1
|
Gafoor SA, Uppunda AK. Speech Perception in Noise and Medial Olivocochlear Reflex: Effects of Age, Speech Stimulus, and Response-Related Variables. J Assoc Res Otolaryngol 2023; 24:619-631. [PMID: 38079021 PMCID: PMC10752852 DOI: 10.1007/s10162-023-00919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
PURPOSE The role of the medial olivocochlear system in speech perception in noise has been debated over the years, with studies showing mixed results. One possible reason for this could be the dependence of this relationship on the parameters used in assessing the speech perception ability (age, stimulus, and response-related variables). METHODS The current study assessed the influence of the type of speech stimuli (monosyllables, words, and sentences), the signal-to-noise ratio (+5, 0, -5, and -10 dB), the metric used to quantify the speech perception ability (percent-correct, SNR-50, and slope of the psychometric function) and age (young vs old) on the relationship between medial olivocochlear reflex (quantified by contralateral inhibition of transient evoked otoacoustic emissions) and speech perception in noise. RESULTS A linear mixed-effects model revealed no significant contributions of the medial olivocochlear reflex to speech perception in noise. CONCLUSION The results suggest that there was no evidence of any modulatory influence of the indirectly measured medial olivocochlear reflex strength on speech perception in noise.
Collapse
Affiliation(s)
- Shezeen Abdul Gafoor
- Facility for Advanced Auditory Research, Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Ajith Kumar Uppunda
- Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysuru, India, 570006.
| |
Collapse
|
2
|
Salloom WB, Strickland EA. The effect of broadband elicitor laterality on psychoacoustic gain reduction across signal frequency. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2817. [PMID: 34717476 PMCID: PMC8520488 DOI: 10.1121/10.0006662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 05/19/2023]
Abstract
There are psychoacoustic methods thought to measure gain reduction, which may be from the medial olivocochlear reflex (MOCR), a bilateral feedback loop that adjusts cochlear gain. Although studies have used ipsilateral and contralateral elicitors and have examined strength at different signal frequencies, these factors have not been examined within a single study. Therefore, basic questions about gain reduction, such as the relative strength of ipsilateral vs contralateral elicitation and the relative strength across signal frequency, are not known. In the current study, gain reduction from ipsilateral, contralateral, and bilateral elicitors was measured at 1-, 2-, and 4-kHz signal frequencies using forward masking paradigms at a range of elicitor levels in a repeated measures design. Ipsilateral and bilateral strengths were similar and significantly larger than contralateral strength across signal frequencies. Growth of gain reduction with precursor level tended to differ with signal frequency, although not significantly. Data from previous studies are considered in light of the results of this study. Behavioral results are also considered relative to anatomical and physiological data on the MOCR. These results indicate that, in humans, cochlear gain reduction is broad across frequencies and is robust for ipsilateral and bilateral elicitation but small for contralateral elicitation.
Collapse
Affiliation(s)
- William B Salloom
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
3
|
Hernández-Pérez H, Mikiel-Hunter J, McAlpine D, Dhar S, Boothalingam S, Monaghan JJM, McMahon CM. Understanding degraded speech leads to perceptual gating of a brainstem reflex in human listeners. PLoS Biol 2021; 19:e3001439. [PMID: 34669696 PMCID: PMC8559948 DOI: 10.1371/journal.pbio.3001439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/01/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to navigate "cocktail party" situations by focusing on sounds of interest over irrelevant, background sounds is often considered in terms of cortical mechanisms. However, subcortical circuits such as the pathway underlying the medial olivocochlear (MOC) reflex modulate the activity of the inner ear itself, supporting the extraction of salient features from auditory scene prior to any cortical processing. To understand the contribution of auditory subcortical nuclei and the cochlea in complex listening tasks, we made physiological recordings along the auditory pathway while listeners engaged in detecting non(sense) words in lists of words. Both naturally spoken and intrinsically noisy, vocoded speech-filtering that mimics processing by a cochlear implant (CI)-significantly activated the MOC reflex, but this was not the case for speech in background noise, which more engaged midbrain and cortical resources. A model of the initial stages of auditory processing reproduced specific effects of each form of speech degradation, providing a rationale for goal-directed gating of the MOC reflex based on enhancing the representation of the energy envelope of the acoustic waveform. Our data reveal the coexistence of 2 strategies in the auditory system that may facilitate speech understanding in situations where the signal is either intrinsically degraded or masked by extrinsic acoustic energy. Whereas intrinsically degraded streams recruit the MOC reflex to improve representation of speech cues peripherally, extrinsically masked streams rely more on higher auditory centres to denoise signals.
