1
|
Quan YZ, Wei W, Ergin V, Rameshbabu A, Huang M, Tian C, Saladi S, Indzhykulian A, Chen ZY. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc Natl Acad Sci U S A 2023; 120:e2215253120. [PMID: 37068229 PMCID: PMC10151514 DOI: 10.1073/pnas.2215253120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Strategies to overcome irreversible cochlear hair cell (HC) damage and loss in mammals are of vital importance to hearing recovery in patients with permanent hearing loss. In mature mammalian cochlea, co-activation of Myc and Notch1 reprograms supporting cells (SC) and promotes HC regeneration. Understanding of the underlying mechanisms may aid the development of a clinically relevant approach to achieve HC regeneration in the nontransgenic mature cochlea. By single-cell RNAseq, we show that MYC/NICD "rejuvenates" the adult mouse cochlea by activating multiple pathways including Wnt and cyclase activator of cyclic AMP (cAMP), whose blockade suppresses HC-like cell regeneration despite Myc/Notch activation. We screened and identified a combination (the cocktail) of drug-like molecules composing of small molecules and small interfering RNAs to activate the pathways of Myc, Notch1, Wnt and cAMP. We show that the cocktail effectively replaces Myc and Notch1 transgenes and reprograms fully mature wild-type (WT) SCs for HC-like cells regeneration in vitro. Finally, we demonstrate the cocktail is capable of reprogramming adult cochlea for HC-like cells regeneration in WT mice with HC loss in vivo. Our study identifies a strategy by a clinically relevant approach to reprogram mature inner ear for HC-like cells regeneration, laying the foundation for hearing restoration by HC regeneration.
Collapse
Affiliation(s)
- Yi-Zhou Quan
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
- Department of Otolaryngology-Head and Necks, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Volkan Ergin
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Chunjie Tian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Srinivas Vinod Saladi
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA02114
| | - Artur A. Indzhykulian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| |
Collapse
|
2
|
Kim YJ, Lee JS, Kim H, Jang JH, Choung YH. Gap Junction-Mediated Intercellular Communication of cAMP Prevents CDDP-Induced Ototoxicity via cAMP/PKA/CREB Pathway. Int J Mol Sci 2021; 22:6327. [PMID: 34199197 PMCID: PMC8231879 DOI: 10.3390/ijms22126327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
In the cochlea, non-sensory supporting cells are directly connected to adjacent supporting cells via gap junctions that allow the exchange of small molecules. We have previously shown that the pharmacological regulation of gap junctions alleviates cisplatin (CDDP)-induced ototoxicity in animal models. In this study, we aimed to identify specific small molecules that pass through gap junctions in the process of CDDP-induced auditory cell death and suggest new mechanisms to prevent hearing loss. We found that the cyclic adenosine monophosphate (cAMP) inducer forskolin (FSK) significantly attenuated CDDP-induced auditory cell death in vitro and ex vivo. The activation of cAMP/PKA/CREB signaling was observed in organ of Corti primary cells treated with FSK, especially in supporting cells. Co-treatment with gap junction enhancers such as all-trans retinoic acid (ATRA) and quinoline showed potentiating effects with FSK on cell survival via activation of cAMP/PKA/CREB. In vivo, the combination of FSK and ATRA was more effective for preventing ototoxicity compared to either single treatment. Our study provides the new insight that gap junction-mediated intercellular communication of cAMP may prevent CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.J.K.); (H.K.); (J.H.J.)
| | - Jin-Sol Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea;
| | - Hantai Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.J.K.); (H.K.); (J.H.J.)
