1
|
Skoe E, Powell S. Hypoactivation of the central auditory system in listeners who are hypertolerant of background noise. J Neurophysiol 2024; 132:1074-1084. [PMID: 39081211 PMCID: PMC11427039 DOI: 10.1152/jn.00297.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Listeners exhibit varying levels of tolerance for background noise during speech communication. It has been proposed that low tolerance of background noise may be the consequence of abnormally amplified gain in the central auditory system (CAS). Here, using a dataset of young adults with normal hearing thresholds, we asked whether central gain mechanisms might also explain cases of hypertolerance of background noise, as well as cases of reduced, but not abnormal, tolerance. We used the auditory brainstem response to derive a measure of CAS gain (wave V/wave I ratio) to compare listeners' background noise tolerance while listening to speech, grouping them into three categories: hyper, high, and medium tolerance. We found that hypertolerant listeners had reduced CAS gain compared to those with high tolerance. This effect was driven by wave V not wave I. In addition, the medium tolerant listeners trended toward having reduced wave I and reduced wave V amplitudes and generally higher levels of exposure to loud sound, suggestive of the early stages of noise-compromised peripheral function without an apparent compensatory increase in central gain. Our results provide physiological evidence that 1) reduced CAS gain may account for hypertolerance of background noise but that 2) increased CAS gain is not a prerequisite for medium tolerance of background noise.NEW & NOTEWORTHY Our findings strengthen the proposed mechanistic connection between background noise tolerance and auditory physiology by suggesting a link between hypertolerance and reduced central auditory gain, measured by the auditory brainstem response.
Collapse
Affiliation(s)
- Erika Skoe
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut, United States
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Sarah Powell
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut, United States
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Devolder P, Keppler H, Keshishzadeh S, Taghon B, Dhooge I, Verhulst S. The role of hidden hearing loss in tinnitus: Insights from early markers of peripheral hearing damage. Hear Res 2024; 450:109050. [PMID: 38852534 DOI: 10.1016/j.heares.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Since the presence of tinnitus is not always associated with audiometric hearing loss, it has been hypothesized that hidden hearing loss may act as a potential trigger for increased central gain along the neural pathway leading to tinnitus perception. In recent years, the study of hidden hearing loss has improved with the discovery of cochlear synaptopathy and several objective diagnostic markers. This study investigated three potential markers of peripheral hidden hearing loss in subjects with tinnitus: extended high-frequency audiometric thresholds, the auditory brainstem response, and the envelope following response. In addition, speech intelligibility was measured as a functional outcome measurement of hidden hearing loss. To account for age-related hidden hearing loss, participants were grouped according to age, presence of tinnitus, and audiometric thresholds. Group comparisons were conducted to differentiate between age- and tinnitus-related effects of hidden hearing loss. All three markers revealed age-related differences, whereas no differences were observed between the tinnitus and non-tinnitus groups. However, the older tinnitus group showed improved performance on low-pass filtered speech in noise tests compared to the older non-tinnitus group. These low-pass speech in noise scores were significantly correlated with tinnitus distress, as indicated using questionnaires, and could be related to the presence of hyperacusis. Based on our observations, cochlear synaptopathy does not appear to be the underlying cause of tinnitus. The improvement in low-pass speech-in-noise could be explained by enhanced temporal fine structure encoding or hyperacusis. Therefore, we recommend that future tinnitus research takes into account age-related factors, explores low-frequency encoding, and thoroughly assesses hyperacusis.
Collapse
Affiliation(s)
- Pauline Devolder
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde, Belgium; Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
| | - Hannah Keppler
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium; Department of Ear, Nose and Throat, Ghent University Hospital, Ghent, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde, Belgium
| | - Baziel Taghon
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde, Belgium
| | - Ingeborg Dhooge
- Department of Ear, Nose and Throat, Ghent University Hospital, Ghent, Belgium; Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde, Belgium
| |
Collapse
|
3
|
Schmidt FH, Dörmann A, Ehrt K, Grossmann W, Mlynski R, Zhang L. The curvature quantification of wave I in auditory brainstem responses detects cochlear synaptopathy in human beings. Eur Arch Otorhinolaryngol 2024; 281:4735-4746. [PMID: 38703194 DOI: 10.1007/s00405-024-08699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Patients with age-related hearing loss complain often about reduced speech perception in adverse listening environment. Studies on animals have suggested that cochlear synaptopathy may be one of the primary mechanisms responsible for this phenomenon. A decreased wave I amplitude in supra-threshold auditory brainstem response (ABR) can diagnose this pathology non-invasively. However, the interpretation of the wave I amplitude in humans remains controversial. Recent studies in mice have established a robust and reliable mathematic algorithm, i.e., curve curvature quantification, for detecting cochlear synaptopathy. This study aimed to determine whether the curve curvature has sufficient test-retest reliability to detect cochlear synaptopathy in aging humans. METHODS Healthy participants were recruited into this prospective study. All subjects underwent an audiogram examination with standard and extended high frequencies ranging from 0.125 to 16 kHz and an ABR with a stimulus of 80 dB nHL click. The peak amplitude, peak latency, curvature at the peak, and the area under the curve of wave I were calculated and analyzed. RESULTS A total of 80 individuals with normal hearing, aged 18 to 61 years, participated in this study, with a mean age of 26.4 years. Pearson correlation analysis showed a significant negative correlation between curvature and age, as well as between curvature and extended high frequency (EHF) threshold (10-16 kHz). Additionally, the same correlation was observed between age and area as well as age and EHF threshold. The model comparison demonstrated that the curvature at the peak of wave I is the best metric to correlate with EHF threshold. CONCLUSION The curvature at the peak of wave I is the most sensitive metric for detecting cochlear synaptopathy in humans and may be applied in routine diagnostics to detect early degenerations of the auditory nerve.
Collapse
Affiliation(s)
- Florian Herrmann Schmidt
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Alexander Dörmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Karsten Ehrt
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Wilma Grossmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Lichun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany.
| |
Collapse
|
4
|
Fabrizio-Stover EM, Oliver DL, Burghard AL. Tinnitus mechanisms and the need for an objective electrophysiological tinnitus test. Hear Res 2024; 449:109046. [PMID: 38810373 DOI: 10.1016/j.heares.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Tinnitus, the perception of sound with no external auditory stimulus, is a complex, multifaceted, and potentially devastating disorder. Despite recent advances in our understanding of tinnitus, there are limited options for effective treatment. Tinnitus treatments are made more complicated by the lack of a test for tinnitus based on objectively measured physiological characteristics. Such an objective test would enable a greater understanding of tinnitus mechanisms and may lead to faster treatment development in both animal and human research. This review makes the argument that an objective tinnitus test, such as a non-invasive electrophysiological measure, is desperately needed. We review the current tinnitus assessment methods, the underlying neural correlates of tinnitus, the multiple tinnitus generation theories, and the previously investigated electrophysiological measurements of tinnitus. Finally, we propose an alternate objective test for tinnitus that may be valid in both animal and human subjects.
Collapse
Affiliation(s)
- Emily M Fabrizio-Stover
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University South Carolina, Charleston, SC, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Alice L Burghard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
5
|
Richardson ML, Luo J, Zeng FG. Attention-Modulated Cortical Responses as a Biomarker for Tinnitus. Brain Sci 2024; 14:421. [PMID: 38790400 PMCID: PMC11118879 DOI: 10.3390/brainsci14050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Attention plays an important role in not only the awareness and perception of tinnitus but also its interactions with external sounds. Recent evidence suggests that attention is heightened in the tinnitus brain, likely as a result of relatively local cortical changes specific to deafferentation sites or global changes that help maintain normal cognitive capabilities in individuals with hearing loss. However, most electrophysiological studies have used passive listening paradigms to probe the tinnitus brain and produced mixed results in terms of finding a distinctive biomarker for tinnitus. Here, we designed a selective attention task, in which human adults attended to one of two interleaved tonal (500 Hz and 5 kHz) sequences. In total, 16 tinnitus (5 females) and 13 age- and hearing-matched control (8 females) subjects participated in the study, with the tinnitus subjects matching the tinnitus pitch to 5.4 kHz (range = 1.9-10.8 kHz). Cortical responses were recorded in both passive and attentive listening conditions, producing no differences in P1, N1, and P2 between the tinnitus and control subjects under any conditions. However, a different pattern of results emerged when the difference was examined between the attended and unattended responses. This attention-modulated cortical response was significantly greater in the tinnitus than control subjects: 3.9-times greater for N1 at 5 kHz (95% CI: 2.9 to 5.0, p = 0.007, ηp2 = 0.24) and 3.0 for P2 at 500 Hz (95% CI: 1.9 to 4.5, p = 0.026, ηp2 = 0.17). We interpreted the greater N1 modulation as local neural changes specific to the tinnitus frequency and the greater P2 as global changes to hearing loss. These two cortical measures were used to differentiate between the tinnitus and control subjects, producing 83.3% sensitivity and 76.9% specificity (AUC = 0.81, p = 0.006). These results suggest that the tinnitus brain is more plastic than that of the matched non-tinnitus controls and that the attention-modulated cortical response can be developed as a clinically meaningful biomarker for tinnitus.