Collapse
Affiliation(s)
- Heivet Hernández-Pérez
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Jason Mikiel-Hunter
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - David McAlpine
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Sumitrajit Dhar
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Sriram Boothalingam
- University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica J. M. Monaghan
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
- National Acoustic Laboratories, Sydney, Australia
| | - Catherine M. McMahon
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Jennings SG. The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review. J Neurophysiol 2021; 125:2279-2308. [PMID: 33909513 PMCID: PMC8285664 DOI: 10.1152/jn.00672.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/01/2023] Open
Abstract
This review addresses the putative role of the medial olivocochlear (MOC) reflex in psychophysical masking and intensity resolution in humans. A framework for interpreting psychophysical results in terms of the expected influence of the MOC reflex is introduced. This framework is used to review the effects of a precursor or contralateral acoustic stimulation on 1) simultaneous masking of brief tones, 2) behavioral estimates of cochlear gain and frequency resolution in forward masking, 3) the buildup and decay of forward masking, and 4) measures of intensity resolution. Support, or lack thereof, for a role of the MOC reflex in psychophysical perception is discussed in terms of studies on estimates of MOC strength from otoacoustic emissions and the effects of resection of the olivocochlear bundle in patients with vestibular neurectomy. Novel, innovative approaches are needed to resolve the dissatisfying conclusion that current results are unable to definitively confirm or refute the role of the MOC reflex in masking and intensity resolution.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
DeRoy Milvae K, Alexander JM, Strickland EA. The relationship between ipsilateral cochlear gain reduction and speech-in-noise recognition at positive and negative signal-to-noise ratios. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:3449. [PMID: 34241110 PMCID: PMC8411890 DOI: 10.1121/10.0003964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
Active mechanisms that regulate cochlear gain are hypothesized to influence speech-in-noise perception. However, evidence of a relationship between the amount of cochlear gain reduction and speech-in-noise recognition is mixed. Findings may conflict across studies because different signal-to-noise ratios (SNRs) were used to evaluate speech-in-noise recognition. Also, there is evidence that ipsilateral elicitation of cochlear gain reduction may be stronger than contralateral elicitation, yet, most studies have investigated the contralateral descending pathway. The hypothesis that the relationship between ipsilateral cochlear gain reduction and speech-in-noise recognition depends on the SNR was tested. A forward masking technique was used to quantify the ipsilateral cochlear gain reduction in 24 young adult listeners with normal hearing. Speech-in-noise recognition was measured with the PRESTO-R sentence test using speech-shaped noise presented at -3, 0, and +3 dB SNR. Interestingly, greater cochlear gain reduction was associated with lower speech-in-noise recognition, and the strength of this correlation increased as the SNR became more adverse. These findings support the hypothesis that the SNR influences the relationship between ipsilateral cochlear gain reduction and speech-in-noise recognition. Future studies investigating the relationship between cochlear gain reduction and speech-in-noise recognition should consider the SNR and both descending pathways.
Collapse
Affiliation(s)
- Kristina DeRoy Milvae
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Joshua M Alexander
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
6
|
Abstract
OBJECTIVE The medial olivocochlear (MOC) reflex provides efferent feedback from the brainstem to cochlear outer hair cells. Physiologic studies have demonstrated that the MOC reflex is involved in "unmasking" of signals-in-noise at the level of the auditory nerve; however, its functional importance in human hearing remains unclear. DESIGN This study examined relationships between pre-neural measurements of MOC reflex strength (click-evoked otoacoustic emission inhibition; CEOAE) and neural measurements of speech-in-noise encoding (speech frequency following response; sFFR) in four conditions (Quiet, Contralateral Noise, Ipsilateral Noise, and Ipsilateral + Contralateral Noise). Three measures of CEOAE inhibition (amplitude reduction, effective attenuation, and input-output slope inhibition) were used to quantify pre-neural MOC reflex strength. Correlations between pre-neural MOC reflex strength and sFFR "unmasking" (i.e. response recovery from masking effects with activation of the MOC reflex in time and frequency domains) were assessed. STUDY SAMPLE 18 young adults with normal hearing. RESULTS sFFR unmasking effects were insignificant, and there were no correlations between pre-neural MOC reflex strength and sFFR unmasking in the time or frequency domain. CONCLUSION Our results do not support the hypothesis that the MOC reflex is involved in speech-in-noise neural encoding, at least for features that are represented in the sFFR at the SNR tested.
Collapse
Affiliation(s)
- S B Smith
- Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, TX, USA
| | - B Cone
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Haro S, Smalt CJ, Ciccarelli GA, Quatieri TF. Deep Neural Network Model of Hearing-Impaired Speech-in-Noise Perception. Front Neurosci 2020; 14:588448. [PMID: 33384579 PMCID: PMC7770113 DOI: 10.3389/fnins.2020.588448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/10/2020] [Indexed: 01/15/2023] Open
Abstract
Many individuals struggle to understand speech in listening scenarios that include reverberation and background noise. An individual's ability to understand speech arises from a combination of peripheral auditory function, central auditory function, and general cognitive abilities. The interaction of these factors complicates the prescription of treatment or therapy to improve hearing function. Damage to the auditory periphery can be studied in animals; however, this method alone is not enough to understand the impact of hearing loss on speech perception. Computational auditory models bridge the gap between animal studies and human speech perception. Perturbations to the modeled auditory systems can permit mechanism-based investigations into observed human behavior. In this study, we propose a computational model that accounts for the complex interactions between different hearing damage mechanisms and simulates human speech-in-noise perception. The model performs a digit classification task as a human would, with only acoustic sound pressure as input. Thus, we can use the model's performance as a proxy for human performance. This two-stage model consists of a biophysical cochlear-nerve spike generator followed by a deep neural network (DNN) classifier. We hypothesize that sudden damage to the periphery affects speech perception and that central nervous system adaptation over time may compensate for peripheral hearing damage. Our model achieved human-like performance across signal-to-noise ratios (SNRs) under normal-hearing (NH) cochlear settings, achieving 50% digit recognition accuracy at -20.7 dB SNR. Results were comparable to eight NH participants on the same task who achieved 50% behavioral performance at -22 dB SNR. We also simulated medial olivocochlear reflex (MOCR) and auditory nerve fiber (ANF) loss, which worsened digit-recognition accuracy at lower SNRs compared to higher SNRs. Our simulated performance following ANF loss is consistent with the hypothesis that cochlear synaptopathy impacts communication in background noise more so than in quiet. Following the insult of various cochlear degradations, we implemented extreme and conservative adaptation through the DNN. At the lowest SNRs (<0 dB), both adapted models were unable to fully recover NH performance, even with hundreds of thousands of training samples. This implies a limit on performance recovery following peripheral damage in our human-inspired DNN architecture.