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.J.K.); (H.K.); (J.H.J.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.J.K.); (H.K.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea;
| |
Collapse
|
3
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
4
|
Wang H, Zhao H, Sun K, Huang X, Jin L, Feng J. Evolutionary Basis of High-Frequency Hearing in the Cochleae of Echolocators Revealed by Comparative Genomics. Genome Biol Evol 2020; 12:3740-3753. [PMID: 31730196 PMCID: PMC7145703 DOI: 10.1093/gbe/evz250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
High-frequency hearing is important for the survival of both echolocating bats and whales, but our understanding of its genetic basis is scattered and segmented. In this study, we combined RNA-Seq and comparative genomic analyses to obtain insights into the comprehensive gene expression profile of the cochlea and the adaptive evolution of hearing-related genes. A total of 144 genes were found to have been under positive selection in various species of echolocating bats and toothed whales, 34 of which were identified to be related to hearing behavior or auditory processes. Subsequently, multiple physiological processes associated with those genes were found to have adaptively evolved in echolocating bats and toothed whales, including cochlear bony development, antioxidant activity, ion balance, and homeostatic processes, along with signal transduction. In addition, abundant convergent/parallel genes and sites were detected between different pairs of echolocator species; however, no specific hearing-related physiological pathways were enriched by them and almost all of the convergent/parallel signals were selectively neutral, as previously reported. Notably, two adaptive parallel evolved sites in TECPR2 were shown to have been under positive selection, indicating their functional importance for the evolution of echolocation and high-frequency hearing in laryngeal echolocating bats. This study deepens our understanding of the genetic bases underlying high-frequency hearing in the cochlea of echolocating bats and toothed whales.
Collapse
Affiliation(s)
- Hui Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaobin Huang
- Vector Laboratory for Zoonosis Control and Prevention, Dali University, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
6
|
Nair PS, Kuusi T, Ahvenainen M, Philips AK, Järvelä I. Music-performance regulates microRNAs in professional musicians. PeerJ 2019; 7:e6660. [PMID: 30956902 PMCID: PMC6442922 DOI: 10.7717/peerj.6660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Musical training and performance require precise integration of multisensory and motor centres of the human brain and can be regarded as an epigenetic modifier of brain functions. Numerous studies have identified structural and functional differences between the brains of musicians and non-musicians and superior cognitive functions in musicians. Recently, music-listening and performance has also been shown to affect the regulation of several genes, many of which were identified in songbird singing. MicroRNAs affect gene regulation and studying their expression may give new insights into the epigenetic effect of music. Here, we studied the effect of 2 hours of classical music-performance on the peripheral blood microRNA expressions in professional musicians with respect to a control activity without music for the same duration. As detecting transcriptomic changes in the functional human brain remains a challenge for geneticists, we used peripheral blood to study music-performance induced microRNA changes and interpreted the results in terms of potential effects on brain function, based on the current knowledge about the microRNA function in blood and brain. We identified significant (FDR <0.05) up-regulation of five microRNAs; hsa-miR-3909, hsa-miR-30d-5p, hsa-miR-92a-3p, hsa-miR-222-3p and hsa-miR-30a-5p; and down-regulation of two microRNAs; hsa-miR-6803-3p and hsa-miR-1249-3p. hsa-miR-222-3p and hsa-miR-92a-3p putatively target FOXP2, which was found down-regulated by microRNA regulation in songbird singing. miR-30d and miR-222 corroborate microRNA response observed in zebra finch song-listening/learning. miR-222 is induced by ERK cascade, which is important for memory formation, motor neuron functions and neuronal plasticity. miR-222 is also activated by FOSL1, an immediate early gene from the FOS family of transcriptional regulators which are activated by auditory-motor stimuli. miR-222 and miR-92 promote neurite outgrowth by negatively regulating the neuronal growth inhibitor, PTEN, and by activating CREB expression and phosphorylation. The up-regulation of microRNAs previously found to be regulators of auditory and nervous system functions (miR-30d, miR-92a and miR-222) is indicative of the sensory perception processes associated with music-performance. Akt signalling pathway which has roles in cell survival, cell differentiation, activation of CREB signalling and dopamine transmission was one of the functions regulated by the up-regulated microRNAs; in accordance with functions identified from songbird learning. The up-regulated microRNAs were also found to be regulators of apoptosis, suggesting repression of apoptotic mechanisms in connection with music-performance. Furthermore, comparative analyses of the target genes of differentially expressed microRNAs with that of the song-responsive microRNAs in songbirds suggest convergent regulatory mechanisms underlying auditory perception.