Collapse
Affiliation(s)
- Matthew L. Richardson
- Department of Otolaryngology—Head and Neck Surgery, University of California at Irvine, Irvine, CA 92697, USA;
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
| | - Jiaxin Luo
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
| | - Fan-Gang Zeng
- Department of Otolaryngology—Head and Neck Surgery, University of California at Irvine, Irvine, CA 92697, USA;
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
- Departments of Anatomy and Neurobiology, Cognitive Sciences, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Smith SS, Jahn KN, Sugai JA, Hancock KE, Polley DB. The human pupil and face encode sound affect and provide objective signatures of tinnitus and auditory hypersensitivity disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.571929. [PMID: 38187580 PMCID: PMC10769427 DOI: 10.1101/2023.12.22.571929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Sound is jointly processed along acoustic and emotional dimensions. These dimensions can become distorted and entangled in persons with sensory disorders, producing a spectrum of loudness hypersensitivity, phantom percepts, and - in some cases - debilitating sound aversion. Here, we looked for objective signatures of disordered hearing (DH) in the human face. Pupil dilations and micro facial movement amplitudes scaled with sound valence in neurotypical listeners but not DH participants with chronic tinnitus (phantom ringing) and sound sensitivity. In DH participants, emotionally evocative sounds elicited abnormally large pupil dilations but blunted and invariant facial reactions that jointly provided an accurate prediction of individual tinnitus and hyperacusis questionnaire handicap scores. By contrast, EEG measures of central auditory gain identified steeper neural response growth functions but no association with symptom severity. These findings highlight dysregulated affective sound processing in persons with bothersome tinnitus and sound sensitivity disorders and introduce approaches for their objective measurement.
Collapse
Affiliation(s)
- Samuel S Smith
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
- Lead contact
| | - Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Jenna A Sugai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
| | - Ken E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| |
Collapse
|
7
|
Yam C, McGovern B, Boyajieff E, Maxwell P, Little K, Sataloff RT. The impact of menopausal status on auditory brainstem responses. Am J Otolaryngol 2024; 45:104067. [PMID: 37778111 DOI: 10.1016/j.amjoto.2023.104067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To determine the effect of decreased estrogen levels due to menopause on auditory brainstem response measurements (ABR). STUDY DESIGN Retrospective chart review. SETTING Academic. PATIENTS Pre- and post-menopausal females (pre-M, post-M) and age-matched males. METHODS ABR measurements of wave I, III, and V latencies, and interpeak latencies; amplitudes of waves I, III, V, and V/I ratio. OUTCOME MEASURE Differences in ABR measurements between pre-M and post-M. RESULTS 164 subjects (101 female and 64 male) were included. Post-M had significantly greater latencies (msec) than pre-M of wave V. Post-M had a significantly smaller wave I amplitude (uV) than pre-M. Post-M had a significantly higher wave V/I amplitude ratio than pre-M. Pre-M had significantly shorter latencies than young males for wave III, and wave V. Post-M had significantly shorter latencies than older males at wave III, and wave V. A two-way ANOVA revealed a significant interaction between the effects of age category and gender on V/I amplitude. CONCLUSION Post-M group showed a significant drop in wave I amplitude compared with pre-M group, even in the absence of hearing loss, suggesting that the gender differences in hearing are related to estrogen signaling along the auditory pathway. If wave I amplitude changes between older and younger groups resulted from decreased peripheral hearing sensitivity, we would expect larger drops in amplitude in males since rates of presbycusis are higher. We observed much larger drops in wave I amplitude in females, which cannot be attributed to peripheral hearing loss. These results may assist in understanding gender differences in presbycusis and a possible protective effect of estrogen on the auditory system. Knowledge of gender differences in wave I may be important when ABR is used to assess possible synaptopathy.
Collapse
Affiliation(s)
- Christopher Yam
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Brian McGovern
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Emma Boyajieff
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Philip Maxwell
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Kara Little
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Robert T Sataloff
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America; Senior Associate Dean for Clinical Academic Specialties, Drexel University College of Medicine, United States of America.
| |
Collapse
|
8
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
9
|
Burke K, Burke M, Lauer AM. Auditory brainstem response (ABR) waveform analysis program. MethodsX 2023; 11:102414. [PMID: 37846351 PMCID: PMC10577057 DOI: 10.1016/j.mex.2023.102414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Auditory brainstem responses (ABR) are a high-throughput assessment of auditory function. Many studies determine changes to the threshold at frequencies that span the normal hearing range of their test subjects, but fewer studies evaluate changes in waveform morphology. The goal of developing this program was to make a user-friendly semiautomatic peak-detection algorithm to encourage widespread analysis of the amplitudes and latencies of the ABR, which may yield informative details about the integrity of the auditory system with development, aging, genetic manipulations, or damaging conditions. This method incorporates automated peak detection with manual override and inter-rater validation to calculate the amplitude and latency for waves 1-5, as well as interpeak latencies and amplitude ratios between waves. The output includes raw data and calculations in a format compatible with graphical and statistical software.•The method yields a high-throughput peak-detection algorithm with manual override and inter-rater capabilities to streamline ABR waveform analysis.•Data output includes amplitudes, latencies, amplitude ratios, and interpeak latencies for generation of input-output curves.•While complete automation of peak detection with this tool is dependent on good signal-to-noise ratios, relevant amplitude and latency calculations are fully automated, and manual spot-checking is simplified to significantly reduce the time to analyze waveforms.
Collapse
Affiliation(s)
- Kali Burke
- Department of Otolaryngology- Head and Neck Surgery at Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205, USA
| | - Matthew Burke
- Hexagon Manufacturing Intelligence, 624 Grassmere Park Suite 7, Nashville TN 37214, USA
| | - Amanda M. Lauer
- Department of Otolaryngology- Head and Neck Surgery at Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205, USA
- Department of Neuroscience at Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Vasilkov V, Caswell-Midwinter B, Zhao Y, de Gruttola V, Jung DH, Liberman MC, Maison SF. Evidence of cochlear neural degeneration in normal-hearing subjects with tinnitus. Sci Rep 2023; 13:19870. [PMID: 38036538 PMCID: PMC10689483 DOI: 10.1038/s41598-023-46741-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Tinnitus, reduced sound-level tolerance, and difficulties hearing in noisy environments are the most common complaints associated with sensorineural hearing loss in adult populations. This study aims to clarify if cochlear neural degeneration estimated in a large pool of participants with normal audiograms is associated with self-report of tinnitus using a test battery probing the different stages of the auditory processing from hair cell responses to the auditory reflexes of the brainstem. Self-report of chronic tinnitus was significantly associated with (1) reduced cochlear nerve responses, (2) weaker middle-ear muscle reflexes, (3) stronger medial olivocochlear efferent reflexes and (4) hyperactivity in the central auditory pathways. These results support the model of tinnitus generation whereby decreased neural activity from a damaged cochlea can elicit hyperactivity from decreased inhibition in the central nervous system.
Collapse
Affiliation(s)
- Viacheslav Vasilkov
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin Caswell-Midwinter
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yan Zhao
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
| | - Victor de Gruttola
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02114, USA
| | - David H Jung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Bramhall NF, Theodoroff SM, McMillan GP, Kampel SD, Buran BN. Associations Between Physiological Correlates of Cochlear Synaptopathy and Tinnitus in a Veteran Population. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4635-4652. [PMID: 37889209 DOI: 10.1044/2023_jslhr-23-00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE Animal models and human temporal bones indicate that noise exposure is a risk factor for cochlear synaptopathy, a possible etiology of tinnitus. Veterans are exposed to high levels of noise during military service. Therefore, synaptopathy may explain the high rates of noise-induced tinnitus among Veterans. Although synaptopathy cannot be directly evaluated in living humans, animal models indicate that several physiological measures are sensitive to synapse loss, including the auditory brainstem response (ABR), the middle ear muscle reflex (MEMR), and the envelope following response (EFR). The purpose of this study was to determine whether tinnitus is associated with reductions in physiological correlates of synaptopathy that parallel animal studies. METHOD Participants with normal audiograms were grouped according to Veteran status and tinnitus report (Veterans with tinnitus, Veterans without tinnitus, and non-Veteran controls). The effects of being a Veteran with tinnitus on ABR, MEMR, and EFR measurements were independently modeled using Bayesian regression analysis. RESULTS Modeled point estimates of MEMR and EFR magnitude showed reductions for Veterans with tinnitus compared with non-Veterans, with the most evident reduction observed for the EFR. Two different approaches were used to provide context for the Veteran tinnitus effect on the EFR by comparing to age-related reductions in EFR magnitude and synapse numbers observed in previous studies. These analyses suggested that EFR magnitude/synapse counts were reduced in Veterans with tinnitus by roughly the same amount as over 20 years of aging. CONCLUSION These findings suggest that cochlear synaptopathy may contribute to tinnitus perception in noise-exposed Veterans. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24347761.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sarah M Theodoroff
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Brad N Buran
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
12
|
Morse K, Vander Werff K. The Effect of Tinnitus and Related Characteristics on Subcortical Auditory Processing. Ear Hear 2023; 44:1344-1353. [PMID: 37127904 DOI: 10.1097/aud.0000000000001376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVES The primary aim of this study was to evaluate whether individuals with tinnitus exhibited evidence of reduced inhibition and increased excitation at the subcortical auditory processing level. Based on the proposed mechanism of tinnitus generation, including peripheral auditory insult that triggers reduced inhibition and subcortical hyperactivity, it was hypothesized that a tinnitus group would yield reduced amplitudes for the most peripheral auditory brainstem response (ABR) component (wave I) and larger amplitudes for the most central ABR component (wave V) relative to controls matched on factors of age, sex, and hearing loss. Further, this study assessed the relative influence of tinnitus presence versus other related individual characteristics, including hearing loss, age, noise exposure history, and speech perception in noise on these ABR outcomes. DESIGN Subcortical processing was examined using click-evoked ABR in an independent groups experimental design. A group of adults who perceived daily unilateral or bilateral tinnitus were matched with a control group counterpart without tinnitus by age, hearing, and sex (in each group n = 18; 10 females, 8 males). Amplitudes for ABR waves I, III, V, and the V/I ratio were compared between groups by independent t-tests. The relative influence of tinnitus (presence/absence), age (in years), noise exposure history (subjective self-report), hearing loss (audiometric thresholds), and speech perception in noise (SNR-50) was determined based on the proportional reduction in error associated with accounting for each variable of interest using multiple regression. RESULTS Between-group trends were consistent with smaller amplitudes for all ABR components in individuals with tinnitus. Contrary to our hypotheses, however, none of the tinnitus compared with control group differences in ABR outcomes were statistically significant. In the multiple regression models, none of the factors including tinnitus presence, age, noise exposure history, hearing loss, and speech perception in noise significantly predicted ABR V/I ratio outcomes. CONCLUSIONS The presence of reduced inhibition and subcortical hyperactivity in the tinnitus group was not supported in the current study. There were trends in ABR outcomes consistent with reduced peripheral to central brainstem auditory activity in the tinnitus group, but none of the group differences reached significance. It should also be noted that the tinnitus group had poorer extended high-frequency thresholds compared with controls. Regardless, neither tinnitus presence nor any of the proposed related characteristics were found to significantly influence the ABR V/I ratio. These findings suggest that either reduced subcortical inhibition was not a primary underlying mechanism for the tinnitus perceived by these subjects, or that ABR was not a reliable indicator of reduced subcortical inhibition possibly due to characteristics of the sample including a skewed distributions toward young and normal hearing individuals with little tinnitus distress.
