1
|
Mohamed NMM, Meredith FL, Rennie KJ. Inhibition of Ionic Currents by Fluoxetine in Vestibular Calyces in Different Epithelial Loci. Int J Mol Sci 2024; 25:8801. [PMID: 39201487 PMCID: PMC11354711 DOI: 10.3390/ijms25168801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 μM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 μM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 μM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance.
Collapse
Affiliation(s)
| | | | - Katherine J. Rennie
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.M.M.M.); (F.L.M.)
| |
Collapse
|
2
|
Meredith FL, Vu TA, Gehrke B, Benke TA, Dondzillo A, Rennie KJ. Expression of hyperpolarization-activated current ( Ih) in zonally defined vestibular calyx terminals of the crista. J Neurophysiol 2023; 129:1468-1481. [PMID: 37198134 PMCID: PMC10259860 DOI: 10.1152/jn.00135.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Tiffany A Vu
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Brandon Gehrke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
3
|
Bronson D, Kalluri R. Muscarinic Acetylcholine Receptors Modulate HCN Channel Properties in Vestibular Ganglion Neurons. J Neurosci 2023; 43:902-917. [PMID: 36604171 PMCID: PMC9908319 DOI: 10.1523/jneurosci.2552-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Efferent modulation of vestibular afferent excitability is linked to muscarinic signaling cascades that close low-voltage-gated potassium channels (i.e., KCNQ). Here, we show that muscarinic signaling cascades also depolarize the activation range of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We compared the voltage activation range and kinetics of HCN channels and induced firing patterns before and after administering the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M (Oxo-M) in dissociated vestibular ganglion neurons (VGNs) from rats of either sex using perforated whole-cell patch-clamp methods. Oxo-M depolarized HCN channels' half-activation voltage (V 1/2) and sped up the rate of activation near resting potential twofold. HCN channels in large-diameter and/or transient firing VGN (putative cell bodies of irregular firing neuron from central epithelial zones) had relatively depolarized V 1/2 in control solution and were less sensitive to mAChR activation than those found in small-diameter VGN with sustained firing patterns (putatively belonging to regular firing afferents). The impact of mAChR on HCN channels is not a direct consequence of closing KCNQ channels since pretreating the cells with Linopirdine, a KCNQ channel blocker, did not prevent HCN channel depolarization by Oxo-M. Efferent signaling promoted ion channel configurations that were favorable to highly regular spiking in some VGN, but not others. This is consistent with previous observations that low-voltage gated potassium currents in VGN are conducted by mAChR agonist-sensitive and -insensitive channels. Connecting efferent signaling to HCN channels is significant because of the channel's impact on spike-timing regularity and nonchemical transmission between Type I hair cells and vestibular afferents.SIGNIFICANCE STATEMENT Vestibular afferents express a diverse complement of ion channels. In vitro studies identified low-voltage activated potassium channels and hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as crucial for shaping the timing and sensitivity of afferent responses. Moreover, a network of acetylcholine-releasing efferent neurons controls afferent excitability by closing a subgroup of low-voltage activated potassium channels on the afferent neuron. This work shows that these efferent signaling cascades also enhance the activation of HCN channels by depolarizing their voltage activation range. The size of this effect varies depending on the endogenous properties of the HCN channel and on cell type (as determined by discharge patterns and cell size). Simultaneously controlling two ion-channel groups gives the vestibular efferent system exquisite control over afferent neuron activity.
Collapse
Affiliation(s)
- Daniel Bronson
- Hearing and Communications Neuroscience Training Program, University of Southern California, Los Angeles, California 90057
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
| | - Radha Kalluri
- Hearing and Communications Neuroscience Training Program, University of Southern California, Los Angeles, California 90057
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
| |
Collapse
|
4
|
Contini D, Holstein GR, Art JJ. Simultaneous Dual Recordings From Vestibular Hair Cells and Their Calyx Afferents Demonstrate Multiple Modes of Transmission at These Specialized Endings. Front Neurol 2022; 13:891536. [PMID: 35899268 PMCID: PMC9310783 DOI: 10.3389/fneur.2022.891536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
In the vestibular periphery, transmission via conventional synaptic boutons is supplemented by post-synaptic calyceal endings surrounding Type I hair cells. This review focusses on the multiple modes of communication between these receptors and their enveloping calyces as revealed by simultaneous dual-electrode recordings. Classic orthodromic transmission is accompanied by two forms of bidirectional communication enabled by the extensive cleft between the Type I hair cell and its calyx. The slowest cellular communication low-pass filters the transduction current with a time constant of 10–100 ms: potassium ions accumulate in the synaptic cleft, depolarizing both the hair cell and afferent to potentials greater than necessary for rapid vesicle fusion in the receptor and potentially triggering action potentials in the afferent. On the millisecond timescale, conventional glutamatergic quantal transmission occurs when hair cells are depolarized to potentials sufficient for calcium influx and vesicle fusion. Depolarization also permits a third form of transmission that occurs over tens of microseconds, resulting from the large voltage- and ion-sensitive cleft-facing conductances in both the hair cell and the calyx that are open at their resting potentials. Current flowing out of either the hair cell or the afferent divides into the fraction flowing across the cleft into its cellular partner, and the remainder flowing out of the cleft and into the surrounding fluid compartment. These findings suggest multiple biophysical bases for the extensive repertoire of response dynamics seen in the population of primary vestibular afferent fibers. The results further suggest that evolutionary pressures drive selection for the calyx afferent.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Gay R. Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan J. Art
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, Chicago, IL, United States
- *Correspondence: Jonathan J. Art
| |
Collapse
|
5
|
