1
|
Wehrman J, Sanders R, Wearden J. What came before: Assimilation effects in the categorization of time intervals. Cognition 2023; 234:105378. [PMID: 36706494 DOI: 10.1016/j.cognition.2023.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Assimilation is the process by which one judgment tends to approach some aspect of another stimulus or judgment. This effect has been known for over half a century in various domains such as the judgment of weight or sound intensity. However, the assimilation of judgments of durations have been relatively unexplored. In the current article, we present the results of five experiments in which participant s were required to judge the duration of a visual stimulus on each trial. In each experiment, we manipulated the pattern of durations they experienced in order to systematically separate the effects of the objective and subjective duration of stimuli on subsequent judgments. We found that duration judgments were primarily driven by prior judgments, with little, if any, effect of the prior objective stimulus duration. This is in contrast to the findings previously reported in regards to non-temporal judgments. We propose two mechanist explanations of this effect; a representational account in which judgments represent the speed of an underlying pacemaker, and an assimilation account in which judgment is based in prior experience. We further discuss results in terms of predictive coding, in which the previous rating is representative of a prior expectation, which is modified by current experience.
Collapse
|
2
|
Farahani ED, Wouters J, van Wieringen A. Age-related hearing loss is associated with alterations in temporal envelope processing in different neural generators along the auditory pathway. Front Neurol 2022; 13:905017. [PMID: 35989932 PMCID: PMC9389009 DOI: 10.3389/fneur.2022.905017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
People with age-related hearing loss suffer from speech understanding difficulties, even after correcting for differences in hearing audibility. These problems are not only attributed to deficits in audibility but are also associated with changes in central temporal processing. The goal of this study is to obtain an understanding of potential alterations in temporal envelope processing for middle-aged and older persons with and without hearing impairment. The time series of activity of subcortical and cortical neural generators was reconstructed using a minimum-norm imaging technique. This novel technique allows for reconstructing a wide range of neural generators with minimal prior assumptions regarding the number and location of the generators. The results indicated that the response strength and phase coherence of middle-aged participants with hearing impairment (HI) were larger than for normal-hearing (NH) ones. In contrast, for the older participants, a significantly smaller response strength and phase coherence were observed in the participants with HI than the NH ones for most modulation frequencies. Hemispheric asymmetry in the response strength was also altered in middle-aged and older participants with hearing impairment and showed asymmetry toward the right hemisphere. Our brain source analyses show that age-related hearing loss is accompanied by changes in the temporal envelope processing, although the nature of these changes varies with age.
Collapse
|
3
|
Goossens T, Vercammen C, Wouters J, van Wieringen A. The association between hearing impairment and neural envelope encoding at different ages. Neurobiol Aging 2019; 74:202-212. [DOI: 10.1016/j.neurobiolaging.2018.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
4
|
Ferger R, Pawlowsky K, Singheiser M, Wagner H. Response adaptation in the barn owl's auditory space map. J Neurophysiol 2017; 119:1235-1247. [PMID: 29357460 DOI: 10.1152/jn.00769.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Response adaptation is the change of the firing rate of neurons induced by a preceding stimulus. It can be found in many sensory systems and throughout the auditory pathway. We investigated response adaptation in the external nucleus of the inferior colliculus (ICX) of barn owls ( Tyto furcata), a nocturnal bird of prey and specialist in sound localization. Individual neurons in the ICX represent locations in auditory space by maximally responding to combinations of interaural time and level differences (ITD and ILD). Neuronal responses were recorded extracellularly under ketamine-diazepam anesthesia. Response adaptation was observed in three double stimulation paradigms. In two paradigms, the same binaural parameters for both stimuli were chosen. A variation of the level of the second stimulus yielded a level increase sufficient to compensate for adaptation around 5 dB. Introducing a silent interstimulus interval (ISI) resulted in recovery from adaptation. The time course of recovery was followed by varying the ISI, and full recovery was found after an ISI of 50 ms. In a third paradigm, the ITD of the second stimulus was varied to investigate the representation of ITD under adaptive conditions. We found that adaptation led to an increased precision and improved selectivity while the best ITD was stable. These changes of representation remained for longer ISIs than were needed to recover from response adaptation at the best ITD. Stimuli with non-best ITDs could also induce similar adaptive effects if the neurons responded to these ITDs. NEW & NOTEWORTHY We demonstrate and characterize response adaptation in neurons of the auditory space map in the barn owl's midbrain with acoustic double-stimulation paradigms. An increase of the second level by 5 dB compensated for the observed adaptive effect. Recovery from adaptation was faster than in upstream nuclei of the auditory pathway. Our results also show that response adaptation might improve precision and selectivity in the representation of interaural time difference.