Collapse
Affiliation(s)
- Kenneth Morse
- Division of Communication Sciences and Disorders, West Virginia University, Morgantown, West Virginia, USA
| | - Kathy Vander Werff
- Department of Communication Sciences and Disorders, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
13
|
Farhadi M, Gorji A, Mirsalehi M, Müller M, Poletaev AB, Mahboudi F, Asadpour A, Ebrahimi M, Beiranvand M, Khaftari MD, Akbarnejad Z, Mahmoudian S. The human neuroprotective placental protein composition suppressing tinnitus and restoring auditory brainstem response in a rodent model of sodium salicylate-induced ototoxicity. Heliyon 2023; 9:e19052. [PMID: 37636471 PMCID: PMC10457515 DOI: 10.1016/j.heliyon.2023.e19052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The effect of neuroprotective placental protein composition (NPPC) on the suppression of tinnitus and the restoration of the auditory brainstem response (ABR) characteristics was explored in tinnitus-induced rats. The animals were placed into two groups: (1) the study group, rats received sodium salicylate (SS) at the dose of 200 mg/kg twice a day for two weeks, and then 0.4 mg of the NPPC per day, between the 14th and 28th days, (2) the placebo group, rats received saline for two weeks, and then the NPPC alone between the 14th and 28th days. The gap pre-pulse inhibition of the acoustic startle (GPIAS), the pre-pulse inhibition (PPI), and the ABR assessments were performed on animals in both groups three times (baseline, day 14, and 28). The GPIAS value declined after 14 consecutive days of the SS injection, while NPPC treatment augmented the GPIAS score in the study group on the 28th day. The PPI outcomes revealed no significant changes, indicating hearing preservation after the SS and NPPC administrations. Moreover, some changes in ABR characteristics were observed following SS injection, including (1) higher ABR thresholds, (2) lowered waves I and II amplitudes at the frequencies of 6, 12, and 24 kHz and wave III at the 12 kHz, (3) elevated amplitude ratios, and (4) prolongation in brainstem transmission time (BTT). All the mentioned variables returned to their normal values after applying the NPPC. The NPPC use could exert positive therapeutic effects on the tinnitus-induced rats and improve their ABR parameters.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery Westfälische Wilhelms-Universitat Münster, Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center Khatam Alanbia Hospital, Tehran, Iran
| | - Marjan Mirsalehi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | - Alexander Borisovich Poletaev
- Clinical and Research Center of Children Psycho-Neurology, Moscow, Russian Federation
- Medical Research Centre “Immunculus”, Moscow, Russian Federation
| | | | - Abdoreza Asadpour
- Intelligent Systems Research Center, Ulster University, Magee Campus, Derry∼Londonderry, Northern Ireland, UK
| | - Mohammad Ebrahimi
- The Research Center for New Technologies in Life Sciences Engineering, Tehran University, Tehran, Iran
| | - Mohaddeseh Beiranvand
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Dehghani Khaftari
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Bhatt IS, Lichtenhan J, Tyler R, Goodman S. Influence of tinnitus, lifetime noise exposure, and firearm use on hearing thresholds, distortion product otoacoustic emissions, and their relative metric. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:418-432. [PMID: 37477366 PMCID: PMC10362977 DOI: 10.1121/10.0019880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/22/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) and hearing thresholds (HTs) are widely used to evaluate auditory physiology. DPOAEs are sensitive to cochlear amplification processes, while HTs are additionally dependent upon inner hair cells, synaptic junctions, and the auditory nervous system. These distinctions between DPOAEs and HTs might help differentially diagnose auditory dysfunctions. This study aims to differentially diagnose auditory dysfunctions underlying tinnitus, firearm use, and high lifetime noise exposure (LNE) using HTs, DPOAEs, and a derived metric comparing HTs and DPOAEs, in a sample containing overlapping subgroups of 133 normal-hearing young adults (56 with chronic tinnitus). A structured interview was used to evaluate LNE and firearm use. Linear regression was used to model the relationship between HTs and DPOAEs, and their regression residuals were used to quantify their relative agreement. Participants with chronic tinnitus showed significantly elevated HTs, yet DPOAEs remained comparable to those without tinnitus. In contrast, firearm users revealed elevated HTs and significantly lower DPOAEs than predicted from HTs. High LNE was associated with elevated HTs and a proportional decline in DPOAEs, as predicted from HTs. We present a theoretical model to interpret the findings, which suggest neural (or synaptic) dysfunction underlying tinnitus and disproportional mechanical dysfunction underlying firearm use.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jeffery Lichtenhan
- Department of Otolaryngology-Head and Neck Surgery, University of South Florida, Tampa, Florida 33612, USA
| | - Richard Tyler
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, Iowa 52242, USA
| | - Shawn Goodman
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
15
|
Tan SL, Chen YF, Liu CY, Chu KC, Li PC. Shortened neural conduction time in young adults with tinnitus as revealed by chirp-evoked auditory brainstem response. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2178. [PMID: 37092912 DOI: 10.1121/10.0017789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Tinnitus is generally considered to be caused by neuroplastic changes in the central nervous system, triggered by a loss of input from the damaged peripheral system; however, conflicting results on auditory brainstem responses (ABRs) to clicks have been reported previously in humans with tinnitus. This study aimed to compare the effect of tinnitus on ABRs to chirps with those to clicks in normal-hearing young adults with tinnitus. The results showed that the tinnitus group had no significantly poorer hearing thresholds (0.25-16 kHz), click-evoked otoacoustic emissions (1-16 kHz), and speech perception in noise (SPIN) than the control group. Although chirps evoked significantly larger wave I and V amplitudes than clicks, people with tinnitus had no significantly smaller wave I amplitudes for either stimulus. Nevertheless, adults with tinnitus exhibited significantly smaller interpeak interval (IPI) between waves I and V for chirps (IPI-chirp) but not for clicks. In addition, the IPI-chirp correlated significantly with the SPIN for individuals with tinnitus when the signal-to-noise ratio was low. The present results suggest that the chirp-evoked ABR may be a valuable clinical tool for objectively assessing the SPIN in individuals with tinnitus. Further studies should be conducted to investigate possible etiologies of tinnitus.
Collapse
Affiliation(s)
- See Ling Tan
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Yu-Fu Chen
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Chieh-Yu Liu
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Kuo-Chung Chu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Pei-Chun Li
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, Number 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei City 25245, Taiwan
| |
Collapse
|
16
|
Drummond PD, Finch PM. Auditory disturbances in patients with complex regional pain syndrome. Pain 2023; 164:804-810. [PMID: 36036917 DOI: 10.1097/j.pain.0000000000002766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) is often associated with reduced sound tolerance (hyperacusis) on the affected side, but the mechanism of this symptom is unclear. As compensatory increases in central auditory activity after cochlear injury may trigger hyperacusis, hearing and discomfort thresholds to pure tones (250, 500, 1000, 2000, 3000, 4000, 6000, and 8000 Hz) were assessed in 34 patients with CRPS and 26 pain-free controls. In addition, in 31 patients and 17 controls, auditory-evoked potentials to click stimuli (0.08 ms duration, 6 Hz, 60 dB above the hearing threshold) were averaged across 2000 trials for each ear. Auditory discomfort thresholds were lower at several pitches on the CRPS-affected than contralateral side and lower at all pitches on the affected side than in controls. However, ipsilateral hyperacusis was not associated with psychophysical or physiological signs of cochlear damage. Instead, neural activity in the ipsilateral brainstem and midbrain was greater when repetitive click stimuli were presented on the affected than contralateral side and greater bilaterally than in controls. In addition, click-evoked potentials, reflecting thalamo-cortical signal transfer and early cortical processing, were greater contralaterally in patients than controls. Together, these findings suggest that hyperacusis originates in the ipsilateral brainstem and midbrain rather than the peripheral auditory apparatus of patients with CRPS. Failure of processes that jointly modulate afferent auditory signalling and pain (eg, inhibitory influences stemming from the locus coeruleus) could contribute to ipsilateral hyperacusis in CRPS.