Collapse
Affiliation(s)
| | - Tuire Kuusi
- DocMus Doctoral School, Sibelius Academy, University of the Arts, Helsinki, Finland
| | - Minna Ahvenainen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Anju K Philips
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Xu R, Qin N, Xu X, Sun X, Chen X, Zhao J. Inhibitory effect of SLIT2 on granulosa cell proliferation mediated by the CDC42-PAKs-ERK1/2 MAPK pathway in the prehierarchical follicles of the chicken ovary. Sci Rep 2018; 8:9168. [PMID: 29907785 PMCID: PMC6003946 DOI: 10.1038/s41598-018-27601-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023] Open
Abstract
The SLIT2 ligand and ROBO receptors of the SLIT/ROBO pathway are expressed in hen ovarian follicles and have been shown to play critical roles in ovary development, cell proliferation and apoptosis in mammals. However, the exact roles of SLIT2 and the molecular mechanisms of chicken follicle development remain poorly understood. Here, we discovered that high levels of SLIT2 suppress FSHR, GDF9, STAR and CYP11A1 mRNA and protein expression in granulosa cells (GCs) and cell proliferation (p < 0.01). However, these inhibitory effects can be abolished by the siRNA-mediated knockdown of the ROBO1 and ROBO2 receptors. Furthermore, the activity of CDC42, which is a key Rho GTPase in the SLIT/ROBO pathway, is regulated by the ligand SLIT2 because the intrinsic GTPase activation activity of CDC42 is activated or repressed by regulating SRGAP1 expression (p < 0.01). The effects of the SLIT2 overexpression on GC proliferation and phosphorylation of the B-RAF, RAF1 and ERK1/2 kinases were completely abrogated by knocking down endogenous PAK1 and partially abrogated by the knockdown of PAK2 and PAK3 in the GCs. Collectively, our findings indicate that SLIT2 suppresses GC proliferation, differentiation and follicle selection mainly by a mechanism involving ROBO1 and ROBO2 and that this suppression is mediated by the CDC42-PAKs-ERK1/2 MAPK signaling cascade in the prehierarchical follicles of the chicken ovary.
Collapse
Affiliation(s)
- Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Changchun, 130118, People's Republic of China.
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Changchun, 130118, People's Republic of China
| | - Xiaoxing Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| |
Collapse
|
8
|
Jiang B, Zhang Y, She C, Zhao J, Zhou K, Zuo Z, Zhou X, Wang P, Dong Q. X-ray irradiation has positive effects for the recovery of peripheral nerve injury maybe through the vascular smooth muscle contraction signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:177-183. [PMID: 28755625 DOI: 10.1016/j.etap.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION It is well known that moderate to high doses of ionizing radiation have a toxic effect on the organism. However, there are few experimental studies on the mechanisms of LDR ionizing radiation on nerve regeneration after peripheral nerve injury. METHODS We established the rats' peripheral nerve injury model via repaired Peripheral nerve injury nerve, vascular endothelial growth factor a and Growth associated protein-43 were detected from different treatment groups. We performed transcriptome sequencing focusing on investigating the differentially expressed genes and gene functions between the control group and 1Gy group. Sequencing was done by using high-throughput RNA-sequencing (RNA-seq) technologies. RESULTS The results showed the 1Gy group to be the most effective promoting repair. RNA-sequencing identified 619 differently expressed genes between control and treated groups. A Gene Ontology analysis of the differentially expressed genes revealed enrichment in the functional pathways. Among them, candidate genes associated with nerve repair were identified. DISCUSSION Pathways involved in cell-substrate adhesion, vascular smooth muscle contraction and cell adhesion molecule signaling may be involved in recovery from peripheral nerve injury.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Yong Zhang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Chang She
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China; Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China.
| | - Jiaju Zhao
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Kailong Zhou
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Zhicheng Zuo
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Xiaozhong Zhou
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China; Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China.