Collapse
Affiliation(s)
- Stephanie Haro
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
- Speech and Hearing Biosciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Christopher J. Smalt
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Gregory A. Ciccarelli
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Thomas F. Quatieri
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
- Speech and Hearing Biosciences and Technology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Modeling the effects of medial olivocochlear efferent stimulation at the level of the inferior colliculus. Exp Brain Res 2019; 237:1479-1491. [PMID: 30903206 DOI: 10.1007/s00221-019-05511-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
Various studies on medial olivocochlear (MOC) efferents have implicated it in multiple roles in the auditory system (e.g., dynamic range adaptation, masking reduction, and selective attention). This study presents a systematic simulation of inferior colliculus (IC) responses with and without electrical stimulation of the MOC. Phenomenological models of the responses of auditory nerve (AN) fibers and IC neurons were used to this end. The simulated responses were highly consistent with physiological data (replicated 3 of the 4 known rate-level responses all MOC effects-shifts, high stimulus level reduction and enhancement). Complex MOC efferent effects which were previously thought to require integration from different characteristic frequency (CF) neurons were simulated using the same frequency inhibition excitation circuitry. MOC-induced enhancing effects were found only in neurons with a CF range from 750 Hz to 2 kHz. This limited effect is indicative of the role of MOC activation on the AN responses at the stimulus offset.
Collapse
|
9
|
Iliadou VV, Weihing J, Chermak GD, Bamiou DE. Otoacoustic emission suppression in children diagnosed with central auditory processing disorder and speech in noise perception deficits. Int J Pediatr Otorhinolaryngol 2018; 111:39-46. [PMID: 29958612 DOI: 10.1016/j.ijporl.2018.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The present study was designed to test the hypothesis that medial olivocochlear system functionality is associated with speech recognition in babble performance in children diagnosed with central auditory processing disorder. METHOD Children diagnosed with central auditory processing disorder who specifically demonstrated speech in noise deficits were compared to children diagnosed with central auditory processing disorder without these deficits. Suppression effects were examined across 15 time intervals to examine variability. Analysis of right and left ear suppression was performed separately to evaluate laterality. STUDY SAMPLE 52 children diagnosed with central auditory processing disorder, aged 6-14 years were divided into normal or abnormal groups based on SinB performance in each ear. Cut-off value was set at SNR = 1.33 dB. Transient otoacoustic emissions suppression was measured. RESULTS The abnormal Speech in Babble Right Ear group showed significant negative correlations with suppression levels for 7 of the 15 time intervals measured. No significant correlations with SinBR performance were observed for the remaining time intervals, as was the case for the typically evaluated R8-18 time interval and the Speech in Babble Left Ear. CONCLUSIONS Results indicate that suppression is influenced by the time window analysed, and ear tested, and is associated with speech recognition in babble performance in children with central auditory processing disorder.