Meredith FL, Rennie KJ. Dopaminergic Inhibition of Na + Currents in Vestibular Inner Ear Afferents. Front Neurosci 2021; 15:710321. [PMID: 34580582 PMCID: PMC8463658 DOI: 10.3389/fnins.2021.710321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Inner ear hair cells form synapses with afferent terminals and afferent neurons carry signals as action potentials to the central nervous system. Efferent neurons have their origins in the brainstem and some make synaptic contact with afferent dendrites beneath hair cells. Several neurotransmitters have been identified that may be released from efferent terminals to modulate afferent activity. Dopamine is a candidate efferent neurotransmitter in both the vestibular and auditory systems. Within the cochlea, activation of dopamine receptors may reduce excitotoxicity at the inner hair cell synapse via a direct effect of dopamine on afferent terminals. Here we investigated the effect of dopamine on sodium currents in acutely dissociated vestibular afferent calyces to determine if dopaminergic signaling could also modulate vestibular responses. Calyx terminals were isolated along with their accompanying type I hair cells from the cristae of gerbils (P15-33) and whole cell patch clamp recordings performed. Large transient sodium currents were present in all isolated calyces; compared to data from crista slices, resurgent Na+ currents were rare. Perfusion of dopamine (100 μM) in the extracellular solution significantly reduced peak transient Na+ currents by approximately 20% of control. A decrease in Na+ current amplitude was also seen with extracellular application of the D2 dopamine receptor agonist quinpirole, whereas the D2 receptor antagonist eticlopride largely abolished the response to dopamine. Inclusion of the phosphatase inhibitor okadaic acid in the patch electrode solution occluded the response to dopamine. The reduction in calyx sodium current in response to dopamine suggests efferent signaling through D2 dopaminergic receptors may occur via common mechanisms to decrease excitability in inner ear afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Katherine J Rennie
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, University of Colorado, Aurora, CO, United States.,Department of Physiology & Biophysics, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
6
|
Ramakrishna Y, Manca M, Glowatzki E, Sadeghi SG. Cholinergic Modulation of Membrane Properties of Calyx Terminals in the Vestibular Periphery. Neuroscience 2020; 452:98-110. [PMID: 33197502 DOI: 10.1016/j.neuroscience.2020.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023]
Abstract
Vestibular nerve afferents are divided into regular and irregular groups based on the variability of interspike intervals in their resting discharge. Most afferents receive inputs from bouton terminals that contact type II hair cells as well as from calyx terminals that cover the basolateral walls of type I hair cells. Calyces have an abundance of different subtypes of KCNQ (Kv7) potassium channels and muscarinic acetylcholine receptors (mAChRs) and receive cholinergic efferent inputs from neurons in the brainstem. We investigated whether mAChRs affected membrane properties and firing patterns of calyx terminals through modulation of KCNQ channel activity. Patch clamp recordings were performed from calyx terminals in central regions of the cristae of the horizontal and anterior canals in 13-26 day old Sprague-Dawley rats. KCNQ mediated currents were observed as voltage sensitive currents with slow kinetics (activation and deactivation), resulting in spike frequency adaptation so that calyces at best fired a single action potential at the beginning of a depolarizing step. Activation of mAChRs by application of oxotremorine methiodide or inhibition of KCNQ channels by linopirdine dihydrochloride decreased voltage activated currents by ∼30%, decreased first spike latencies by ∼40%, resulted in action potential generation in response to smaller current injections and at lower (i.e., more hyperpolarized) membrane potentials, and increased the number of spikes fired during depolarizing steps. Interestingly, some of the calyces showed spontaneous discharge in the presence of these drugs. Together, these findings suggest that cholinergic efferents can modulate the response properties and encoding of head movements by afferents.
Collapse
Affiliation(s)
- Yugandhar Ramakrishna
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, NY, United States; Department of Communication Disorders and Sciences, California State University, Northridge, CA, United States
| | - Marco Manca
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elisabeth Glowatzki
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Soroush G Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, NY, United States; Neuroscience Program, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
7
|
Meredith FL, Rennie KJ. Persistent and resurgent Na + currents in vestibular calyx afferents. J Neurophysiol 2020; 124:510-524. [PMID: 32667253 DOI: 10.1152/jn.00124.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
8
|
Yu Z, McIntosh JM, Sadeghi SG, Glowatzki E. Efferent synaptic transmission at the vestibular type II hair cell synapse. J Neurophysiol 2020; 124:360-374. [PMID: 32609559 DOI: 10.1152/jn.00143.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via "non-quantal" transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents. Here, synaptic inputs to type II HCs were characterized by using electrical and optogenetic stimulation of efferent fibers combined with in vitro whole cell patch-clamp recording from type II HCs in the rodent vestibular crista. Properties of efferent synaptic currents in type II HCs were similar to those found in cochlear HCs and mediated by activation of α9-containing nicotinic acetylcholine receptors (nAChRs) and small-conductance calcium-activated potassium (SK) channels. While efferents showed a low probability of release at low frequencies of stimulation, repetitive stimulation resulted in facilitation and increased probability of release. Notably, the membrane potential of type II HCs during optogenetic stimulation of efferents showed a strong hyperpolarization in response to single pulses and was further enhanced by repetitive stimulation. Such efferent-mediated inhibition of type II HCs can provide a mechanism to adjust the contribution of signals from type I and type II HCs to vestibular nerve fibers, with a shift of the response to be more like that of calyx-only afferents with faster non-quantal responses.NEW & NOTEWORTHY Type II vestibular hair cells (HCs) receive inputs from efferent neurons in the brain stem. We used in vitro optogenetic and electrical stimulation of vestibular efferent fibers to study their synaptic inputs to type II HCs. Stimulation of efferents inhibited type II HCs, similar to efferent effects on cochlear HCs. We propose that efferent inputs adjust the contribution of signals from type I and II HCs to vestibular nerve fibers.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Soroush G Sadeghi
- Department of Communicative Disorders and Sciences, and Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York.,Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Korshunov KS, Blakemore LJ, Bertram R, Trombley PQ. Spiking and Membrane Properties of Rat Olfactory Bulb Dopamine Neurons. Front Cell Neurosci 2020; 14:60. [PMID: 32265662 PMCID: PMC7100387 DOI: 10.3389/fncel.2020.00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