Collapse
Affiliation(s)
- Peter D Drummond
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | | |
Collapse
|
17
|
Morse K, Vander Werff KR. Onset-offset cortical auditory evoked potential amplitude differences indicate auditory cortical hyperactivity and reduced inhibition in people with tinnitus. Clin Neurophysiol 2023; 149:223-233. [PMID: 36963993 DOI: 10.1016/j.clinph.2023.02.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/26/2022] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVE The current study investigates evidence of hypothesized reduced central inhibition and/or increased excitation in individuals with tinnitus by evaluating cortical auditory onset versus offset responses. METHODS Cortical auditory evoked potentials (CAEPs) were recorded to the onset and offset of 3-second white noise stimuli in tinnitus and control groups matched in pairs by age, hearing, and sex (n = 26 total). Independent t-tests and 2-way mixed model ANOVA were used to evaluate onset-offset differences in amplitude, area, and latency of CAEP components by group. The predictive influence of tinnitus presence and associated participant characteristics on CAEP outcomes was assessed by multiple regression proportional reduction in error. RESULTS The tinnitus group had significantly larger onset minus offset P2 amplitudes (ΔP2 amplitudes) than control group participants. No other component variables differed significantly. ΔP2 amplitude was best predicted by tinnitus status and not significantly influenced by other variables such as hearing loss or age. CONCLUSIONS Hypothesized reduced central inhibition and/or increased excitation in tinnitus participants was partially supported by a group difference in ΔP2 amplitude. SIGNIFICANCE This was the first study to evaluate CAEP onset minus offset differences to investigate changes in central excitation/inhibition in individuals with tinnitus versus controls in matched groups.
Collapse
Affiliation(s)
- Kenneth Morse
- West Virginia University, Division of Communication Sciences and Disorders, USA.
| | | |
Collapse
|
18
|
Stoll TJ, Maddox RK. Enhanced Place Specificity of the Parallel Auditory Brainstem Response: A Modeling Study. Trends Hear 2023; 27:23312165231205719. [PMID: 37807857 PMCID: PMC10563492 DOI: 10.1177/23312165231205719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
While each place on the cochlea is most sensitive to a specific frequency, it will generally respond to a sufficiently high-level stimulus over a wide range of frequencies. This spread of excitation can introduce errors in clinical threshold estimation during a diagnostic auditory brainstem response (ABR) exam. Off-frequency cochlear excitation can be mitigated through the addition of masking noise to the test stimuli, but introducing a masker increases the already long test times of the typical ABR exam. Our lab has recently developed the parallel ABR (pABR) paradigm to speed up test times by utilizing randomized stimulus timing to estimate the thresholds for multiple frequencies simultaneously. There is reason to believe parallel presentation of multiple frequencies provides masking effects and improves place specificity while decreasing test times. Here, we use two computational models of the auditory periphery to characterize the predicted effect of parallel presentation on place specificity in the auditory nerve. We additionally examine the effect of stimulus rate and level. Both models show the pABR is at least as place specific as standard methods, with an improvement in place specificity for parallel presentation (vs. serial) at high levels, especially at high stimulus rates. When simulating hearing impairment in one of the models, place specificity was also improved near threshold. Rather than a tradeoff, this improved place specificity would represent a secondary benefit to the pABR's faster test times.
Collapse
Affiliation(s)
- Thomas J. Stoll
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Ruan J, Hu X, Liu Y, Han Z, Ruan Q. Vulnerability to chronic stress and the phenotypic heterogeneity of presbycusis with subjective tinnitus. Front Neurosci 2022; 16:1046095. [PMID: 36620444 PMCID: PMC9812577 DOI: 10.3389/fnins.2022.1046095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related functional reserve decline and vulnerability of multiple physiological systems and organs, as well as at the cellular and molecular levels, result in different frailty phenotypes, such as physical, cognitive, and psychosocial frailty, and multiple comorbidities, including age-related hearing loss (ARHL) and/or tinnitus due to the decline in auditory reserve. However, the contributions of chronic non-audiogenic cumulative exposure, and chronic audiogenic stress to phenotypic heterogeneity of presbycusis and/or tinnitus remain elusive. Because of the cumulative environmental stressors throughout life, allostasis systems, the hypothalamus-pituitary-adrenal (HPA) and the sympathetic adrenal-medullary (SAM) axes become dysregulated and less able to maintain homeostasis, which leads to allostatic load and maladaptation. Brain-body communication via the neuroendocrine system promotes systemic chronic inflammation, overmobilization of energetic substances (glucose and lipids), and neuroplastic changes via the non-genomic and genomic actions of glucocorticoids, catecholamines, and their receptors. These systemic maladaptive alterations might lead to different frailty phenotypes and physical, cognitive, and psychological comorbidities, which, in turn, cause and exacerbate ARHL and/or tinnitus with phenotypic heterogeneity. Chronic audiogenic stressors, including aging accompanying ontological diseases, cumulative noise exposure, and ototoxic drugs as well as tinnitus, activate the HPA axis and SAM directly and indirectly by the amygdala, promoting allostatic load and maladaptive neuroplasticity in the auditory system and other vulnerable brain regions, such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). In the auditory system, peripheral deafferentation, central disinhibition, and tonotopic map reorganization may trigger tinnitus. Cross-modal maladaptive neuroplasticity between the auditory and other sensory systems is involved in tinnitus modulation. Persistent dendritic growth and formation, reduction in GABAergic inhibitory synaptic inputs induced by chronic audiogenic stresses in the amygdala, and increased dendritic atrophy in the hippocampus and mPFC, might involve the enhancement of attentional processing and long-term memory storage of chronic subjective tinnitus, accompanied by cognitive impairments and emotional comorbidities. Therefore, presbycusis and tinnitus are multisystem disorders with phenotypic heterogeneity. Stressors play a critical role in the phenotypic heterogeneity of presbycusis. Differential diagnosis based on biomarkers of metabonomics study, and interventions tailored to different ARHL phenotypes and/or tinnitus will contribute to healthy aging and improvement in the quality of life.
Collapse
Affiliation(s)
- Jian Ruan
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuhua Hu
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuehong Liu
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao Han
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingwei Ruan
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingwei Ruan,
| |
Collapse
|
20
|
Casolani C, Harte JM, Epp B. Categorization of tinnitus listeners with a focus on cochlear synaptopathy. PLoS One 2022; 17:e0277023. [PMID: 36512555 PMCID: PMC9746990 DOI: 10.1371/journal.pone.0277023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Tinnitus is a complex and not yet fully understood phenomenon. Often the treatments provided are effective only for subgroups of sufferers. We are presently not able to predict benefit with the currently available diagnostic tools and analysis methods. Being able to identify and specifically treat sub-categories of tinnitus would help develop and implement more targeted treatments with higher success rate. In this study we use a clustering analysis based on 17 predictors to cluster an audiologically homogeneous group of normal hearing participants, both with and without tinnitus. The predictors have been chosen to be either tinnitus-specific measures or measures that are thought to be connected to cochlear synaptopathy. Our aim was to identify a subgroup of participants with characteristics consistent with the current hypothesized impact of cochlear synaptopathy. Our results show that this approach can separate the listeners into different clusters. But not in all cases could the tinnitus sufferers be separated from the control group. Another challenge is the use of categorical measures which seem to dominate the importance analysis of the factors. The study showed that data-driven clustering of a homogeneous listener group based on a mixed set of experimental outcome measures is a promising tool for tinnitus sub-typing, with the caveat that sample sizes might need to be sufficiently high, and higher than in the present study, to keep a meaningful sample size after clustering.
Collapse
Affiliation(s)
- Chiara Casolani
- Auditory Physics Group, Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Interacoustics Research Unit, Lyngby, Denmark
| | - James Michael Harte
- Interacoustics Research Unit, Lyngby, Denmark
- Eriksholm Research Centre, Snekkersten, Denmark
| | - Bastian Epp
- Auditory Physics Group, Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Jeong YJ, Oh KH, Lim SJ, Park DH, Rah YC, Choi J. Analysis of auditory brain stem response and otoacoustic emission in unilateral tinnitus patients with normal hearing. Auris Nasus Larynx 2022:S0385-8146(22)00228-0. [DOI: 10.1016/j.anl.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
|
22
|
Scott LL, Lowe AS, Brecht EJ, Franco-Waite L, Walton JP. Small molecule modulation of the large-conductance calcium-activated potassium channel suppresses salicylate-induced tinnitus in mice. Front Neurosci 2022; 16:763855. [PMID: 36090293 PMCID: PMC9453485 DOI: 10.3389/fnins.2022.763855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Tinnitus is the phantom perception of sound that has no external source. A neurological signature of tinnitus, and the frequently associated hyperacusis, is an imbalance between excitatory and inhibitory activity in the central auditory system (CAS), leading to dysregulated network excitability. The large conductance, calcium-activated potassium (BK) channel is a key player in pre- and post-synaptic excitability through its mediation of K+ currents. Changes in BK channel activity are associated with aberrant network activity in sensory regions of the CNS, raising the possibility that BK channel modulation could regulate activity associated with tinnitus and hyperacusis. To test whether BK channel openers are able to suppress biomarkers of drug-induced tinnitus and hyperacusis, the 1,3,4 oxadiazole BMS-191011 was given to young adult CBA mice that had been administered 250 mg/kg sodium salicylate (SS). Systemic treatment with BMS-191011 reduced behavioral manifestations of SS-induced tinnitus, but not hyperacusis, probed via the gap-in-noise startle response method. Systemic BMS-191011 treatment did not influence SS-induced increases in auditory brainstem response functions, but local application at the inferior colliculus did reverse SS-suppressed spontaneous activity, particularly in the frequency region of the tinnitus percept. Thus, action of BMS-191011 in the inferior colliculus may contribute to the reduction in behaviorally measured tinnitus. Together, these findings support the utility of BK channel openers in reducing central auditory processing changes associated with the formation of the tinnitus percept.