Collapse
Affiliation(s)
| | - Jeffrey Weihing
- Department of Otolaryngology - Head and Neck Surgery - and Communicative Disorders, University of Louisville, Louisville, KY, United States
| | - Gail D Chermak
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University Health Sciences, Spokane, WA, United States
| | - Doris Eva Bamiou
- Neuro-Otology Department, University College London Hospitals NHS Trust, United Kingdom; University College London Ear Institute, United Kingdom
| |
Collapse
|
10
|
Jennings SG, Chen J, Fultz SE, Ahlstrom JB, Dubno JR. Amplitude modulation detection with a short-duration carrier: Effects of a precursor and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2232. [PMID: 29716275 PMCID: PMC5908713 DOI: 10.1121/1.5031122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 05/28/2023]
Abstract
This study tests the hypothesis that amplitude modulation (AM) detection will be better under conditions where basilar membrane (BM) response growth is expected to be linear rather than compressive. This hypothesis was tested by (1) comparing AM detection for a tonal carrier as a function of carrier level for subjects with and without cochlear hearing impairment (HI), and by (2) comparing AM detection for carriers presented with and without an ipsilateral notched-noise precursor, under the assumption that the precursor linearizes BM responses. Average AM detection thresholds were approximately 5 dB better for subjects with HI than for subjects with normal hearing (NH) at moderate-level carriers. Average AM detection for low-to-moderate level carriers was approximately 2 dB better with the precursor than without the precursor for subjects with NH, whereas precursor effects were absent or smaller for subjects with HI. Although effect sizes were small and individual differences were noted, group differences are consistent with better AM detection for conditions where BM responses are less compressive due to cochlear hearing loss or due to a reduction in cochlear gain. These findings suggest the auditory system may quickly adjust to the local soundscape to increase effective AM depth and improve signal-to-noise ratios.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| | - Jessica Chen
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| | - Sara E Fultz
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| | - Jayne B Ahlstrom
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| |
Collapse
|
11
|
Lopez-Poveda EA, Eustaquio-Martín A. Objective speech transmission improvements with a binaural cochlear implant sound-coding strategy inspired by the contralateral medial olivocochlear reflex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2217. [PMID: 29716283 DOI: 10.1121/1.5031028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has been recently shown that cochlear implant users could enjoy better speech reception in noise and enhanced spatial unmasking with binaural audio processing inspired by the inhibitory effects of the contralateral medial olivocochlear (MOC) reflex on compression [Lopez-Poveda, Eustaquio-Martin, Stohl, Wolford, Schatzer, and Wilson (2016). Ear Hear. 37, e138-e148]. The perceptual evidence supporting those benefits, however, is limited to a few target-interferer spatial configurations and to a particular implementation of contralateral MOC inhibition. Here, the short-term objective intelligibility index is used to (1) objectively demonstrate potential benefits over many more spatial configurations, and (2) investigate if the predicted benefits may be enhanced by using more realistic MOC implementations. Results corroborate the advantages and drawbacks of MOC processing indicated by the previously published perceptual tests. The results also suggest that the benefits may be enhanced and the drawbacks overcome by using longer time constants for the activation and deactivation of inhibition and, to a lesser extent, by using a comparatively greater inhibition in the lower than in the higher frequency channels. Compared to using two functionally independent processors, the better MOC processor improved the signal-to-noise ratio in the two ears between 1 and 6 decibels by enhancing head-shadow effects, and was advantageous for all tested target-interferer spatial configurations.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain
| | - Almudena Eustaquio-Martín
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain
| |
Collapse
|
12
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
13
|
Abstract
OBJECTIVES In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. DESIGN Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening, the electrical stimulus delivered to the test ear(s) was always calculated as if the listeners were wearing bilateral processors. RESULTS In both unilateral and bilateral listening conditions, mean speech reception thresholds were comparable with the two strategies for colocated speech and noise sources, but were at least 2 dB lower (better) with the MOC than with the STD strategy for spatially separated speech and noise sources. In unilateral listening conditions, mean thresholds improved with increasing the spatial separation between the speech and noise sources regardless of the strategy but the improvement was significantly greater with the MOC strategy. In bilateral listening conditions, thresholds improved significantly with increasing the speech-noise spatial separation only with the MOC strategy. CONCLUSIONS The MOC strategy (1) significantly improved the intelligibility of speech presented in competition with a spatially separated noise source, both in unilateral and bilateral listening conditions; (2) produced significant spatial release from masking in bilateral listening conditions, something that did not occur with fixed compression; and (3) enhanced spatial release from masking in unilateral listening conditions. The MOC strategy as implemented here, or a modified version of it, may be usefully applied in CIs and in hearing aids.
Collapse
|
14
|
Settibhaktini H, Chintanpalli A. Modeling the level-dependent changes of concurrent vowel scores. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:440. [PMID: 29390795 PMCID: PMC6226212 DOI: 10.1121/1.5021330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/20/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
The difference in fundamental frequency (F0) between talkers is an important cue for speaker segregation. To understand how this cue varies across sound level, Chintanpalli, Ahlstrom, and Dubno [(2014). J. Assoc. Res. Otolaryngol. 15, 823-837] collected level-dependent changes in concurrent-vowel identification scores for same- and different-F0 conditions in younger adults with normal hearing. Modeling suggested that level-dependent changes in phase locking of auditory-nerve (AN) fibers to formants and F0s may contribute to concurrent-vowel identification scores; however, identification scores were not predicted to test this suggestion directly. The current study predicts these identification scores using the temporal responses of a computational AN model and a modified version of Meddis and Hewitt's [(1992). J. Acoust. Soc. Am. 91, 233-245] F0-based segregation algorithm. The model successfully captured the level-dependent changes in identification scores of both vowels with and without F0 difference, as well as identification scores for one vowel correct. The model's F0-based vowel segregation was controlled using the actual F0-benefit across levels such that the predicted F0-benefit matched qualitatively with the actual F0-benefit as a function of level. The quantitative predictions from this F0-based segregation algorithm demonstrate that temporal responses of AN fibers to vowel formants and F0s can account for variations in identification scores across sound level and F0-difference conditions in a concurrent-vowel task.