Collapse
Affiliation(s)
- Roland Ferger
- Institute of Biology II, RWTH Aachen University , Aachen , Germany
| | | | | | - Hermann Wagner
- Institute of Biology II, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
5
|
Mogdans J, Müller C, Frings M, Raap F. Adaptive responses of peripheral lateral line nerve fibres to sinusoidal wave stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:329-342. [PMID: 28405761 DOI: 10.1007/s00359-017-1172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Sensory adaptation is characterized by a reduction in the firing frequency of neurons to prolonged stimulation, also called spike frequency adaptation. This has been documented for sensory neurons of the visual, olfactory, electrosensory, and auditory system both in response to constant-amplitude and to sinusoidal stimuli, but has thus far not been described systematically for the lateral line system. We recorded neuronal activity from primary afferent nerve fibres in the lateral line in goldfish in response to sinusoidal wave stimuli. Depending on stimulus characteristics, afferent fibre responses exhibited a distinct onset followed by a decline in firing rate to an apparent steady-state level, i.e., they exhibited adaptation. The degree of adaptation, measured as the percent decrease in firing rate between onset and steady-state, increased with stimulus amplitude and frequency and with increasing steepness of the rising flank of the stimulus. This may in part be due to the velocity and/or acceleration sensitivity of the lateral line receptors. The time course of the response decline, i.e., the time course of adaptation was best-fit by a power function. This is consistent with the previous studies on spike frequency adaptation in sensory afferents of weakly electric fish.
Collapse
Affiliation(s)
- Joachim Mogdans
- Institut für Zoologie, Universität Bonn, Poppelsdorfer Schloß, 53115, Bonn, Germany.
| | - Christina Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (BMZ1), Sigmund-Freud Str. 25, 53127, Bonn, Germany
| | - Maren Frings
- Institut für Zoologie, Universität Bonn, Poppelsdorfer Schloß, 53115, Bonn, Germany
| | - Ferdinand Raap
- Institut für Zoologie, Universität Bonn, Poppelsdorfer Schloß, 53115, Bonn, Germany
| |
Collapse
|
6
|
Gockel HE, Krugliak A, Plack CJ, Carlyon RP. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation. J Assoc Res Otolaryngol 2015; 16:747-62. [PMID: 26162415 PMCID: PMC4636589 DOI: 10.1007/s10162-015-0533-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/17/2015] [Indexed: 11/24/2022] Open
Abstract
The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.
Collapse
Affiliation(s)
- Hedwig E Gockel
- MRC-Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Alexandra Krugliak
- MRC-Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Christopher J Plack
- School of Psychological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.
| | - Robert P Carlyon
- MRC-Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| |
Collapse
|
7
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
8
|
Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas. Hear Res 2011; 280:236-44. [PMID: 21699970 DOI: 10.1016/j.heares.2011.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/22/2022]
Abstract
Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity.
