We use a physiologically-based, mathematical model to investigate (i) the generation of the primary impulse response and the dependence of the group delay on the various stimulation methods, (ii) the effect of spatial perturbations in the properties of mechanically sensitive ion channels on the generation and separation of delayed secondary responses. The model suggests that the presence of the secondary responses depends on the wavenumber content of a perturbation and the activity level of the cochlea. In addition, the model shows that the varying temporal gaps between adjacent coda seen in experiments depend on the individual profiles of perturbations. Implications for non-invasive cochlear diagnosis are also discussed.
The fluid-structure-electrical interaction in the cochlea enable the basilar membrane, one of the most important structures in the cochlear partition, to display different dynamic patterns depending on the frequency content of the incoming sound. Interestingly, in a healthy cochlea the motion of the basilar membrane shows echoes upon an impulse acoustic stimulation delivered to the ear canal. The delay, duration, and shape of these echoes vary from one cochlea to another. A hypothesis that irregularities of the properties of the cochlear partition coherently scatter acoustic waves and generate echoes is examined. These irregularities are posited to arise, for example, the damage of the sensory cells or the natural randomness in the morphology of the cochlear partition. Here we build a physiologically-based mathematical model to understand the echoes observed in experiments by introducing irregularity to the properties of the sensory cells. We found that the patterns of the echoes depend on the individual profiles of the irregularities. Our work suggest that the ear canal recording, which is correlated to the dynamics of the basilar membrane, can be used as a non-invasive tool not only to diagnose the intracochlear damage but also to interpret these data given its idiosyncratic origin.
Collapse