Collapse
Affiliation(s)
| | - Andrea S. Lowe
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Elliott J. Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Luis Franco-Waite
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Joseph P. Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
- *Correspondence: Joseph P. Walton,
| |
Collapse
|
23
|
Haider HF, Ribeiro D, Ribeiro SF, Trigueiros N, Caria H, Borrego L, Pinto I, Papoila AL, Hoare DJ, Paço J. Audiological biomarkers of tinnitus in an older Portuguese population. Front Aging Neurosci 2022; 14:933117. [PMID: 36092804 PMCID: PMC9449802 DOI: 10.3389/fnagi.2022.933117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tinnitus is a phantom sound perceived in the absence of external acoustic stimulation. It is described in a variety of ways (e.g., buzzing, ringing, and roaring) and can be a single sound or a combination of different sounds. Our study evaluated associations between audiological parameters and the presence or severity of tinnitus, to improve tinnitus diagnosis, treatment, and prognosis. Our sample included 122 older participants (63 women and 59 men), aged 55–75 years from the Portuguese population, with or without sensory presbycusis and with or without tinnitus. All participants underwent a clinical evaluation through a structured interview, Ear, Nose, and Throat observation, and audiological evaluation (standard and extended audiometry, psychoacoustic tinnitus evaluation, auditory brainstem responses, and distortion product otoacoustic emissions). The Tinnitus Handicap Inventory was used to measure tinnitus symptom severity. Our data confirmed that the odds of developing tinnitus were significantly higher in the presence of noise exposure and hearing loss. Also, participants who had abrupt tinnitus onset and moderate or severe hyperacusis featured higher odds of at least moderate tinnitus. However, it was in the ABR that we obtained the most exciting and promising results, namely, in wave I, which was the common denominator in all findings. The increase in wave I amplitude is a protective factor to the odds of having tinnitus. Concerning the severity of tinnitus, the logistic regression model showed that for each unit of increase in the mean ratio V/I of ABR, the likelihood of having at least moderate tinnitus was 10% higher. Advancing knowledge concerning potential tinnitus audiological biomarkers can be crucial for the adequate diagnosis and treatment of tinnitus.
Collapse
Affiliation(s)
- Haúla F. Haider
- ENT Department, CUF Tejo Hospital – NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
- Comprehensive Health Research Centre, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal
| | - Diogo Ribeiro
- Comprehensive Health Research Centre, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal
- NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
- *Correspondence: Diogo Ribeiro,
| | - Sara F. Ribeiro
- ENT Department, CUF Tejo Hospital – NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
| | - Nuno Trigueiros
- ENT Department, Hospital Pedro Híspano, Matosinhos, Portugal
| | - Helena Caria
- BTR Unit, Deafness Research Group, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal
- ESS/IPS – Biomedical Sciences Department, School of Health, Polytechnic Institute of Setubal, Setúbal, Portugal
| | - Luís Borrego
- NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
- Department of Immunoallergy, CUF Descobertas Hospital, Lisbon, Portugal
| | - Iola Pinto
- Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
- Centro de Matemática e Aplicações, NOVA School of Science and Technology, FCT NOVA, Costa da Caparica, Portugal
| | - Ana L. Papoila
- NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
| | - Derek J. Hoare
- School of Medicine, NIHR Nottingham Biomedical Research Centre, Hearing Sciences, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom
| | - João Paço
- ENT Department, CUF Tejo Hospital – NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
24
|
Jacxsens L, De Pauw J, Cardon E, van der Wal A, Jacquemin L, Gilles A, Michiels S, Van Rompaey V, Lammers MJW, De Hertogh W. Brainstem evoked auditory potentials in tinnitus: A best-evidence synthesis and meta-analysis. Front Neurol 2022; 13:941876. [PMID: 36071905 PMCID: PMC9441610 DOI: 10.3389/fneur.2022.941876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Accumulating evidence suggests a role of the brainstem in tinnitus generation and modulation. Several studies in chronic tinnitus patients have reported latency and amplitude changes of the different peaks of the auditory brainstem response, possibly reflecting neural changes or altered activity. The aim of the systematic review was to assess if alterations within the brainstem of chronic tinnitus patients are reflected in short- and middle-latency auditory evoked potentials (AEPs). Methods A systematic review was performed and reported according to the PRISMA guidelines. Studies evaluating short- and middle-latency AEPs in tinnitus patients and controls were included. Two independent reviewers conducted the study selection, data extraction, and risk of bias assessment. Meta-analysis was performed using a multivariate meta-analytic model. Results Twenty-seven cross-sectional studies were included. Multivariate meta-analysis revealed that in tinnitus patients with normal hearing, significantly longer latencies of auditory brainstem response (ABR) waves I (SMD = 0.66 ms, p < 0.001), III (SMD = 0.43 ms, p < 0.001), and V (SMD = 0.47 ms, p < 0.01) are present. The results regarding possible changes in middle-latency responses (MLRs) and frequency-following responses (FFRs) were inconclusive. Discussion The discovered changes in short-latency AEPs reflect alterations at brainstem level in tinnitus patients. More specifically, the prolonged ABR latencies could possibly be explained by high frequency sensorineural hearing loss, or other modulating factors such as cochlear synaptopathy or somatosensory tinnitus generators. The question whether middle-latency AEP changes, representing subcortical level of the auditory pathway, are present in tinnitus still remains unanswered. Future studies should identify and correctly deal with confounding factors, such as age, gender and the presence of somatosensory tinnitus components. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021243687, PROSPERO [CRD42021243687].
Collapse
Affiliation(s)
- Laura Jacxsens
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Joke De Pauw
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie Cardon
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Annemarie van der Wal
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, Netherlands
| | - Laure Jacquemin
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Annick Gilles
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Sarah Michiels
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Faculty of Rehabilitation Sciences, REVAL, University of Hasselt, Hasselt, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc J W Lammers
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Willem De Hertogh
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Objective Detection of Tinnitus Based on Electrophysiology. Brain Sci 2022; 12:brainsci12081086. [PMID: 36009149 PMCID: PMC9406100 DOI: 10.3390/brainsci12081086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Tinnitus, a common disease in the clinic, is associated with persistent pain and high costs to society. Several aspects of tinnitus, such as the pathophysiology mechanism, effective treatment, objective detection, etc., have not been elucidated. Any change in the auditory pathway can lead to tinnitus. At present, there is no clear and unified mechanism to explain tinnitus, and the hypotheses regarding its mechanism include auditory plasticity theory, cortical reorganization theory, dorsal cochlear nucleus hypothesis, etc. Current theories on the mechanism of tinnitus mainly focus on the abnormal activity of the central nervous system. Unfortunately, there is currently a lack of objective diagnostic methods for tinnitus. Developing a method that can detect tinnitus objectively is crucial, only in this way can we identify whether the patient really suffers from tinnitus in the case of cognitive impairment or medical disputes and the therapeutic effect of tinnitus. Electrophysiological investigations have prompted the development of an objective detection of tinnitus by potentials recorded in the auditory pathway. However, there is no objective indicator with sufficient sensitivity and specificity to diagnose tinnitus at present. Based on recent findings of studies with various methods, possible electrophysiological approaches to detect the presence of tinnitus have been summarized. We analyze the change of neural activity throughout the auditory pathway in tinnitus subjects and in patients with tinnitus of varying severity to find available parameters in these methods, which is helpful to further explore the feasibility of using electrophysiological methods for the objective detection of tinnitus.
Collapse
|
26
|
Jahn KN. Clinical and investigational tools for monitoring noise-induced hyperacusis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:553. [PMID: 35931527 PMCID: PMC9448410 DOI: 10.1121/10.0012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hyperacusis is a recognized perceptual consequence of acoustic overexposure that can lead to debilitating psychosocial effects. Despite the profound impact of hyperacusis on quality of life, clinicians and researchers lack objective biomarkers and standardized protocols for its assessment. Outcomes of conventional audiologic tests are highly variable in the hyperacusis population and do not adequately capture the multifaceted nature of the condition on an individual level. This presents challenges for the differential diagnosis of hyperacusis, its clinical surveillance, and evaluation of new treatment options. Multiple behavioral and objective assays are emerging as contenders for inclusion in hyperacusis assessment protocols but most still await rigorous validation. There remains a pressing need to develop tools to quantify common nonauditory symptoms, including annoyance, fear, and pain. This review describes the current literature on clinical and investigational tools that have been used to diagnose and monitor hyperacusis, as well as those that hold promise for inclusion in future trials.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
27
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
28
|
Polley DB, Schiller D. The promise of low-tech intervention in a high-tech era: Remodeling pathological brain circuits using behavioral reverse engineering. Neurosci Biobehav Rev 2022; 137:104652. [PMID: 35385759 DOI: 10.1016/j.neubiorev.2022.104652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
As an academic pursuit, neuroscience is enjoying a golden age. From a clinical perspective, our field is failing. Conventional 20th century drugs and devices are not well-matched to the heterogeneity, scale, and connectivity of neural circuits that produce aberrant mental states and behavior. Laboratory-based methods for editing neural genomes and sculpting activity patterns are exciting, but their applications for hundreds of millions of people with mental health disorders is uncertain. We argue that mechanisms for regulating adult brain plasticity and remodeling pathological activity are substantially pre-wired, and we suggest new minimally invasive strategies to harness and direct these endogenous systems. Drawing from studies across the neuroscience literature, we describe approaches that identify neural biomarkers more closely linked to upstream causes-rather than downstream consequences-of disordered behavioral states. We highlight the potential for innovation and discovery in reverse engineering approaches that refine bespoke behavioral "agonists" to drive upstream neural biomarkers in normative directions and reduce clinical symptoms for select classes of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| | - Daniela Schiller
- Department of Psychiatry, Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
吴 文, 丁 雷, 高 铭, 黄 创, 王 冬, 姜 辉, 魏 然. [Electrophysiological study of the cochlea in patients with unilateral acute tinnitus]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:357-361. [PMID: 35483686 PMCID: PMC10128253 DOI: 10.13201/j.issn.2096-7993.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Objective:To analyze the objective test results of the pure-tone audiogram (PTA), extended high-frequency audiometry (EHFA), distortion product otoacoustic emission (DPOAE), auditory brainstem response(ABR), and electrocochleogram (ECochG) in patients with unilateral acute tinnitus, summarize their characteristics and explore their clinical application value in hidden hearing loss. Methods:PTA, DPOAE, ABR, and ECochG tests were performed in 33 patients with unilateral acute tinnitus as the chief complaint. The detection rate and response amplitude of each DPOAE frequency, incubation period, and interval of ABR waves and -SP/AP in ECochG were analyzed. Results:①The thresholds of PTA at 0.25-8 kHz in both ears were in the normal range (P>0.05), and the thresholds of PTA at 9-16 kHz in affected ears were higher than those in healthy ears (P<0.001); ②There was statistical significance in the detection rate and response amplitude of DPOAE at 3, 4, 6, 8 kHz between ears (P<0.05); ③The incubation period of ABR Ⅰ wave in affected ears was (1.55±0.17) ms, that in the healthy ear was (1.50±0.14) ms, among them, the incubation period of ABR Ⅰ wave in the affected ear was longer than that in the healthy ear, and the difference was statistically significant (P<0.05); ④In ECochG, there was no significant difference in -SP amplitude between ears (P>0.05), but there was a significant difference in AP amplitude and -SP/AP amplitude between ears (P<0.05). Conclusion:EHFA, DPOAE, ABR, and ECochG have clinical significance in evaluating cochlear function in tinnitus patients.