Collapse
|
9
|
Jennings SG, Heinz MG, Strickland EA. Evaluating adaptation and olivocochlear efferent feedback as potential explanations of psychophysical overshoot. J Assoc Res Otolaryngol 2011; 12:345-60. [PMID: 21267622 DOI: 10.1007/s10162-011-0256-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/10/2011] [Indexed: 11/24/2022] Open
Abstract
Masked detection threshold for a short tone in noise improves as the tone's onset is delayed from the masker's onset. This improvement, known as "overshoot," is maximal at mid-masker levels and is reduced by temporary and permanent cochlear hearing loss. Computational modeling was used in the present study to evaluate proposed physiological mechanisms of overshoot, including classic firing rate adaptation and medial olivocochlear (MOC) feedback, for both normal hearing and cochlear hearing loss conditions. These theories were tested using an established model of the auditory periphery and signal detection theory techniques. The influence of several analysis variables on predicted tone-pip detection in broadband noise was evaluated, including: auditory nerve fiber spontaneous-rate (SR) pooling, range of characteristic frequencies, number of synapses per characteristic frequency, analysis window duration, and detection rule. The results revealed that overshoot similar to perceptual data in terms of both magnitude and level dependence could be predicted when the effects of MOC efferent feedback were included in the auditory nerve model. Conversely, simulations without MOC feedback effects never produced overshoot despite the model's ability to account for classic firing rate adaptation and dynamic range adaptation in auditory nerve responses. Cochlear hearing loss was predicted to reduce the size of overshoot only for model versions that included the effects of MOC efferent feedback. These findings suggest that overshoot in normal and hearing-impaired listeners is mediated by some form of dynamic range adaptation other than what is observed in the auditory nerve of anesthetized animals. Mechanisms for this adaptation may occur at several levels along the auditory pathway. Among these mechanisms, the MOC reflex may play a leading role.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Speech, Language, and Hearing Sciences, Purdue University, 500 Oval Drive, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
10
|
Scheidt RE, Kale S, Heinz MG. Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses. Hear Res 2010; 269:23-33. [PMID: 20696230 DOI: 10.1016/j.heares.2010.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/23/2010] [Accepted: 07/31/2010] [Indexed: 11/28/2022]
Abstract
Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus-time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids.
Collapse
Affiliation(s)
- Ryan E Scheidt
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
11
|
Karnes HE, Kaiser CL, Durham D. Deafferentation-induced caspase-3 activation and DNA fragmentation in chick cochlear nucleus neurons. Neuroscience 2008; 159:804-18. [PMID: 19166907 DOI: 10.1016/j.neuroscience.2008.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 01/09/2023]
Abstract
Cochlea removal severs peripheral processes of cochlear ganglion cells and permanently abolishes afferent input to nucleus magnocellularis (NM) neurons. Deafferented chick NM neurons undergo a series of morphologic and metabolic changes, which ultimately trigger the death of 20%-40% of neurons. Previous studies suggested that this cell specific death involves activation of the intrinsic apoptotic pathway, including increased presence of cytochrome c and active caspase-9 in the cytoplasm of deafferented NM neurons. Interestingly, however, both markers were detected pan-neuronally, in both degenerating and surviving NM neurons [Wilkinson BL, Elam JS, Fadool DA, Hyson RL (2003) Afferent regulation of cytochrome-c and active caspase-9 in the avian cochlear nucleus. Neuroscience 120:1071-1079]. Here, we provide evidence for the increased appearance of late apoptotic indicators and describe novel characteristics of cell death in deafferented auditory neurons. Young broiler chickens were subjected to unilateral cochlea removal, and brainstem sections through NM were reacted for active caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Caspase-3 activation is observed in the cytoplasm of both dying and surviving deafferented NM neurons 24 h to 7 days following cochlea removal, suggesting that caspase-3, usually considered an "executioner" of apoptotic death, may also function as a "modulator" of death. In addition, we find that TUNEL labeling of degraded DNA is observed in deafferented NM. In contrast to upstream apoptotic markers, however, TUNEL labeling is restricted to a subpopulation of deafferented neurons. Twelve hours following cochlea removal, TUNEL labeling is observed as punctate accumulations within nuclei. Twenty-four hours following cochlea removal, TUNEL accumulates diffusely throughout neuronal cytoplasm in those neurons likely to die. This cytoplasmic TUNEL labeling may implicate mitochondrial nucleic acid degradation in the selective death of some deafferented NM neurons. Our study examines the subcellular distributions of two prominent apoptotic mediators, active caspase-3 and TUNEL, relative to known histochemical markers, in deafferented NM; provides new insight into the apoptotic mechanism of cell death; and proposes a role for mitochondrial DNA in deafferentation-induced cell death.