| | - Peiji Wang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
9
|
Ren X, Liu G, Wang Y, Zhang W, Xue F, Li R, Yu W. Influence of Dipeptidyl Peptidase-IV Inhibitor Sitagliptin on Extracellular Signal-Regulated Kinases 1/2 Signaling in Rats with Diabetic Nephropathy. Pharmacology 2017; 100:1-13. [PMID: 28329747 DOI: 10.1159/000455874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
The protective effects of sitagliptin on the kidneys of rats with diabetic nephropathy (DN) and its influence on extracellular signal-regulated kinases 1/2 (ERK1/2) signaling were investigated. Male Wistar rats (n = 40) were randomly assigned to normal control, DN, low-dose sitagliptin intervention (ST1), or high-dose sitagliptin intervention (ST2) groups. Animals were euthanized after a 16-week treatment, and blood glucose (BG), glycosylated hemoglobin (HbA1c), urinary albumin excretion rate (AER), serum creatinine (Scr), creatinine clearance rate (Ccr), active glucagon-like peptide-1 (GLP-1) levels, kidney hypertrophy index, and renal pathohistology were determined. Immunohistochemical methods and real-time polymerase chain reaction (PCR) were used to detect protein and mRNA expression of podocalyxin, ERK1/2, GLP-1 receptor (GLP-1R) and transforming growth factor-β (TGF-β). After 16 weeks, BG, AER, Scr, HbA1c and the kidney hypertrophy index were all significantly decreased (p < 0.05) in ST1 and ST2 groups, while Ccr and active GLP-1 levels were increased (p < 0.05), with changes more pronounced in ST2 (p < 0.05). Glomerular pathological lesions were also improved following sitagliptin treatment, especially in ST2. Immunohistochemical and real-time PCR revealed that protein and mRNA expression levels of podocalyxin and GLP-1R were increased significantly in ST1 and ST2, while expression of ERK1/2 and TGF-β was decreased (p < 0.05). Sitagliptin therefore delayed DN progression, possibly via the inhibition of ERK1/2 signaling and promotion of the interaction between GLP-1 and the GLP-1R.
Collapse
Affiliation(s)
- Xiaojun Ren
- Department of Nephrology, Shanxi Dayi Hospital (Shanxi Academy of Medical Sciences), Taiyuan, China
| | | | | | | | | | | | | |
Collapse
|
10
|
pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 2015; 25:1144-50. [PMID: 25100553 DOI: 10.1097/wnr.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability of nonmammalian vertebrates to regenerate hair cells (HCs) after damage-induced HC loss has stimulated and inspired research in the field of HC regeneration. The protein pRb encoded by retinoblastoma gene Rb1 forces sensory progenitor cells to exit cell cycle and maintain differentiated HCs and supporting cells (SCs) in a quiescent state. pRb function is regulated by phosphorylation through the MEK/ERK or the pRb/Raf-1 signaling pathway. In our previous study, we have shown that pRb phosphorylation is crucial for progenitor cell proliferation and survival during the early embryonic stage of avian otocyst sensory epithelium development. However, in damaged avian utricle, the role of pRb in regulating the cell cycling of SCs or HCs regeneration still remains unclear. To further elucidate the function of pRb phosphorylation on SCs re-entering the cell cycle triggered by gentamycin-induced HCs damage, we isolated neonatal chicken utricles and treated them with the MEK inhibitor U0126 or the pRb/Raf-1 inhibitor RRD-251, respectively in vitro. We found that after gentamycin-induced HCs damage, pRb phosphorylation is important for the quiescent SCs re-entering the cell cycle in the neonatal chicken utricle. In addition, the proliferation of SCs decreased in a dose-dependent manner in response to both U0126 and RRD-251, which indicates that both the MEK/ERK and the pRb/Raf-1 signaling pathway play important roles in pRb phosphorylation in damaged neonatal chicken utricle. Together, these findings on the function of pRb in damaged neonatal chicken utricle improve our understanding of the regulation of the cell cycle of SCs after HCs loss and may shed light on the mammalian HC regeneration from SCs in damaged organs.