The mammalian olfactory bulb (OB) has a vast population of dopamine (DA) neurons, whose function is to increase odor discrimination through mostly inhibitory synaptic mechanisms. However, it is not well understood whether there is more than one neuronal type of OB DA neuron, how these neurons respond to different stimuli, and the ionic mechanisms behind those responses. In this study, we used a transgenic rat line (hTH-GFP) to identify fluorescent OB DA neurons for recording via whole-cell electrophysiology. These neurons were grouped based on their localization in the glomerular layer ("Top" vs. "Bottom") with these largest and smallest neurons grouped by neuronal area ("Large" vs. "Small," in μm2). We found that some membrane properties could be distinguished based on a neuron's area, but not by its glomerular localization. All OB DA neurons produced a single action potential when receiving a sufficiently depolarizing stimulus, while some could also spike multiple times when receiving weaker stimuli, an activity that was more likely in Large than Small neurons. This single spiking activity is likely driven by the Na+ current, which showed a sensitivity to inactivation by depolarization and a relatively long time constant for the removal of inactivation. These recordings showed that Small neurons were more sensitive to inactivation of Na+ current at membrane potentials of -70 and -60 mV than Large neurons. The hyperpolarization-activated H-current (identified by voltage sags) was more pronounced in Small than Large DA neurons across hyperpolarized membrane potentials. Lastly, to mimic a more physiological stimulus, these neurons received ramp stimuli of various durations and current amplitudes. When stimulated with weaker/shallow ramps, the neurons needed less current to begin and end firing and they produced more action potentials at a slower frequency. These spiking properties were further analyzed between the four groups of neurons, and these analyses support the difference in spiking induced with current step stimuli. Thus, there may be more than one type of OB DA neuron, and these neurons' activities may support a possible role of being high-pass filters in the OB by allowing the transmission of stronger odor signals while inhibiting weaker ones.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Richard Bertram
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Mathematics, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
10
|
Spaiardi P, Tavazzani E, Manca M, Russo G, Prigioni I, Biella G, Giunta R, Johnson SL, Marcotti W, Masetto S. K + Accumulation and Clearance in the Calyx Synaptic Cleft of Type I Mouse Vestibular Hair Cells. Neuroscience 2020; 426:69-86. [PMID: 31846752 PMCID: PMC6985899 DOI: 10.1016/j.neuroscience.2019.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Vestibular organs of Amniotes contain two types of sensory cells, named Type I and Type II hair cells. While Type II hair cells are contacted by several small bouton nerve terminals, Type I hair cells receive a giant terminal, called a calyx, which encloses their basolateral membrane almost completely. Both hair cell types release glutamate, which depolarizes the afferent terminal by binding to AMPA post-synaptic receptors. However, there is evidence that non-vesicular signal transmission also occurs at the Type I hair cell-calyx synapse, possibly involving direct depolarization of the calyx by K+ exiting the hair cell. To better investigate this aspect, we performed whole-cell patch-clamp recordings from mouse Type I hair cells or their associated calyx. We found that [K+] in the calyceal synaptic cleft is elevated at rest relative to the interstitial (extracellular) solution and can increase or decrease during hair cell depolarization or repolarization, respectively. The change in [K+] was primarily driven by GK,L, the low-voltage-activated, non-inactivating K+ conductance specifically expressed by Type I hair cells. Simple diffusion of K+ between the cleft and the extracellular compartment appeared substantially restricted by the calyx inner membrane, with the ion channels and active transporters playing a crucial role in regulating intercellular [K+]. Calyx recordings were consistent with K+ leaving the synaptic cleft through postsynaptic voltage-gated K+ channels involving KV1 and KV7 subunits. The above scenario is consistent with direct depolarization and hyperpolarization of the calyx membrane potential by intercellular K+.
Collapse
Affiliation(s)
- P Spaiardi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - E Tavazzani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - M Manca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - G Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - I Prigioni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - G Biella
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - R Giunta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - S L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - W Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - S Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
11
|
Contini D, Holstein GR, Art JJ. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. J Physiol 2019; 598:853-889. [PMID: 31623011 DOI: 10.1113/jp278680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In central regions of vestibular semicircular canal epithelia, the [K+ ] in the synaptic cleft ([K+ ]c ) contributes to setting the hair cell and afferent membrane potentials; the potassium efflux from type I hair cells results from the interdependent gating of three conductances. Elevation of [K+ ]c occurs through a calcium-activated potassium conductance, GBK , and a low-voltage-activating delayed rectifier, GK(LV) , that activates upon elevation of [K+ ]c . Calcium influx that enables quantal transmission also activates IBK , an effect that can be blocked internally by BAPTA, and externally by a CaV 1.3 antagonist or iberiotoxin. Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, suggesting that the outward rectification observed for GK(LV) may result largely from a potassium-sensitive relief of Ca2+ inactivation of the channel pore selectivity filter. Potassium sensitivity of hair cell and afferent conductances allows three modes of transmission: quantal, ion accumulation and resistive coupling to be multiplexed across the synapse. ABSTRACT In the vertebrate nervous system, ions accumulate in diffusion-limited synaptic clefts during ongoing activity. Such accumulation can be demonstrated at large appositions such as the hair cell-calyx afferent synapses present in central regions of the turtle vestibular semicircular canal epithelia. Type I hair cells influence discharge rates in their calyx afferents by modulating the potassium concentration in the synaptic cleft, [K+ ]c , which regulates potassium-sensitive conductances in both hair cell and afferent. Dual recordings from synaptic pairs have demonstrated that, despite a decreased driving force due to potassium accumulation, hair cell depolarization elicits sustained outward currents in the hair cell, and a maintained inward current in the afferent. We used kinetic and pharmacological dissection of the hair cell conductances to understand the interdependence of channel gating and permeation in the context of such restricted extracellular spaces. Hair cell depolarization leads to calcium influx and activation of a large calcium-activated potassium conductance, GBK , that can be blocked by agents that disrupt calcium influx or buffer the elevation of [Ca2+ ]i , as well as by the specific KCa 1.1 blocker iberiotoxin. Efflux of K+ through GBK can rapidly elevate [K+ ]c , which speeds the activation and slows the inactivation and deactivation of a second potassium conductance, GK(LV) . Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, consistent with a K+ -dependent relief of Ca2+ inactivation of GK(LV) . As a result, this potassium-sensitive hair cell conductance pairs with the potassium-sensitive hyperpolarization-activated cyclic nucleotide-gated channel (HCN) conductance in the afferent and creates resistive coupling at the synaptic cleft.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| | - Gay R Holstein
- Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY, 10029, USA
| | - Jonathan J Art
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| |
Collapse
|
12
|
Eatock RA. Specializations for Fast Signaling in the Amniote Vestibular Inner Ear. Integr Comp Biol 2019; 58:341-350. [PMID: 29920589 DOI: 10.1093/icb/icy069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During rapid locomotion, the vestibular inner ear provides head-motion signals that stabilize posture, gaze, and heading. Afferent nerve fibers from central and peripheral zones of vestibular sensory epithelia use temporal and rate encoding, respectively, to emphasize different aspects of head motion: central afferents adapt faster to sustained head position and favor higher stimulus frequencies, reflecting specializations at each stage from motion of the accessory structure to spike propagation to the brain. One specialization in amniotes is an unusual nonquantal synaptic mechanism by which type I hair cells transmit to large calyceal terminals of afferent neurons. The reduced synaptic delay of this mechanism may have evolved to serve reliable and fast input to reflex pathways that ensure stable locomotion on land.
Collapse
Affiliation(s)
- Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Enhanced Activation of HCN Channels Reduces Excitability and Spike-Timing Regularity in Maturing Vestibular Afferent Neurons. J Neurosci 2019; 39:2860-2876. [PMID: 30696730 DOI: 10.1523/jneurosci.1811-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 11/21/2022] Open
Abstract
Vestibular ganglion neurons (VGNs) transmit information along parallel neuronal pathways whose signature distinction is variability in spike-timing; some fire at regular intervals while others fire at irregular intervals. The mechanisms driving timing differences are not fully understood but two opposing (but not mutually exclusive) hypotheses have emerged. In the first, regular-spiking is inversely correlated to the density of low-voltage-gated potassium currents (I KL). In the second, regular spiking is directly correlated to the density of hyperpolarization-activated cyclic nucleotide-sensitive currents (I H). Supporting the idea that variations in ion channel composition shape spike-timing, VGNs from the first postnatal week respond to synaptic-noise-like current injections with irregular-firing patterns if they have I KL and with more regular firing patterns if they do not. However, in vitro firing patterns are not as regular as those in vivo Here we considered whether highly-regular spiking requires I H currents and whether this dependence emerges later in development after channel expression matures. We recorded from rat VGN somata of either sex aged postnatal day (P)9-P21. Counter to expectation, in vitro firing patterns were less diverse, more transient-spiking, and more irregular at older ages than at younger ages. Resting potentials hyperpolarized and resting conductance increased, consistent with developmental upregulation of I KL Activation of I H (by increasing intracellular cAMP) increased spike rates but not spike-timing regularity. In a model, we found that activating I H counter-intuitively suppressed regularity by recruiting I KL Developmental upregulation in I KL appears to overwhelm I H These results counter previous hypotheses about how I H shapes vestibular afferent responses.SIGNIFICANCE STATEMENT Vestibular sensory information is conveyed on parallel neuronal pathways with irregularly-firing neurons encoding information using a temporal code and regularly-firing neurons using a rate code. This is a striking example of spike-timing statistics influencing information coding. Previous studies from immature vestibular ganglion neurons (VGNs) identified hyperpolarization-activated mixed cationic currents (I H) as driving highly-regular spiking and proposed that this influence grows with the current during maturation. We found that I H becomes less influential, likely because maturing VGNs also acquire low-voltage-gated potassium currents (I KL), whose inhibitory influence opposes I H Because efferent activity can partly close I KL, VGN firing patterns may become more receptive to extrinsic control. Spike-timing regularity likely relies on dynamic ion channel properties and complementary specializations in synaptic connectivity.
Collapse
|
14
|
Spaiardi P, Tavazzani E, Manca M, Milesi V, Russo G, Prigioni I, Marcotti W, Magistretti J, Masetto S. An allosteric gating model recapitulates the biophysical properties of I K,L expressed in mouse vestibular type I hair cells. J Physiol 2017; 595:6735-6750. [PMID: 28862328 PMCID: PMC5663832 DOI: 10.1113/jp274202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Key points Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low‐voltage‐activated outward rectifying K+ current, IK,L, whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K+ concentrations, altering the biophysical properties of IK,L. We found that in the absence of the calyx, IK,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of IK,L.
Abstract Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low‐voltage‐activated outward rectifying K+ current, IK,L. The biophysical properties and molecular profile of IK,L are still largely unknown. By using the patch‐clamp whole‐cell technique, we examined the voltage‐ and time‐dependent properties of IK,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of IK,L were affected by an unstable K+ equilibrium potential (VeqK+). Both the outward and inward K+ currents shifted VeqK+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated IK,L showed a half‐activation at –79.6 mV and a steep voltage dependence (2.8 mV). IK,L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The ‘early’ open states substantially contribute to IK,L activation at negative voltages. This study provides the first complete description of the ‘native’ biophysical properties of IK,L in adult mouse vestibular type I hair cells. Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low‐voltage‐activated outward rectifying K+ current, IK,L, whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K+ concentrations, altering the biophysical properties of IK,L. We found that in the absence of the calyx, IK,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of IK,L.
