1
|
Shenoy GN, Bhatta M, Loyall JL, Kelleher RJ, Bernstein JM, Bankert RB. Exosomes Represent an Immune Suppressive T Cell Checkpoint in Human Chronic Inflammatory Microenvironments. Immunol Invest 2020; 49:726-743. [PMID: 32299258 PMCID: PMC7554261 DOI: 10.1080/08820139.2020.1748047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: T cells present in chronic inflammatory tissues such as nasal polyps (from chronic rhinosinusitis patients) have been demonstrated to be hypo-responsive to activation via the TCR, similar to tumor-specific T cells in multiple different human tumor microenvironments. While immunosuppressive exosomes have been known to contribute to the failure of the tumor-associated T cells to respond optimally to activation stimuli, it is not known whether they play a similar role in chronic inflammatory microenvironments. In the current study, we investigate whether exosomes derived from chronic inflammatory microenvironments contribute to the immune suppression of T cells. Methods: Exosomes were isolated by ultracentrifugation and characterized by size and composition using nanoparticle tracking analysis, scanning electron microscopy, antibody arrays and flow exometry. Immunosuppressive ability of the exosomes was measured by quantifying its effect on activation of T cells, using nuclear translocation of NFκB as an activation endpoint. Results: Exosomes were isolated and characterized from two different types of chronic inflammatory tissues - nasal polyps from chronic rhinosinusitis patients and synovial fluid from rheumatoid arthritis patients. These exosomes arrest the activation of T cells stimulated via the TCR. This immune suppression, like that which is seen in tumor microenvironments, is dependent in part upon a lipid, ganglioside GD3, which is expressed on the exosomal surface. Conclusion: Immunosuppressive exosomes present in non-malignant chronic inflammatory tissues represent a new T cell checkpoint, and potentially represent a novel therapeutic target to enhance the response to current therapies and prevent disease recurrences.
Collapse
Affiliation(s)
- Gautam N Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | | | - Jenni L Loyall
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Raymond J Kelleher
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Joel M Bernstein
- Department of Otolaryngology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Richard B Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
2
|
Xu MM, Murphy PA, Vella AT. Activated T-effector seeds: cultivating atherosclerotic plaque through alternative activation. Am J Physiol Heart Circ Physiol 2019; 316:H1354-H1365. [PMID: 30925075 PMCID: PMC6620674 DOI: 10.1152/ajpheart.00148.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
3
|
Simpson-Abelson MR, Loyall JL, Lehman HK, Barnas JL, Minderman H, O’Loughlin KL, Wallace PK, George TC, Peng P, Kelleher RJ, Odunsi K, Bankert RB. Human ovarian tumor ascites fluids rapidly and reversibly inhibit T cell receptor-induced NF-κB and NFAT signaling in tumor-associated T cells. CANCER IMMUNITY 2013; 13:14. [PMID: 23882159 PMCID: PMC3718770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human memory T cells present in ovarian tumor ascites fluids fail to respond normally to stimulation via the T cell receptor (TCR). This immunosuppression is manifested by decreases in NF-κB and NFAT activation, IFN-γ production, and cell proliferation in response to TCR stimulation with immobilized antibodies to CD3 and CD28. The anergy of the tumor-associated T cells (TATs) is mediated by soluble factors present in ovarian tumor ascites fluids. The non-responsiveness of the T cells is quickly reversed when the cells are assayed in the absence of the ascites fluid, and is rapidly reestablished when a cell-free ascites fluid is added back to the T cells. Based upon the observed normal phosphorylation patterns of the TCR proximal signaling molecules, the inhibition of NF-κB, and NFAT activation in response to TCR stimulation, as well as the ability of the diacylglycerol analog PMA and the ionophore ionomycin to bypass the ascites fluid-induced TCR signaling arrest, the site of the arrest in the activation cascade appears to be at or just upstream of PLC-γ. An identical TCR signaling arrest pattern was observed when T cells derived from normal donor peripheral blood were incubated with either malignant or nonmalignant (cirrhotic) ascites fluids. The immunosuppressive activity of ascites fluids reported here suggests that soluble factors acting directly or indirectly upon T cells present within tumors contribute to the anergy that has previously been observed in T cells derived from malignant and nonmalignant inflammatory microenvironments. The soluble immunosuppressive factors represent potential therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Michelle R. Simpson-Abelson
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
- University of Pittsburgh, Department of Medicine, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Jenni L. Loyall
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Heather K. Lehman
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Jennifer L. Barnas
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Hans Minderman
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Paul K. Wallace
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Peng Peng
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Raymond J. Kelleher
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Richard B. Bankert
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|