Collapse
Affiliation(s)
- 文丽 吴
- 北京中医药大学东方医院耳鼻咽喉科(北京,100078)Department of Otolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - 雷 丁
- 北京中医药大学东方医院耳鼻咽喉科(北京,100078)Department of Otolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - 铭媛 高
- 北京中医药大学东方医院耳鼻咽喉科(北京,100078)Department of Otolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - 创惠 黄
- 北京中医药大学东方医院耳鼻咽喉科(北京,100078)Department of Otolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - 冬梅 王
- 北京中医药大学东方医院耳鼻咽喉科(北京,100078)Department of Otolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - 辉 姜
- 北京中医药大学东方医院耳鼻咽喉科(北京,100078)Department of Otolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - 然 魏
- 北京中医药大学东方医院耳鼻咽喉科(北京,100078)Department of Otolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| |
Collapse
|
30
|
Are Electrocochleographic Changes an Early Sign of Cochlear Synaptopathy? A Prospective Study in Tinnitus Patients with Normal Hearing. Diagnostics (Basel) 2022; 12:diagnostics12040802. [PMID: 35453851 PMCID: PMC9027360 DOI: 10.3390/diagnostics12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanism of tinnitus accompanied by a normal audiogram remains elusive. This study aimed to investigate evidence of primary neural degeneration, also known as cochlear synaptopathy, in tinnitus patients with normal hearing thresholds. We analyzed the differences in electrocochleography (ECochG) measurements between normal-hearing subjects with and without tinnitus. Forty-five subjects were enrolled in this study: 21 were in the tinnitus group, defined by chronic tinnitus of over two months’ duration with normal audiometric thresholds, and 24 were in the control group, defined by a lack of tinnitus complaints. Electrocochleograms were evoked by 1, 4, 6, and 8 kHz alternating-polarity tone bursts at sound pressure levels (SPLs) of 90−110 dB. The tinnitus group had smaller action potential (AP) amplitudes than the control group for 1, 4, 6, and 8 kHz tone bursts and showed significant amplitude reduction at 1 kHz 110 dB SPL (p < 0.01), 1 kHz 90 dB SPL (p < 0.05), and 4 kHz 110 dB SPL (p < 0.05). There were no significant differences in the summating potential/action potential (SP/AP) amplitude ratios across the four tested frequencies. A trend of reduced AP amplitudes was found in the tinnitus group, supporting the hypothesis that tinnitus might be associated with primary neural degeneration.
Collapse
|
31
|
Guthrie OW, Wong BA, McInturf SM, Mattie DR. Degenerate brainstem circuitry after combined physiochemical exposure to jet fuel and noise. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:175-183. [PMID: 34913848 DOI: 10.1080/15287394.2021.1980166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Degenerate neural circuits exhibit "different" circuit properties yet produce similar circuit outcomes (many-to-one) which ensures circuit robustness and complexity. However, neuropathies may hijack degeneracy to yield robust and complex pathological circuits. The aim of the current study was to test the hypothesis that physiochemical exposure to combined jet fuel and noise might induce degeneracy in the brainstem. The auditory brainstem of pigmented rats was used as a model system. The animals were randomized into the following experimental groups: Fuel+Noise, fuel-only, noise-only, and control. Ascending volume conductance from various auditory brainstem regions were evaluated simultaneously with peripheral nervous system (PNS) input to brainstem circuitry. Data demonstrated normal PNS inputs for all groups. However, the Fuel+Noise exposure group produced different caudal brainstem circuit properties while rostral brainstem circuitry initiated outputs that were similar to that of control. This degenerative effect was specific to Fuel+Noise exposure, since neither noise-alone or fuel-alone produced the same result. Degeneracy in the auditory brainstem is consistent with perceptual abnormalities, such as poor speech discrimination (hear but not understand), tinnitus (ringing in the ear), hyperacusis (hypersensitivity to even low-level sound), and loudness intolerance. Therefore, a potential consequence of Fuel+Noise exposure among military and civilian populations may be evidenced as increased rates of super-threshold auditory perceptual abnormalities. This is particularly important because to date, the ototoxic profile of Fuel+Noise exposure has remained unresolved.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| | - Brian A Wong
- Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, OH, USA
- Oak Ridge Institute for Science and Education (Orise), Oak Ridge, TN, USA
| | - Shawn M McInturf
- Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, OH, USA
| | - David R Mattie
- 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| |
Collapse
|
32
|
Bramhall NF, Reavis KM, Feeney MP, Kampel SD. The Impacts of Noise Exposure on the Middle Ear Muscle Reflex in a Veteran Population. Am J Audiol 2022; 31:126-142. [PMID: 35050699 PMCID: PMC10831927 DOI: 10.1044/2021_aja-21-00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Human studies of noise-induced cochlear synaptopathy using physiological indicators identified in animal models (auditory brainstem response [ABR] Wave I amplitude, envelope following response [EFR], and middle ear muscle reflex [MEMR]) have yielded mixed findings. Differences in the population studied may have contributed to the differing results. For example, due to differences in the intensity level of the noise exposure, noise-induced synaptopathy may be easier to detect in a military Veteran population than in populations with recreational noise exposure. We previously demonstrated a reduction in ABR Wave I amplitude and EFR magnitude for young Veterans with normal audiograms reporting high levels of noise exposure compared to non-Veteran controls. In this article, we expand on the previous analysis in the same population to determine if MEMR magnitude is similarly reduced. METHOD Contralateral MEMR growth functions were obtained in 92 young Veterans and non-Veterans with normal audiograms, and the relationship between noise exposure history and MEMR magnitude was assessed. Associations between MEMR magnitude and distortion product otoacoustic emission, EFR, and ABR measurements collected in the same sample were also evaluated. RESULTS The results of the statistical analysis, although not conventionally statistically significant, suggest a reduction in mean MEMR magnitude for Veterans reporting high noise exposure compared with non-Veteran controls. In addition, the MEMR appears relatively insensitive to subclinical outer hair cell dysfunction, as measured by distortion product otoacoustic emissions, and is not well correlated with ABR and EFR measurements. CONCLUSIONS When combined with our previous ABR and EFR findings in the same population, these results suggest that noise-induced synaptopathy occurs in humans. In addition, the findings indicate that the MEMR may be a good candidate for noninvasive diagnosis of cochlear synaptopathy/deafferentation and that the MEMR may reflect the integrity of different neural populations than the ABR and EFR. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.18665645.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Kelly M Reavis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| | - M Patrick Feeney
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
33
|
Auditory brainstem response in unilateral tinnitus patients: does symmetrical hearing thresholds and within-subject comparison affect responses? Eur Arch Otorhinolaryngol 2022; 279:4687-4693. [DOI: 10.1007/s00405-021-07232-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
|
34
|
Auditory Brainstem Response Wave I Amplitude Has Limited Clinical Utility in Diagnosing Tinnitus in Humans. Brain Sci 2022; 12:brainsci12020142. [PMID: 35203907 PMCID: PMC8870703 DOI: 10.3390/brainsci12020142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Animal studies have discovered that noise, even at levels that produce no permanent threshold shift, may cause cochlear damage and selective nerve degeneration. A hallmark of such damage, or synaptopathy, is recovered threshold but reduced suprathreshold amplitude for the auditory brainstem response (ABR) wave I. The objective of the present study is to evaluate whether the ABR wave I amplitude or slope can be used to diagnose tinnitus in humans. A total of 43 human subjects, consisting of 21 with tinnitus and 22 without tinnitus, participated in the study. The subjects were on average 44 ± 24 (standard deviation) years old and 16 were female; a subgroup of 19 were young adults with normal audiograms from 125 to 8000 Hz. The ABR was measured using ear canal recording tiptrodes for clicks, 1000, 4000 and 8000 Hz tone bursts at 30, 50, and 70 dB nHL. Compared with control subjects, tinnitus subjects did not show reduced ABR wave I amplitude or slope in either the entire group of 21 tinnitus subjects or a subset of tinnitus subjects with normal audiograms. Despite the small sample size and diverse tinnitus population, the present result suggests that low signal-to-noise ratios in non-invasive measurement of the ABR limit its clinical utility in diagnosing tinnitus in humans.