Collapse
Affiliation(s)
- Paolo Spaiardi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, 27100, Italy
| | - Elisa Tavazzani
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, 27100, Italy
| | - Marco Manca
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, 27100, Italy
| | - Veronica Milesi
- Instituto de Estudios Inmunológios y Fisiopatológicos (IIFP) - CONICET, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Giancarlo Russo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, 27100, Italy
| | - Ivo Prigioni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, 27100, Italy
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jacopo Magistretti
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Sergio Masetto
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
15
|
Kirk ME, Meredith FL, Benke TA, Rennie KJ. AMPA receptor-mediated rapid EPSCs in vestibular calyx afferents. J Neurophysiol 2017; 117:2312-2323. [PMID: 28298303 DOI: 10.1152/jn.00394.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/21/2023] Open
Abstract
In the vestibular periphery neurotransmission between hair cells and primary afferent nerves occurs via specialized ribbon synapses. Type I vestibular hair cells (HCIs) make synaptic contacts with calyx terminals, which enclose most of the HCI basolateral surface. To probe synaptic transmission, whole cell patch-clamp recordings were made from calyx afferent terminals isolated together with their mature HCIs from gerbil crista. Neurotransmitter release was measured as excitatory postsynaptic currents (EPSCs) in voltage clamp. Spontaneous EPSCs were classified as simple or complex. Simple events exhibited a rapid rise time and a fast monoexponential decay (time constant < 1 ms). The remaining events, constituting ~40% of EPSCs, showed more complex characteristics. Extracellular Sr2+ greatly increased EPSC frequency, and EPSCs were blocked by the AMPA receptor blocker NBQX. The role of presynaptic Ca2+ channels was assessed by application of the L-type Ca2+ channel blocker nifedipine (20 µM), which reduced EPSC frequency. In contrast, the L-type Ca2+ channel opener BAY K 8644 increased EPSC frequency. Cyclothiazide increased the decay time constant of averaged simple EPSCs by approximately twofold. The low-affinity AMPA receptor antagonist γ-d-glutamylglycine (2 mM) reduced the proportion of simple EPSCs relative to complex events, indicating glutamate accumulation in the restricted cleft between HCI and calyx. In crista slices EPSC frequency was greater in central compared with peripheral calyces, which may be due to greater numbers of presynaptic ribbons in central hair cells. Our data support a role for L-type Ca2+ channels in spontaneous release and demonstrate regional variations in AMPA-mediated quantal transmission at the calyx synapse.NEW & NOTEWORTHY In vestibular calyx terminals of mature cristae we find that the majority of excitatory postsynaptic currents (EPSCs) are rapid monophasic events mediated by AMPA receptors. Spontaneous EPSCs are reduced by an L-type Ca2+ channel blocker and notably enhanced in extracellular Sr2+ EPSC frequency is greater in central areas of the crista compared with peripheral areas and may be associated with more numerous presynaptic ribbons in central hair cells.
Collapse
Affiliation(s)
- Matthew E Kirk
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Departments of Pediatrics, Neurology, and Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; .,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
16
|
Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 2017; 117:1969-1986. [PMID: 28202575 DOI: 10.1152/jn.00895.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 01/14/2023] Open
Abstract
Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents.NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational modeling provides insights into how morphology impacts excitability and also reveals a new explanation for spike train irregularity based on relative numbers of multiple bouton contacts per hair cell. This mechanism is independent of other proposed mechanisms for spike train irregularity based on ionic conductances and can explain irregularity in dimorphic units and calyx endings.
Collapse
Affiliation(s)
- William R Holmes
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Janice A Huwe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Barbara Williams
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Michael H Rowe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Ellengene H Peterson
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| |
Collapse
|
17
|
Contini D, Price SD, Art JJ. Accumulation of K + in the synaptic cleft modulates activity by influencing both vestibular hair cell and calyx afferent in the turtle. J Physiol 2016; 595:777-803. [PMID: 27633787 DOI: 10.1113/jp273060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/11/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS In the synaptic cleft between type I hair cells and calyceal afferents, K+ ions accumulate as a function of activity, dynamically altering the driving force and permeation through ion channels facing the synaptic cleft. High-fidelity synaptic transmission is possible due to large conductances that minimize hair cell and afferent time constants in the presence of significant membrane capacitance. Elevated potassium maintains hair cells near a potential where transduction currents are sufficient to depolarize them to voltages necessary for calcium influx and synaptic vesicle fusion. Elevated potassium depolarizes the postsynaptic afferent by altering ion permeation through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and contributes to depolarizing the afferent to potentials where a single EPSP (quantum) can generate an action potential. With increased stimulation, hair cell depolarization increases the frequency of quanta released, elevates [K+ ]cleft and depolarizes the afferent to potentials at which smaller and smaller EPSPs would be sufficient to trigger APs. ABSTRACT Fast neurotransmitters act in conjunction with slower modulatory effectors that accumulate in restricted synaptic spaces found at giant synapses such as the calyceal endings in the auditory and vestibular systems. Here, we used dual patch-clamp recordings from turtle vestibular hair cells and their afferent neurons to show that potassium ions accumulating in the synaptic cleft modulated membrane potentials and extended the range of information transfer. High-fidelity synaptic transmission was possible due to large conductances that minimized hair cell and afferent time constants in the presence of significant