Collapse
Affiliation(s)
- Harshavardhan Settibhaktini
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Ananthakrishna Chintanpalli
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
15
|
Almishaal A, Bidelman GM, Jennings SG. Notched-noise precursors improve detection of low-frequency amplitude modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:324. [PMID: 28147582 PMCID: PMC5392086 DOI: 10.1121/1.4973912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/19/2023]
Abstract
Amplitude modulation (AM) detection was measured with a short (50 ms), high-frequency carrier as a function of carrier level (Experiment I) and modulation frequency (Experiment II) for conditions with or without a notched-noise precursor. A longer carrier (500 ms) was also included in Experiment I. When the carrier was preceded by silence (no precursor condition) AM detection thresholds worsened for moderate-level carriers compared to lower- or higher-level carriers, resulting in a "mid-level hump." AM detection thresholds with a precursor were better than those without a precursor, primarily for moderate-to-high level carriers, thus eliminating the mid-level hump in AM detection. When the carrier was 500 ms, AM thresholds improved by a constant (across all levels) relative to AM thresholds with a precursor, consistent with the longer carrier providing more "looks" to detect the AM signal. Experiment II revealed that improved AM detection with compared to without a precursor is limited to low-modulation frequencies (<60 Hz). These results are consistent with (1) a reduction in cochlear gain over the course of the precursor perhaps via the medial olivocochlear reflex or (2) a form of perceptual enhancement which may be mediated by adaptation of inhibition.
Collapse
Affiliation(s)
- Ali Almishaal
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, Behavioral Sciences Building 1201, Salt Lake City, Utah 84112, USA
| | - Gavin M Bidelman
- School of Communication Sciences and Disorders and Institute for Intelligent Systems, University of Memphis, 4055 North Park Loop, Memphis, Tennessee 38152, USA
| | - Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| |
Collapse
|
16
|
Lopez-Poveda EA, Eustaquio-Martín A, Stohl JS, Wolford RD, Schatzer R, Wilson BS. Roles of the Contralateral Efferent Reflex in Hearing Demonstrated with Cochlear Implants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 894:105-114. [DOI: 10.1007/978-3-319-25474-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
Hedrick MS, Moon IJ, Woo J, Won JH. Effects of Physiological Internal Noise on Model Predictions of Concurrent Vowel Identification for Normal-Hearing Listeners. PLoS One 2016; 11:e0149128. [PMID: 26866811 PMCID: PMC4750862 DOI: 10.1371/journal.pone.0149128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that concurrent vowel identification improves with increasing temporal onset asynchrony of the vowels, even if the vowels have the same fundamental frequency. The current study investigated the possible underlying neural processing involved in concurrent vowel perception. The individual vowel stimuli from a previously published study were used as inputs for a phenomenological auditory-nerve (AN) model. Spectrotemporal representations of simulated neural excitation patterns were constructed (i.e., neurograms) and then matched quantitatively with the neurograms of the single vowels using the Neurogram Similarity Index Measure (NSIM). A novel computational decision model was used to predict concurrent vowel identification. To facilitate optimum matches between the model predictions and the behavioral human data, internal noise was added at either neurogram generation or neurogram matching using the NSIM procedure. The best fit to the behavioral data was achieved with a signal-to-noise ratio (SNR) of 8 dB for internal noise added at the neurogram but with a much smaller amount of internal noise (SNR of 60 dB) for internal noise added at the level of the NSIM computations. The results suggest that accurate modeling of concurrent vowel data from listeners with normal hearing may partly depend on internal noise and where internal noise is hypothesized to occur during the concurrent vowel identification process.
Collapse
Affiliation(s)
- Mark S. Hedrick
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, TN, United States of America
| | - Il Joon Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Jihwan Woo
- Department of Biomedical Engineering, University of Ulsan, Ulsan, Korea
- * E-mail:
| | - Jong Ho Won
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, TN, United States of America
| |
Collapse
|
18
|
Roverud E, Strickland EA. The effects of ipsilateral, contralateral, and bilateral broadband noise on the mid-level hump in intensity discrimination. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3245-3261. [PMID: 26627798 PMCID: PMC4662679 DOI: 10.1121/1.4935515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 05/29/2023]
Abstract
Previous psychoacoustical and physiological studies indicate that the medial olivocochlear reflex (MOCR), a bilateral, sound-evoked reflex, may lead to improved sound intensity discrimination in background noise. The MOCR can decrease the range of basilar-membrane compression and can counteract effects of neural adaptation from background noise. However, the contribution of these processes to intensity discrimination is not well understood. This study examined the effect of ipsilateral, contralateral, and bilateral noise on the "mid-level hump." The mid-level hump refers to intensity discrimination Weber fractions (WFs) measured for short-duration, high-frequency tones which are poorer at mid levels than at lower or higher levels. The mid-level hump WFs may reflect a limitation due to basilar-membrane compression, and thus may be decreased by the MOCR. The noise was either short (50 ms) or long (150 ms), with the long noise intended to elicit the sluggish MOCR. For a tone in quiet, mid-level hump WFs improved with ipsilateral noise for most listeners, but not with contralateral noise. For a tone in ipsilateral noise, WFs improved with contralateral noise for most listeners, but only when both noises were long. These results are consistent with MOCR-induced WF improvements, possibly via decreases in effects of compression and neural adaptation.