Collapse
|
35
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
36
|
Buran BN, McMillan GP, Keshishzadeh S, Verhulst S, Bramhall NF. Predicting synapse counts in living humans by combining computational models with auditory physiology. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:561. [PMID: 35105019 PMCID: PMC8800592 DOI: 10.1121/10.0009238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Aging, noise exposure, and ototoxic medications lead to cochlear synapse loss in animal models. As cochlear function is highly conserved across mammalian species, synaptopathy likely occurs in humans as well. Synaptopathy is predicted to result in perceptual deficits including tinnitus, hyperacusis, and difficulty understanding speech-in-noise. The lack of a method for diagnosing synaptopathy in living humans hinders studies designed to determine if noise-induced synaptopathy occurs in humans, identify the perceptual consequences of synaptopathy, or test potential drug treatments. Several physiological measures are sensitive to synaptopathy in animal models including auditory brainstem response (ABR) wave I amplitude. However, it is unclear how to translate these measures to synaptopathy diagnosis in humans. This work demonstrates how a human computational model of the auditory periphery, which can predict ABR waveforms and distortion product otoacoustic emissions (DPOAEs), can be used to predict synaptic loss in individual human participants based on their measured DPOAE levels and ABR wave I amplitudes. Lower predicted synapse numbers were associated with advancing age, higher noise exposure history, increased likelihood of tinnitus, and poorer speech-in-noise perception. These findings demonstrate the utility of this modeling approach in predicting synapse counts from physiological data in individual human subjects.
Collapse
Affiliation(s)
- Brad N Buran
- Oregon Hearing Research Center (OHRC), Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Garnett P McMillan
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| | - Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
37
|
Chen F, Zhao F, Mahafza N, Lu W. Detecting Noise-Induced Cochlear Synaptopathy by Auditory Brainstem Response in Tinnitus Patients With Normal Hearing Thresholds: A Meta-Analysis. Front Neurosci 2021; 15:778197. [PMID: 34987358 PMCID: PMC8721093 DOI: 10.3389/fnins.2021.778197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.
Collapse
Affiliation(s)
- Feifan Chen
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Fei Zhao
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, China
| | - Nadeem Mahafza
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Wei Lu
- Department of Otolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Current topics in hearing research: Deafferentation and threshold independent hearing loss. Hear Res 2021; 419:108408. [PMID: 34955321 DOI: 10.1016/j.heares.2021.108408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Hearing research findings in recent years have begun to change how we think about hearing loss and how we consider the risk of auditory damage from noise exposure. These findings include evidence of noise-induced cochlear damage in the absence of corresponding permanent threshold elevation or evidence of hair cell loss. Animal studies in several species have shown that noise exposures that produce robust but only temporary threshold shifts can permanently damage inner hair cell synaptic ribbons. This type of synaptic degeneration has also been shown to occur as a result of aging in animals and humans. The emergence of these data has motivated a number of clinical studies aimed at identifying the perceptual correlates associated with synaptopathy. The deficits believed to arise from synaptopathy include poorer hearing in background noise, tinnitus and hyperacusis (loudness intolerance). However, the findings from human studies have been mixed. Key questions remain as to whether synaptopathy reliably produces suprathreshold perceptual deficits or whether it serves as an early indicator of auditory damage with suprathreshold deficits emerging later as a function of further cochlear damage. Here, we provide an overview of both human and animal studies that explore the relationship among inner hair cell damage, including loss of afferent synapses, auditory thresholds, and suprathreshold measures of hearing.
Collapse
|
39
|
Bramhall NF. Use of the auditory brainstem response for assessment of cochlear synaptopathy in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4440. [PMID: 34972291 PMCID: PMC10880747 DOI: 10.1121/10.0007484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Although clinical use of the auditory brainstem response (ABR) to detect retrocochlear disorders has been largely replaced by imaging in recent years, the discovery of cochlear synaptopathy has thrown this foundational measure of auditory function back into the spotlight. Whereas modern imaging now allows for the noninvasive detection of vestibular schwannomas, imaging technology is not currently capable of detecting cochlear synaptopathy, the loss of the synaptic connections between the inner hair cells and afferent auditory nerve fibers. However, animal models indicate that the amplitude of the first wave of the ABR, a far-field evoked potential generated by the synchronous firing of auditory nerve fibers, is highly correlated with synaptic integrity. This has led to many studies investigating the use of the ABR as a metric of synaptopathy in humans. However, these studies have yielded mixed results, leading to a lack of consensus about the utility of the ABR as an indicator of synaptopathy. This review summarizes the animal and human studies that have investigated the ABR as a measure of cochlear synaptic function, discusses factors that may have contributed to the mixed findings and the lessons learned, and provides recommendations for future use of this metric in the research and clinical settings.
Collapse
Affiliation(s)
- Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System Portland, Oregon 97239, USA
| |
Collapse
|
40
|
Dotan A, Shriki O. Tinnitus-like "hallucinations" elicited by sensory deprivation in an entropy maximization recurrent neural network. PLoS Comput Biol 2021; 17:e1008664. [PMID: 34879061 PMCID: PMC8687580 DOI: 10.1371/journal.pcbi.1008664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/20/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Sensory deprivation has long been known to cause hallucinations or "phantom" sensations, the most common of which is tinnitus induced by hearing loss, affecting 10-20% of the population. An observable hearing loss, causing auditory sensory deprivation over a band of frequencies, is present in over 90% of people with tinnitus. Existing plasticity-based computational models for tinnitus are usually driven by homeostatic mechanisms, modeled to fit phenomenological findings. Here, we use an objective-driven learning algorithm to model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus. The learning algorithm maximizes the network's output entropy by learning the feed-forward and recurrent interactions in the model. We show that the connectivity patterns and responses learned by the model display several hallmarks of early auditory neuronal networks. We further demonstrate that attenuation of peripheral inputs drives the recurrent network towards its critical point and transition into a tinnitus-like state. In this state, the network activity resembles responses to genuine inputs even in the absence of external stimulation, namely, it "hallucinates" auditory responses. These findings demonstrate how objective-driven plasticity mechanisms that normally act to optimize the network's input representation can also elicit pathologies such as tinnitus as a result of sensory deprivation.
Collapse
Affiliation(s)
- Aviv Dotan
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
41
|
Nayak S, Nambi A, Kumar S, Hariprakash P, Yuvaraj P, Poojar B. A systematic review on the effect of low-dose radiation on hearing. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:551-558. [PMID: 34302524 PMCID: PMC8551139 DOI: 10.1007/s00411-021-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have documented the adverse effects of high-dose radiation on hearing in patients. On the other hand, radiographers are exposed to a low dose of ionizing radiation, and the effect of a low dose of radiation on hearing is quite abstruse. Therefore, the present systematic review aimed to elucidate the effect of low-dose ionizing radiation on hearing. Two authors independently carried out a comprehensive data search in three electronic databases, including PUBMED/MEDLINE, CINAHL, and SCOPUS. Eligible articles were independently assessed for quality by two authors. Cochrane Risk of Bias tool was used assess quality of the included studies. Two articles met the low-dose radiation exposure criteria given by Atomic Energy Regulatory Board (AERB) and National Council on Radiation Protection (NCRP) guidelines. Both studies observed the behavioral symptoms, pure-tone hearing sensitivity at the standard, extended high frequencies, and the middle ear functioning in low-dose radiation-exposed individuals and compared with age and gender-matched controls. One study assessed the cochlear function using transient-evoked otoacoustic emissions (TEOAE). Both studies reported that behavioral symptoms of auditory dysfunction and hearing thresholds at extended high frequencies were higher in radiation-exposed individuals than in the controls. The current systematic review concludes that the low-dose ionizing radiation may affect the hearing adversely. Nevertheless, further studies with robust research design are required to explicate the cause and effect relationship between the occupational low-dose ionizing radiation exposure and hearing.
Collapse
Affiliation(s)
- Srikanth Nayak
- Department of Audiology and Speech—Language Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, 575001 India
- Department of Audiology and Speech-Language Pathology, Yenepoya University (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Arivudai Nambi
- Department of Audiology and Speech—Language Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, 575001 India
| | - Sathish Kumar
- Department of Audiology and Speech—Language Pathology, Madras ENT Research Foundation, Chennai, 600028 India
| | - P Hariprakash
- Department of Speech and Hearing, Manipal College of Health Professionals, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Pradeep Yuvaraj
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka 560029 India
| | - Basavaraj Poojar
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, 575001 India
| |
Collapse
|
42
|
Bramhall NF, McMillan GP, Mashburn AN. Subclinical Auditory Dysfunction: Relationship Between Distortion Product Otoacoustic Emissions and the Audiogram. Am J Audiol 2021; 30:854-869. [PMID: 33465327 PMCID: PMC10836814 DOI: 10.1044/2020_aja-20-00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Distortion product otoacoustic emissions (DPOAEs) and audiometric thresholds have been used to account for the impacts of subclinical outer hair cell (OHC) dysfunction on auditory perception and measures of auditory physiology. However, the relationship between DPOAEs and the audiogram is unclear. This study investigated this relationship by determining how well DPOAE levels can predict the audiogram among individuals with clinically normal hearing. Additionally, the impacts of age, noise exposure, and the perception of tinnitus on the ability of DPOAE levels to predict the audiogram were evaluated. Method Suprathreshold DPOAE levels from 1 to 10 kHz and pure-tone thresholds from 0.25 to 16 kHz were measured in 366 ears from 194 young adults (19-35 years old) with clinically normal audiograms and middle ear function. The measured DPOAE levels at all frequencies were used to predict pure-tone thresholds at each frequency. Participants were grouped by age, self-reported noise exposure/Veteran status, and self-report of tinnitus. Results Including DPOAE levels in the pure-tone threshold prediction model improved threshold predictions at all frequencies from 0.25 to 16 kHz compared with a model based only on sample mean pure-tone thresholds, but these improvements were modest. DPOAE levels for f 2 frequencies of 4 and 5 kHz were particularly influential in predicting pure-tone thresholds above 4 kHz. However, prediction accuracy varied based on participant characteristics. On average, predicted pure-tone thresholds were better than measured thresholds among Veterans, individuals with tinnitus, and the oldest age group. Conclusions These results indicate a complex relationship between DPOAE levels and the audiogram. Underestimation of pure-tone thresholds for some groups suggests that additional factors other than OHC damage may impact thresholds among individuals within these categories. These findings suggest that DPOAE levels and pure-tone thresholds may differ in terms of how well they reflect subclinical OHC dysfunction. Supplemental Material https://doi.org/10.23641/asha.13564745.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health and Science University, Portland
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health and Science University, Portland
| | - Amy N Mashburn
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville
| |
Collapse
|
43
|
Park E, Song I, Jeong YJ, Im GJ, Jung HH, Choi J, Rah YC. Evidence of Cochlear Synaptopathy and the Effect of Systemic Steroid in Acute Idiopathic Tinnitus With Normal Hearing. Otol Neurotol 2021; 42:978-984. [PMID: 33900233 DOI: 10.1097/mao.0000000000003189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the electrophysiologic evidence of cochlear synaptopathy and the effects of systemic steroids in acute idiopathic tinnitus with normal hearing. STUDY DESIGN Retrospective review of medical data. SETTING Tertiary referral center. PATIENTS Fifty-nine patients who experienced acute-onset idiopathic tinnitus (within 12 weeks) with normal hearing and the same number of age- and pure-tone threshold-matched control groups. INTERVENTION Electrophysiologic studies of the auditory pathway, oral steroids, and ginkgo biloba. MAIN OUTCOME MEASURES Pure-tone thresholds, wave I and wave V amplitudes of the auditory brainstem response (ABR), tinnitus handicap inventory (THI), and visual analog scale (VAS). RESULTS Significantly reduced ABR wave I amplitude and wave I/wave V ratio were found in the tinnitus group compared with the no tinnitus group. Age and pure-tone threshold were significantly correlated with reduced wave I amplitude and small wave I/wave V ratio. The THI and VAS scores were decreased at 3 and 12 weeks after steroid administration; however, overall changes in THI and VAS scores were not significantly different between the steroid and ginkgo biloba groups. CONCLUSION Potential cochlear synaptopathy was suspected in the early stage of acute idiopathic tinnitus, even in patients with normal hearing. Age and hearing threshold were potentially associated with the development of cochlear synaptopathy. Low-dose oral steroids and ginkgo biloba induced early subjective relief of tinnitus, which maintained up to 12 weeks, however, those changes did not differ between groups.