membrane capacitance. Increased potassium concentration in the cleft maintained the hair cell near potentials that promoted the influx of calcium necessary for synaptic vesicle fusion. The elevated potassium concentration also depolarized the postsynaptic neuron by altering ion permeation through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. This depolarization enabled the afferent to reliably generate action potentials evoked by single AMPA-dependent EPSPs. Depolarization of the postsynaptic afferent could also elevate potassium in the synaptic cleft, and would depolarize other hair cells enveloped by the same neuritic process increasing the fidelity of neurotransmission at those synapses as well. Collectively, these data demonstrate that neuronal activity gives rise to potassium accumulation, and suggest that potassium ion action on HCN channels can modulate neurotransmission, preserving the fidelity of high-speed synaptic transmission by dynamically shifting the resting potentials of both presynaptic and postsynaptic cells.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Steven D Price
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jonathan J Art
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
18
|
Channeling your inner ear potassium: K+ channels in vestibular hair cells. Hear Res 2016; 338:40-51. [DOI: 10.1016/j.heares.2016.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
|
19
|
Lithgow BJ, Garrett AL, Moussavi ZM, Gurvich C, Kulkarni J, Maller JJ, Fitzgerald PB. Major depression and electrovestibulography. World J Biol Psychiatry 2016; 16:334-50. [PMID: 25815564 DOI: 10.3109/15622975.2015.1014410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES No electrophysiological neuroimaging or genetic markers have been established that strongly relate to a diagnosis of major depression or its severity. The objective of this paper is to describe the preliminary evaluation of a potential new biomarker for depression utilizing the recording of electrical activity from the outer ear canal referred to as electrovestibulography (EVestG). METHODS Sensory oto-acoustic features were extracted from EVestG data to compare 31 healthy age- and gender-matched individuals as controls to 43 major depressive disorder (MDD) subjects (22 symptomatic (MDD-S), 21 reduced symptomatic (MDD-R)). The stimulus was a single supine-vertical translation. The six features examined were based on the measured firing pattern interval histogram and the shape of the average field potential response. RESULTS An unbiased classification accuracy of 85, 87 and 77% was achieved for separating Control from MDD-S, Control from MDD, and MDD-S from MDD-R groups respectively. Features used showed low but significant correlations (P < 0.05) with MADRS and CORE assessments. CONCLUSIONS The results support the use of separate features for measuring MDD symptomatology versus diagnosing MDD, representing plausible different mechanisms of brain function in MDD-S and MDD-R. The first evidence of the successful application of sensory oto-acoustic features toward diagnosing and measuring the symptomatology of MDD is presented.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred Hospital , Melbourne, Victoria Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Hight AE, Kalluri R. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons. J Neurophysiol 2016; 116:503-21. [PMID: 27121577 DOI: 10.1152/jn.00107.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/21/2016] [Indexed: 02/06/2023] Open
Abstract
The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking.
Collapse
Affiliation(s)
- Ariel E Hight
- Division of Communications Auditory Neuroscience, House Research Institute, Los Angeles, California; and
| | - Radha Kalluri
- Division of Communications Auditory Neuroscience, House Research Institute, Los Angeles, California; and Department of Otolaryngology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
21
|
The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). Hear Res 2015; 331:131-43. [PMID: 26626360 DOI: 10.1016/j.heares.2015.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023]
Abstract
UNLABELLED This study sought to characterize the response of mammalian primary otolithic neurons to sound and vibration by measuring the resting discharge rates, thresholds for increases in firing rate and supra-threshold sensitivity functions of guinea pig single primary utricular and saccular afferents. Neurons with irregular resting discharge were activated in response to bone conducted vibration (BCV) and air conducted sound (ACS) for frequencies between 100 Hz and 3000 Hz. The location of neurons was verified by labelling with neurobiotin. Many afferents from both maculae have very low or zero resting discharge, with saccular afferents having on average, higher resting rates than utricular afferents. Most irregular utricular and saccular afferents can be evoked by both BCV and ACS. For BCV stimulation: utricular and saccular neurons show similar low thresholds for increased firing rate (around 0.02 g on average) for frequencies from 100 Hz to 750 Hz. There is a steep increase in rate change threshold for BCV frequencies above 750 Hz. The suprathreshold sensitivity functions for BCV were similar for both utricular and saccular neurons, with, at low frequencies, very steep increases in firing rate as intensity increased. For ACS stimulation: utricular and saccular neurons can be activated by high intensity stimuli for frequencies from 250 Hz to 3000 Hz with similar flattened U-shaped tuning curves with lowest thresholds for frequencies around 1000-2000 Hz. The average ACS thresholds for saccular afferents across these frequencies is about 15-20 dB lower than for utricular neurons. The suprathreshold sensitivity functions for ACS were similar for both utricular and saccular neurons. Both utricular and saccular afferents showed phase-locking to BCV and ACS, extending up to frequencies of at least around 1500 Hz for BCV and 3000 Hz for ACS. Phase-locking at low frequencies (e.g. 100 Hz) imposes a limit on the neural firing rate evoked by the stimulus since the neurons usually fire one spike per cycle of the stimulus. CONCLUSION These results are in accord with the hypothesis put forward by Young et al. (1977) that each individual cycle of the waveform, either BCV or ACS, is the effective stimulus to the receptor hair cells on either macula. We suggest that each cycle of the BCV or ACS stimulus causes fluid displacement which deflects the short, stiff, hair bundles of type I receptors at the striola and so triggers the phase-locked neural response of primary otolithic afferents.