Collapse
Affiliation(s)
- Elin Roverud
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
19
|
Yasin I, Drga V, Plack CJ. Effect of human auditory efferent feedback on cochlear gain and compression. J Neurosci 2014; 34:15319-26. [PMID: 25392499 PMCID: PMC4228134 DOI: 10.1523/jneurosci.1043-14.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/10/2014] [Accepted: 09/13/2014] [Indexed: 11/21/2022] Open
Abstract
The mammalian auditory system includes a brainstem-mediated efferent pathway from the superior olivary complex by way of the medial olivocochlear system, which reduces the cochlear response to sound (Warr and Guinan, 1979; Liberman et al., 1996). The human medial olivocochlear response has an onset delay of between 25 and 40 ms and rise and decay constants in the region of 280 and 160 ms, respectively (Backus and Guinan, 2006). Physiological studies with nonhuman mammals indicate that onset and decay characteristics of efferent activation are dependent on the temporal and level characteristics of the auditory stimulus (Bacon and Smith, 1991; Guinan and Stankovic, 1996). This study uses a novel psychoacoustical masking technique using a precursor sound to obtain a measure of the efferent effect in humans. This technique avoids confounds currently associated with other psychoacoustical measures. Both temporal and level dependency of the efferent effect was measured, providing a comprehensive measure of the effect of human auditory efferents on cochlear gain and compression. Results indicate that a precursor (>20 dB SPL) induced efferent activation, resulting in a decrease in both maximum gain and maximum compression, with linearization of the compressive function for input sound levels between 50 and 70 dB SPL. Estimated gain decreased as precursor level increased, and increased as the silent interval between the precursor and combined masker-signal stimulus increased, consistent with a decay of the efferent effect. Human auditory efferent activation linearizes the cochlear response for mid-level sounds while reducing maximum gain.
Collapse
Affiliation(s)
- Ifat Yasin
- Ear Institute, University College London, London WC1X 8EE, United Kingdom, and
| | - Vit Drga
- Ear Institute, University College London, London WC1X 8EE, United Kingdom, and
| | - Christopher J Plack
- School of Psychological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| |
Collapse
|
20
|
Jennings SG, Ahlstrom JB, Dubno JR. Computational modeling of individual differences in behavioral estimates of cochlear nonlinearities. J Assoc Res Otolaryngol 2014; 15:945-60. [PMID: 25266264 DOI: 10.1007/s10162-014-0486-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
Temporal masking curves (TMCs) are often used to estimate cochlear compression in individuals with normal and impaired hearing. These estimates may yield a wide range of individual differences, even among subjects with similar quiet thresholds. This study used an auditory model to assess potential sources of variance in TMCs from 51 listeners in Poling et al. [J Assoc Res Otolaryngol, 13:91-108 (2012)]. These sources included threshold elevation, the contribution of outer and inner hair cell dysfunction to threshold elevation, compression of the off-frequency linear reference, and detection efficiency. Simulations suggest that detection efficiency is a primary factor contributing to individual differences in TMCs measured in normal-hearing subjects, while threshold elevation and the contribution of outer and inner hair cell dysfunction are primary factors in hearing-impaired subjects. Approximating the most compressive growth rate of the cochlear response from TMCs was achieved only in subjects with the highest detection efficiency. Simulations included off-frequency nonlinearity in basilar membrane and inner hair cell processing; however, this nonlinearity did not improve predictions, suggesting that other sources, such as the decay of masking and the strength of the medial olivocochlear reflex, may mimic off-frequency nonlinearity. Findings from this study suggest that sources of individual differences can play a strong role in behavioral estimates of compression, and these sources should be considered when using forward masking to study cochlear function in individual listeners or across groups of listeners.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, UT, 84112, USA,
| | | | | |
Collapse
|
21
|
Chintanpalli A, Ahlstrom JB, Dubno JR. Computational model predictions of cues for concurrent vowel identification. J Assoc Res Otolaryngol 2014; 15:823-37. [PMID: 25002128 DOI: 10.1007/s10162-014-0475-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 06/03/2014] [Indexed: 11/28/2022] Open
Abstract
Although differences in fundamental frequencies (F0s) between vowels are beneficial for their segregation and identification, listeners can still segregate and identify simultaneous vowels that have identical F0s, suggesting that additional cues are contributing, including formant frequency differences. The current perception and computational modeling study was designed to assess the contribution of F0 and formant difference cues for concurrent vowel identification. Younger adults with normal hearing listened to concurrent vowels over a wide range of levels (25-85 dB SPL) for conditions in which F0 was the same or different between vowel pairs. Vowel identification scores were poorer at the lowest and highest levels for each F0 condition, and F0 benefit was reduced at the lowest level as compared to higher levels. To understand the neural correlates underlying level-dependent changes in vowel identification, a computational auditory-nerve model was used to estimate formant and F0 difference cues under the same listening conditions. Template contrast and average localized synchronized rate predicted level-dependent changes in the strength of phase locking to F0s and formants of concurrent vowels, respectively. At lower levels, poorer F0 benefit may be attributed to poorer phase locking to both F0s, which resulted from lower firing rates of auditory-nerve fibers. At higher levels, poorer identification scores may relate to poorer phase locking to the second formant, due to synchrony capture by lower formants. These findings suggest that concurrent vowel identification may be partly influenced by level-dependent changes in phase locking of auditory-nerve fibers to F0s and formants of both vowels.