Collapse
|
11
|
Nie X, Zhang K, Wang L, Ou G, Zhu H, Gao WQ. Transcription factor STOX1 regulates proliferation of inner ear epithelial cells via the AKT pathway. Cell Prolif 2015; 48:209-20. [PMID: 25677106 DOI: 10.1111/cpr.12174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Storkhead box 1 (STOX1) belongs to the forkhead family of transcription factors, and is reported to be involved in apoptosis of Caenorhabditis elegans. However, up to now the precise role of STOX1 in mammalian epithelial development has not been established. Here, we report that it plays an important role in regulation of proliferation of inner ear epithelial cells. MATERIALS AND METHODS Immunohistochemistry and reverse transcription-PCR assays were used to determine expression pattern of STOX1 in the mouse inner ear. Furthermore, its overexpression and knockdown effects on mouse inner ear epithelial cells were studied using RT-PCR, immunofluorescence, MTT assay, BrdU labelling and western blotting. RESULTS Storkhead box 1 was selectively expressed in epithelial cells, but not in stromal cells of the inner ear. Its over-expression enhanced cell proliferation and sphere formation, however, STOX1 knockdown inhibited cell proliferation and sphere formation in purified utricular epithelial cells in culture. Consistently, several cell cycle regulatory genes such as for PCNA, cyclin A and cyclin E, were up-regulated by STOX1 over-expression. Furthermore, biochemical analyses indicated that proliferation-promoting effects induced by STOX1 were mediated via phosphorylation of AKT in these cells. CONCLUSIONS Taken together, we demonstrate that STOX1 is a novel stimulatory factor for inner ear epithelial cell proliferation and might be an important target to be considered in regeneration or repair of inner ear epithelium.
Collapse
Affiliation(s)
- Xiaowei Nie
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 210027, China
| | | | | | | | | | | |
Collapse
|
12
|
Yamamoto N, Nakagawa T, Ito J. Application of insulin-like growth factor-1 in the treatment of inner ear disorders. Front Pharmacol 2014; 5:208. [PMID: 25309440 PMCID: PMC4159992 DOI: 10.3389/fphar.2014.00208] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 01/10/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is considered an intractable disease, given that hair and supporting cells (HCs and SCs) of the postnatal mammalian cochlea are unable to regenerate. However, with progress in regenerative medicine in the 21st century, several innovative approaches for achieving regeneration of inner ear HCs and SCs have become available. These methods include stem cell transplantation, overexpression of specific genes, and treatment with growth factors. Insulin-like growth factor-1 (IGF-1) is one of the growth factors that are involved in the development of the inner ear. Treatment with IGF-1 maintains HC numbers in the postnatal mammalian cochlea after various types of HC injuries, with activation of two major pathways downstream of IGF-1 signaling. In the aminoglycoside-treated neonatal mouse cochlear explant culture, promotion of the cell-cycle in SCs as well as inhibition of HC apoptosis was observed in the IGF-1-treated group. Activation of downstream molecules was observed in SCs and, in turn, SCs contribute to the maintenance of HC numbers. Using comprehensive analysis of the gene expression, the candidate effector molecules of the IGF-1 signaling pathway in the protection of HCs were identified as Netrin1 and Gap43. Based on these studies, a clinical trial has sought to investigate the effects of IGF-1 on SNHL. Sudden SNHL (SSHL) that was refractory to systemic steroids was treated with IGF-1 in a gelatin hydrogel and the outcome was compared with a historical control of hyperbaric oxygen therapy. The proportion of patients showing hearing improvement was significantly higher in the IGF-1-treatment group at 24 weeks after treatment than in the control group. A randomized clinical trial is ongoing to compare the effect of IGF-1 treatment with that of intra-tympanic steroids for SSHL that is refractory to systemic steroids.
Collapse
Affiliation(s)
- Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto Japan
| |
Collapse
|
13
|
Hayashi Y, Yamamoto N, Nakagawa T, Ito J. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci 2013; 56:29-38. [DOI: 10.1016/j.mcn.2013.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022] Open
|