Collapse
Affiliation(s)
- H E Karnes
- Auditory and Vestibular Neuroscience Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Mail Stop 3051, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
12
|
Abstract
Auditory neurons must represent accurately a wide range of sound levels using firing rates that vary over a far narrower range of levels. Recently, we demonstrated that this "dynamic range problem" is lessened by neural adaptation, whereby neurons adjust their input-output functions for sound level according to the prevailing distribution of levels. These adjustments in input-output functions increase the accuracy with which levels around those occurring most commonly are coded by the neural population. Here, we examine how quickly this adaptation occurs. We recorded from single neurons in the auditory midbrain during a stimulus that switched repeatedly between two distributions of sound levels differing in mean level. The high-resolution analysis afforded by this stimulus showed that a prominent component of the adaptation occurs rapidly, with an average time constant across neurons of 160 ms after an increase in mean level, much faster than our previous experiments were able to assess. This time course appears to be independent of both the timescale over which sound levels varied and that over which sound level distributions varied, but is related to neural characteristic frequency. We find that adaptation to an increase in mean level occurs more rapidly than to a decrease. Finally, we observe an additional, slow adaptation in some neurons, which occurs over a timescale of tens of seconds. Our findings provide constraints in the search for mechanisms underlying adaptation to sound level. They also have functional implications for the role of adaptation in the representation of natural sounds.
Collapse
|
13
|
Lee S, Briklin O, Hiel H, Fuchs P. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken. J Physiol 2007; 583:909-22. [PMID: 17656437 PMCID: PMC2277178 DOI: 10.1113/jphysiol.2007.135582] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and antibodies to CaBP4 label hair cells, but not supporting cells, equivalent to the pattern seen in mammalian cochlea. Thus, molecular mechanisms that underlie CDI appeared to be conserved across vertebrate species, may provide a means to adjust calcium channel open probability, and could serve to maintain the set-point for spontaneous release from the ribbon synapse.
Collapse
Affiliation(s)
- Seunghwan Lee
- Department of Otolaryngology - Head & Neck Surgery, Hanyang University, Seoul, Korea
| | | | | | | |
Collapse
|
14
|
Avissar M, Furman AC, Saunders JC, Parsons TD. Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses. J Neurosci 2007; 27:6461-72. [PMID: 17567807 PMCID: PMC6672437 DOI: 10.1523/jneurosci.5239-06.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory systems use adaptive coding mechanisms to filter redundant information from the environment to efficiently represent the external world. One such mechanism found in most sensory neurons is rate adaptation, defined as a reduction in firing rate in response to a constant stimulus. In auditory nerve, this form of adaptation is likely mediated by exhaustion of release-ready synaptic vesicles in the cochlear hair cell. To better understand how specific synaptic mechanisms limit neural coding strategies, we examined the trial-to-trial variability of auditory nerve responses during short-term rate-adaptation by measuring spike-timing precision and spike-count reliability. After adaptation, precision remained unchanged, whereas for all but the lowest-frequency fibers, reliability decreased. Modeling statistical properties of the hair cell-afferent fiber synapse suggested that the ability of one or a few vesicles to elicit an action potential reduces the inherent response variability expected from quantal neurotransmitter release, and thereby confers the observed count reliability at sound onset. However, with adaptation, depletion of the readily releasable pool of vesicles diminishes quantal content and antagonizes the postsynaptic enhancement of reliability. These findings imply that during the course of short-term adaptation, coding strategies that employ a rate code are constrained by increased neural noise because of vesicle depletion, whereas those that employ a temporal code are not.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, and
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Adam C. Furman
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James C. Saunders
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Thomas D. Parsons
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, and
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|