Collapse
Affiliation(s)
- Ananthakrishna Chintanpalli
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC, 29425-5500, USA,
| | | | | |
Collapse
|
22
|
Roverud E, Strickland EA. Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:1321-34. [PMID: 24606271 PMCID: PMC3985874 DOI: 10.1121/1.4864783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 05/19/2023]
Abstract
The mechanisms of forward masking are not clearly understood. The temporal window model (TWM) proposes that masking occurs via a neural mechanism that integrates within a temporal window. The medial olivocochlear reflex (MOCR), a sound-evoked reflex that reduces cochlear amplifier gain, may also contribute to forward masking if the preceding sound reduces gain for the signal. Psychophysical evidence of gain reduction can be observed using a growth of masking (GOM) paradigm with an off-frequency forward masker and a precursor. The basilar membrane input/output (I/O) function is estimated from the GOM function, and the I/O function gain is reduced by the precursor. In this study, the effect of precursor duration on this gain reduction effect was examined for on- and off-frequency precursors. With on-frequency precursors, thresholds increased with increasing precursor duration, then decreased (rolled over) for longer durations. Thresholds with off-frequency precursors continued to increase with increasing precursor duration. These results are not consistent with solely neural masking, but may reflect gain reduction that selectively affects on-frequency stimuli. The TWM was modified to include history-dependent gain reduction to simulate the MOCR, called the temporal window model-gain reduction (TWM-GR). The TWM-GR predicted rollover and the differences with on- and off-frequency precursors whereas the TWM did not.
Collapse
Affiliation(s)
- Elin Roverud
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907-2038
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907-2038
| |
Collapse
|
23
|
Bhagat SP, Kilgore C. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays. Neurosci Lett 2013; 559:132-5. [PMID: 24333175 DOI: 10.1016/j.neulet.2013.11.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/24/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
The existence of efferent feedback from cortical and subcortical brain centers to the hair cells of the cochlea has been recognized for many years, but the role that efferent neurons play in hearing is not completely known. Stimulation of medial olivocochlear (MOC) efferent neurons suppresses sound-evoked basilar membrane responses and changes the tuning of single auditory nerve fibers in animal models. Both of these effects are linked to a MOC-induced reduction in the gain of the cochlear amplification provided by outer hair cells. To non-invasively examine the link between cochlear suppression and tuning in humans, stimulus-frequency otoacoustic emissions (SFOAEs) were recorded in conditions with and without contralateral acoustic stimulation (CAS) from 28 normal-hearing participants. SFOAEs were measured using clusters of closely-spaced probe-tone frequencies centered near 1.4 and 2.0kHz. An index of cochlear tuning, QERB, was calculated based on measures of SFOAE group delay at both 1.4 and 2.0kHz. A statistically significant (p<0.01) decrease in SFOAE levels acquired during CAS was detected only for the SFOAE cluster centered at 2kHz. No statistically significant differences in QERB were found between conditions with and without CAS at 1.4 and 2.0kHz. These findings suggest that in humans, tuning based on SFOAE group delay estimates is not appreciably altered at cochlear locations with MOC efferent-induced reductions in cochlear gain.
Collapse
Affiliation(s)
- Shaum P Bhagat
- Hearing Science Laboratory, School of Communication Sciences and Disorders, The University of Memphis, Memphis, TN 38105, United States.
| | - Chelsea Kilgore
- Hearing Science Laboratory, School of Communication Sciences and Disorders, The University of Memphis, Memphis, TN 38105, United States
| |
Collapse
|
24
|
Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses. J Assoc Res Otolaryngol 2013; 15:159-73. [PMID: 24306278 DOI: 10.1007/s10162-013-0430-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 11/17/2013] [Indexed: 10/25/2022] Open
Abstract
The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noisy environments. This advantage can be attributed to a feedback mechanism that suppresses auditory nerve (AN) firing in continuous background noise, resulting in increased sensitivity to a tone or speech. MOC neurons synapse on outer hair cells (OHCs), and their activity effectively reduces cochlear gain. The computational model developed in this study implements the time-varying, characteristic frequency (CF) and level-dependent effects of the MOCR within the framework of a well-established model for normal and hearing-impaired AN responses. A second-order linear system was used to model the time-course of the MOCR using physiological data in humans. The stimulus-level-dependent parameters of the efferent pathway were estimated by fitting AN sensitivity derived from responses in decerebrate cats using a tone-in-noise paradigm. The resulting model uses a binaural, time-varying, CF-dependent, level-dependent OHC gain reduction for both ipsilateral and contralateral stimuli that improves detection of a tone in noise, similarly to recorded AN responses. The MOCR may be important for speech recognition in continuous background noise as well as for protection from acoustic trauma. Further study of this model and its efferent feedback loop may improve our understanding of the effects of sensorineural hearing loss in noisy situations, a condition in which hearing aids currently struggle to restore normal speech perception.