Collapse
|
22
|
Michel CB, Azevedo Coste C, Desmadryl G, Puel JL, Bourien J, Graham BP. Identification and modelling of fast and slow Ih current components in vestibular ganglion neurons. Eur J Neurosci 2015; 42:2867-77. [PMID: 26174408 PMCID: PMC4986932 DOI: 10.1111/ejn.13021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/09/2023]
Abstract
Previous experimental data indicates the hyperpolarization‐activated cation (Ih) current, in the inner ear, consists of two components [different hyperpolarization‐activated cyclic nucleotide‐gated (HCN) subunits] which are impossible to pharmacologically isolate. To confirm the presence of these two components in vestibular ganglion neurons we have applied a parameter identification algorithm which is able to discriminate the parameters of the two components from experimental data. Using simulated data we have shown that this algorithm is able to identify the parameters of two populations of non‐inactivated ionic channels more accurately than a classical method. Moreover, the algorithm was demonstrated to be insensitive to the key parameter variations. We then applied this algorithm to Ih current recordings from mouse vestibular ganglion neurons. The algorithm revealed the presence of a high‐voltage‐activated slow component and a low‐voltage‐activated fast component. Finally, the electrophysiological significance of these two Ih components was tested individually in computational vestibular ganglion neuron models (sustained and transient), in the control case and in the presence of cAMP, an intracellular cyclic nucleotide that modulates HCN channel activity. The results suggest that, first, the fast and slow components modulate differently the action potential excitability and the excitatory postsynaptic potentials in both sustained and transient vestibular neurons and, second, the fast and slow components, in the control case, provide different information about characteristics of the stimulation and this information is significantly modified after modulation by cAMP.
Collapse
Affiliation(s)
- Christophe B Michel
- Computing Science & Mathematics, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | | | - Gilles Desmadryl
- Institut National de la Sante et de la Recherche Medicale, Unite Mixte de Recherche 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Universite Montpellier 1 & 2, Montpellier, France
| | - Jean-Luc Puel
- Institut National de la Sante et de la Recherche Medicale, Unite Mixte de Recherche 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Universite Montpellier 1 & 2, Montpellier, France
| | - Jerome Bourien
- Institut National de la Sante et de la Recherche Medicale, Unite Mixte de Recherche 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Universite Montpellier 1 & 2, Montpellier, France
| | - Bruce P Graham
- Computing Science & Mathematics, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
23
|
Meredith FL, Kirk ME, Rennie KJ. Kv1 channels and neural processing in vestibular calyx afferents. Front Syst Neurosci 2015; 9:85. [PMID: 26082693 PMCID: PMC4451359 DOI: 10.3389/fnsys.2015.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/18/2015] [Indexed: 11/13/2022] Open
Abstract
Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA
| | - Matthew E Kirk
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA ; Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, Colorado, USA
| |
Collapse
|
24
|
Lithgow BJ, Shoushtarian M. Parkinson's disease: disturbed vestibular function and levodopa. J Neurol Sci 2015; 353:49-58. [PMID: 25899315 DOI: 10.1016/j.jns.2015.03.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/15/2022]
Abstract
Evidence indicates Levodopa effects central postural control. As electrophysiological postural control biomarkers, sensory oto-acoustic features were extracted from Electrovestibulography (EVestG) data to identify 20 healthy age and gender matched individuals as Controls from 20 PD subjects before (PDlowmed) and 18 after (PDmed) morning doses of Levodopa. EVestG data was collected using a single tilt stimulus applied in the pitch plane. The extracted features were based on the measured firing pattern, interval histogram and the shape of the average field potential response. An unbiased cross validated classification accuracy of 88%, 88% and 79% was achieved using combinations of 2 features for separating PDlowmed from control, control from PD (combined PDlowmed and PDmed), and PDlowmed from PDmed groups respectively. One feature showed significant correlations (p<0.05) with the Modified Hoehn and Yahr PD staging scale. The results indicate disturbed vestibular function is observed in both the PDmed and PDlowmed conditions, and these are separable. The implication is that Levodopa may also affect peripheral as well as central postural control.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred Hospital, 4th Floor, 607St Kilda Rd, Melbourne, Victoria, Australia 3004; Diagnostic and Neurosignal Processing Research Laboratory, Monash University, Wellington Rd, Clayton, Victoria, Australia 3180; Diagnostic and Neurosignal Processing Research Laboratory, University of Manitoba, Riverview Health Centre, 1 Morley St, Winnipeg, MB, Canada R3L 2P4.
| | - Mehrnaz Shoushtarian
- Diagnostic and Neurosignal Processing Research Laboratory, Monash University, Wellington Rd, Clayton, Victoria, Australia 3180.
| |
Collapse
|
25
|
Abstract
In the vestibular periphery a unique postsynaptic terminal, the calyx, completely covers the basolateral walls of type I hair cells and receives input from multiple ribbon synapses. To date, the functional role of this specialized synapse remains elusive. There is limited data supporting glutamatergic transmission, K(+) or H(+) accumulation in the synaptic cleft as mechanisms of transmission. Here the role of glutamatergic transmission at the calyx synapse is investigated. Whole-cell patch-clamp recordings from calyx endings were performed in an in vitro whole-tissue preparation of the rat vestibular crista, the sensory organ of the semicircular canals that sense head rotation. AMPA-mediated EPSCs showed an unusually wide range of decay time constants, from <5 to >500 ms. Decay time constants of EPSCs increased (or decreased) in the presence of a glutamate transporter blocker (or a competitive glutamate receptor blocker), suggesting a role for glutamate accumulation and spillover in synaptic transmission. Glutamate accumulation caused slow depolarizations of the postsynaptic membrane potentials, and thereby substantially increased calyx firing rates. Finally, antibody labelings showed that a high percentage of presynaptic ribbon release sites and postsynaptic glutamate receptors were not juxtaposed, favoring a role for spillover. These findings suggest a prominent role for glutamate spillover in integration of inputs and synaptic transmission in the vestibular periphery. We propose that similar to other brain areas, such as the cerebellum and hippocampus, glutamate spillover may play a role in gain control of calyx afferents and contribute to their high-pass properties.