Collapse
|
25
|
Chintanpalli A, Heinz MG. The use of confusion patterns to evaluate the neural basis for concurrent vowel identification. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2988-3000. [PMID: 24116434 PMCID: PMC3799688 DOI: 10.1121/1.4820888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 06/02/2023]
Abstract
Normal-hearing listeners take advantage of differences in fundamental frequency (F0) to segregate competing talkers. Computational modeling using an F0-based segregation algorithm and auditory-nerve temporal responses captures the gradual improvement in concurrent-vowel identification with increasing F0 difference. This result has been taken to suggest that F0-based segregation is the basis for this improvement; however, evidence suggests that other factors may also contribute. The present study further tested models of concurrent-vowel identification by evaluating their ability to predict the specific confusions made by listeners. Measured human confusions consisted of at most one to three confusions per vowel pair, typically from an error in only one of the two vowels. An improvement due to F0 difference was correlated with spectral differences between vowels; however, simple models based on acoustic and cochlear spectral patterns predicted some confusions not made by human listeners. In contrast, a neural temporal model was better at predicting listener confusion patterns. However, the full F0-based segregation algorithm using these neural temporal analyses was inconsistent across F0 difference in capturing listener confusions, being worse for smaller differences. The inability of this commonly accepted model to fully account for listener confusions suggests that other factors besides F0 segregation are likely to contribute.
Collapse
|
26
|
Perrot X, Collet L. Function and plasticity of the medial olivocochlear system in musicians: a review. Hear Res 2013; 308:27-40. [PMID: 23994434 DOI: 10.1016/j.heares.2013.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/11/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
The outer hair cells of the organ of Corti are the target of abundant efferent projections from the olivocochlear system. This peripheral efferent auditory subsystem is currently thought to be modulated by central activity via corticofugal descending auditory system, and to modulate active cochlear micromechanics. Although the function of this efferent subsystem remains unclear, physiological, psychophysical, and modeling data suggest that it may be involved in ear protection against noise damage and auditory perception, especially in the presence of background noise. Moreover, there is mounting evidence that its activity is modulated by auditory and visual attention. A commonly used approach to measure olivocochlear activity noninvasively in humans relies on the suppression of otoacoustic emissions by contralateral noise. Previous studies have found substantial interindividual variability in this effect, and statistical differences have been observed between professional musicians and non-musicians, with stronger bilateral suppression effects in the former. In this paper, we review these studies and discuss various possible interpretations for these findings, including experience-dependent neuroplasticity. We ask whether differences in olivocochlear function between musicians and non-musicians reflect differences in peripheral auditory function or in more central factors, such as top-down attentional modulation.
Collapse
Affiliation(s)
- Xavier Perrot
- Université de Lyon, Lyon F-69000, France; INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon F-69000, France; Claude Bernard Lyon 1 University, Lyon F-69500, France; Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Department of Audiology and Orofacial Explorations, Pierre-Bénite F-69310, France.
| | - Lionel Collet
- Université de Lyon, Lyon F-69000, France; INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon F-69000, France; Claude Bernard Lyon 1 University, Lyon F-69500, France; Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Department of Audiology and Orofacial Explorations, Pierre-Bénite F-69310, France.
| |
Collapse
|
27
|
Jennings SG, Strickland EA. Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:2483-96. [PMID: 23039443 PMCID: PMC3477188 DOI: 10.1121/1.4742723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 05/19/2023]
Abstract
Frequency selectivity was evaluated under two conditions designed to assess the influence of a "precursor" stimulus on auditory filter bandwidths. The standard condition consisted of a short masker, immediately followed by a short signal. The precursor condition was identical except a 100-ms sinusoid at the signal frequency (i.e., the precursor) was presented before the masker. The standard and precursor conditions were compared for measurements of psychophysical tuning curves (PTCs), and notched noise tuning characteristics. Estimates of frequency selectivity were significantly broader in the precursor condition. In the second experiment, PTCs in the standard and precursor conditions were simulated to evaluate the influence of the precursor on PTC bandwidth. The model was designed to account for the influence of additivity of masking between the masker and precursor. Model simulations were able to qualitatively account for the perceptual data when outer hair cell gain of the model was reduced in the precursor condition. These findings suggest that the precursor may have reduced cochlear gain, in addition to producing additivity of masking. This reduction in gain may be mediated by the medial olivocochlear reflex.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
28
|
Dubno JR, Ahlstrom JB, Wang X, Horwitz AR. Level-dependent changes in perception of speech envelope cues. J Assoc Res Otolaryngol 2012; 13:835-52. [PMID: 22872414 DOI: 10.1007/s10162-012-0343-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022] Open
Abstract
Level-dependent changes in temporal envelope fluctuations in speech and related changes in speech recognition may reveal effects of basilar-membrane nonlinearities. As a result of compression in the basilar-membrane response, the "effective" magnitude of envelope fluctuations may be reduced as speech level increases from lower level (more linear) to mid-level (more compressive) regions. With further increases to a more linear region, speech envelope fluctuations may become more pronounced. To assess these effects, recognition of consonants and key words in sentences was measured as a function of speech level for younger adults with normal hearing. Consonant-vowel syllables and sentences were spectrally degraded using "noise vocoder" processing to maximize perceptual effects of changes to the speech envelope. Broadband noise at a fixed signal-to-noise ratio maintained constant audibility as speech level increased. Results revealed significant increases in scores and envelope-dependent feature transmission from 45 to 60 dB SPL and decreasing scores and feature transmission from 60 to 85 dB SPL. This quadratic pattern, with speech recognition maximized at mid levels and poorer at lower and higher levels, is consistent with a role of cochlear nonlinearities in perception of speech envelope cues.
Collapse
Affiliation(s)
- Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, USA.
| | | | | | | |
Collapse
|