Collapse
|
26
|
Meredith FL, Rennie KJ. Zonal variations in K+ currents in vestibular crista calyx terminals. J Neurophysiol 2014; 113:264-76. [PMID: 25343781 DOI: 10.1152/jn.00399.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na(+) but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K(+) currents were observed at potentials above -60 mV. K(+) currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K(+) channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K(+) channel blocker 4-aminopyridine (10-50 μM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K(+) conductances may contribute to different firing responses in calyx afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
27
|
Horwitz GC, Risner-Janiczek JR, Holt JR. Mechanotransduction and hyperpolarization-activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons. J Gen Physiol 2014; 143:481-97. [PMID: 24638995 PMCID: PMC3971655 DOI: 10.1085/jgp.201311126] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/12/2014] [Indexed: 11/20/2022] Open
Abstract
The hyperpolarization-activated, cyclic nucleotide-sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits from the Hcn gene family. The relative expression of Hcn1-4 mRNA was examined using a quantitative reverse transcription PCR (RT-PCR) screen. Hcn2 was the most highly expressed subunit in vestibular neuron cell bodies. Immunolocalization of HCN2 revealed robust expression in cell bodies of all vestibular ganglion neurons. To characterize Ih in vestibular neuron cell bodies and at hair cell-afferent synapses, we developed an intact, ex vivo preparation. We found robust physiological expression of Ih in 89% of cell bodies and 100% of calyx terminals. Ih was significantly larger in calyx terminals than in cell bodies; however, other biophysical characteristics were similar. Ih was absent in calyces lacking Hcn1 and Hcn2, but small Ih was still present in cell bodies, which suggests expression of an additional subunit, perhaps Hcn4. To determine the contributions of hair cell mechanotransduction and Ih to the firing patterns of calyx terminals, we recorded action potentials in current-clamp mode. Mechanotransduction currents were modulated by hair bundle defection and application of calcium chelators to disrupt tip links. Ih activity was modulated using ZD7288 and cAMP. We found that both hair cell transduction and Ih contribute to the rate and regularity of spontaneous action potentials in the vestibular afferent neurons. We propose that modulation of Ih in vestibular ganglion neurons may provide a mechanism for modulation of spontaneous activity in the vestibular periphery.
Collapse
Affiliation(s)
- Geoffrey C. Horwitz
- Department of Otolaryngology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Neuroscience and Otolaryngology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jessica R. Risner-Janiczek
- Department of Neuroscience and Otolaryngology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jeffrey R. Holt
- Department of Otolaryngology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
28
|
Abstract
Afferent nerve fibers in the central zones of vestibular epithelia form calyceal endings around type I hair cells and have phasic response properties that emphasize fast head motions. We investigated how stages from hair-cell transduction to calyceal spiking contribute tuning and timing to central (striolar)-zone afferents of the rat saccular epithelium. In an excised preparation, we deflected individual hair bundles with rigid probes driven with steps and sinusoids (0.5-500 Hz) and recorded whole-cell responses from hair cells and calyces at room temperature and body temperature. In immature hair cells and calyces (postnatal days (P)1-P4), tuning sharpened at each stage. Transducer adaptation and membrane-charging time produced bandpass filtering of the receptor potential with best frequencies of 10-30 Hz and phase leads below 10 Hz. For small stimuli, electrical resonances sharply tuned the hair-cell membrane in the frequency range of 5-40 Hz. The synaptic delay of quantal transmission added a phase lag at frequencies above 10 Hz. The influence of spike thresholds at the calyceal spike initiation stage sharpened tuning and advanced response phase. Two additional mechanisms strongly advanced response phase above 10 Hz when present: (1) maturing (P7-P9) type I hair cells acquired low-voltage-activated channels that shortened the rise time of the receptor potential and (2) some calyces had nonquantal transmission with little synaptic delay. By reducing response time, the identified inner-ear mechanisms (transducer adaptation, low-voltage-activated channels, nonquantal transmission, and spike triggering) may compensate for transmission delays in vestibular reflex pathways and help stabilize posture and gaze during rapid head motions.
Collapse
|
29
|
Cervantes B, Vega R, Limón A, Soto E. Identity, expression and functional role of the sodium-activated potassium current in vestibular ganglion afferent neurons. Neuroscience 2013; 240:163-75. [PMID: 23466807 DOI: 10.1016/j.neuroscience.2013.02.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Vestibular afferent neurons (VANs) transmit information from the vestibular end organs to the central nuclei. This information is encoded within the firing pattern of these cells and is heavily influenced by the K⁺ conductances expressed by vestibular neurons. In the present study, we describe the presence of a previously unidentified Na⁺-activated K⁺ conductance (KNa) in these cells. We observed that the blocking of Na⁺ channels by tetrodotoxin (TTX) or the substitution of choline for Na⁺ in the extracellular solution during voltage clamp pulses resulted in the reduction of a sustained outward current that was dependent on the Na⁺ current. Furthermore, increases in the intracellular concentration of Na⁺ that were made by blocking the Na⁺/K⁺ ATPase with ouabain increased the amplitude of the outward current, and reduction of the intracellular Cl⁻ concentration reduced the TTX-sensitive outward current. The substitution of Li⁺ for Na⁺ in the extracellular solution significantly reduced the amplitude of the outward current in voltage clamp pulses and decreased the afterhyperpolarization (AHP) of the action potentials in current clamp experiments. These electrophysiological results are consistent with the presence of mRNA transcripts for the KNa subunits Slick and Slack in the vestibular ganglia and in the sensory epithelium, which were detected using reverse-transcription polymerase chain reaction (RT-PCR). These results are also consistent with the immunolabeling of Slick and Slack protein in isolated vestibular neurons, in the vestibular ganglion and in the vestibular sensory epithelium. These results indicate that KNa channels are expressed in VANs and in their terminals. Furthermore, these data indicate that these channels may contribute to the firing pattern of vestibular neurons.
Collapse
Affiliation(s)
- B Cervantes
- Instituto de Fisiología, Universidad Autónoma de Puebla, 14 Sur 6301, Puebla C.P. 72570, Pue., Mexico
| | | | | | | |
Collapse
|