Collapse
Affiliation(s)
- Euyhyun Park
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Han MS, Jeong YJ, Im GJ, Song JJ, Chae SW, Chan Rah Y, Choi J. Auditory brainstem response test results in normal hearing adolescents with subjective tinnitus. Int J Pediatr Otorhinolaryngol 2021; 146:110775. [PMID: 34022656 DOI: 10.1016/j.ijporl.2021.110775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The objective of the study was to analyze the auditory brainstem response (ABR) test results of adolescents with normal hearing threshold who have subjective tinnitus in an effort to determine the probable site of origin of tinnitus. METHODS Among the patients who visited the outpatient clinic of the Department of Otolaryngology at our tertiary hospital from January 2016 to December 2019, adolescents aged 13-18 years with the chief complaint of unilateral subjective tinnitus and pure tone audiometry (PTA) within 25 dB HL were enrolled and retrospectively reviewed. The ABR test parameters (amplitudes and latencies of waves I, III, and V and interpeak latencies [IPLs] of waves I-III, III-V, and I-V) were analyzed and compared between tinnitus ears and contralateral ears without tinnitus. Study participants were divided into the chronic tinnitus (tinnitus duration ≥6 months) and non-chronic tinnitus (tinnitus duration <6 months) groups, and the difference between the two groups was analyzed. RESULTS Ten adolescents were included in the study, and their ABR test results were reviewed. IPL III-V was significantly prolonged in tinnitus ears compared to non-tinnitus ears (p = 0.035). Although other parameters were found to be statistically non-significant, there was preponderance in ABR wave I amplitude; it was smaller in tinnitus ears of chronic tinnitus adolescents than in those of non-chronic tinnitus adolescents (p = 0.114). CONCLUSION The probable site of origin of tinnitus in adolescents with normal hearing might be in the upper brainstem of the auditory pathway. Further analysis of ABR test results in adolescents with tinnitus and normal hearing can help clarify the pathophysiology of tinnitus in adolescents.
Collapse
Affiliation(s)
- Mun Soo Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medicine, Korea University Ansan Hospital, Ansan, South Korea
| | - Yong Jun Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medicine, Korea University Ansan Hospital, Ansan, South Korea
| | - Gi Jung Im
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medicine, Korea University Ansan Hospital, Ansan, South Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medicine, Korea University Ansan Hospital, Ansan, South Korea.
| |
Collapse
|
45
|
Joo JW, Jeong YJ, Han MS, Chang YS, Rah YC, Choi J. Analysis of Auditory Brainstem Response Change, according to Tinnitus Duration, in Patients with Tinnitus with Normal Hearing. J Int Adv Otol 2021; 16:190-196. [PMID: 32784156 DOI: 10.5152/iao.2020.7951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The purpose of this study was to analyze auditory brainstem response (ABR) waveforms of patients with tinnitus with normal hearing, according to tinnitus duration, and demonstrate the possible pathophysiological mechanisms of tinnitus. MATERIALS AND METHODS From January 2016 to December 2017, patients who presented to our hospital with tinnitus as their chief complaint were enrolled and reviewed retrospectively. Pure tone audiometry and ABR tests were performed. The patients were classified into three groups according to tinnitus duration: acute (<1 month), subacute (1-6 months), and chronic (>6 months). The amplitudes of waves I and V and the latencies of waves I, III, and V were evaluated. In this study, 177 ears of 128 patients with tinnitus with normal hearing were evaluated. RESULTS Wave V amplitude was significantly lower during the subacute phase than during the acute phase. The absolute latency value of wave V was greater during the subacute phase than during the acute phase. The interpeak latency I-V was significantly prolonged during the subacute phase compared with the acute and chronic phases. Wave V amplitude, wave V absolute latency, and interpeak latency I-V varied significantly between cases with a 1-month and 6-month tinnitus history. CONCLUSION The compensatory response to tinnitus decreased sharply after 1 month of symptoms. Early tinnitus identification and treatment initiation are recommended.
Collapse
Affiliation(s)
- Jae Woo Joo
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yong Jun Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Mun Soo Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Young-Soo Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Johannesen PT, Lopez-Poveda EA. Age-related central gain compensation for reduced auditory nerve output for people with normal audiograms, with and without tinnitus. iScience 2021; 24:102658. [PMID: 34151241 PMCID: PMC8192693 DOI: 10.1016/j.isci.2021.102658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Central gain compensation for reduced auditory nerve output has been hypothesized as a mechanism for tinnitus with a normal audiogram. Here, we investigate if gain compensation occurs with aging. For 94 people (aged 12-68 years, 64 women, 7 tinnitus) with normal or close-to-normal audiograms, the amplitude of wave I of the auditory brainstem response decreased with increasing age but was not correlated with wave V amplitude after accounting for age-related subclinical hearing loss and cochlear damage, a result indicative of age-related gain compensation. The correlations between age and wave I/III or III/V amplitude ratios suggested that compensation occurs at the wave III generator site. For each one of the seven participants with non-pulsatile tinnitus, the amplitude of wave I, wave V, and the wave I/V amplitude ratio were well within the confidence limits of the non-tinnitus participants. We conclude that increased central gain occurs with aging and is not specific to tinnitus.
Collapse
Affiliation(s)
- Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
47
|
Lewis RM, Jahn KN, Parthasarathy A, Goedicke WB, Polley DB. Audiometric Predictors of Bothersome Tinnitus in a Large Clinical Cohort of Adults With Sensorineural Hearing Loss. Otol Neurotol 2021; 41:e414-e421. [PMID: 32176119 DOI: 10.1097/mao.0000000000002568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify demographic and audiometric predictors of bothersome tinnitus within a large clinical cohort. STUDY DESIGN Retrospective chart review. SETTING Tertiary care hospital. PATIENTS 51,989 English-speaking patients between 18 and 80 years of age that received initial audiometric evaluations at the Massachusetts Eye and Ear Infirmary between the years 2000 and 2016. MAIN OUTCOME MEASURES Patients were categorized according to whether or not tinnitus was the primary reason for their visit. The likelihood of tinnitus as a primary complaint (TPC) was evaluated as a function of age, sex, and audiometric configuration. Patient-reported tinnitus percepts were qualitatively assessed in relation to audiometric configuration. RESULTS Approximately 20% of adults who presented for an initial hearing evaluation reported TPC. The prevalence of TPC increased with advancing age until approximately 50 to 54 years, and then declined thereafter. In general, men were significantly more likely to report TPC than women. TPC was statistically associated with specific audiogram configurations. In particular, TPC was most prevalent for notched and steeply sloping hearing losses, but was relatively uncommon in adults with flat losses. Patients with frequency-restricted threshold shifts often reported tonal tinnitus percepts, while patients with asymmetric configurations tended to report broadband percepts. CONCLUSIONS The probability of seeking audiological evaluation for bothersome tinnitus is highest for males, middle-aged patients, and those with notched or high-frequency hearing losses. These findings support the theory that tinnitus arises from sharp discontinuities in peripheral afferent innervation and cochlear amplification, which may induce topographically restricted changes in the central auditory pathway.
Collapse
Affiliation(s)
- Rebecca M Lewis
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Hidden hearing loss is associated with loss of ribbon synapses of cochlea inner hair cells. Biosci Rep 2021; 41:228102. [PMID: 33734328 PMCID: PMC8035623 DOI: 10.1042/bsr20201637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/30/2023] Open
Abstract
The present study aimed to observe the changes in the cochlea ribbon synapses after repeated exposure to moderate-to-high intensity noise. Guinea pigs received 95 dB SPL white noise exposure 4 h a day for consecutive 7 days (we regarded it a medium-term and moderate-intensity noise, or MTMI noise). Animals were divided into four groups: Control, 1DPN (1-day post noise), 1WPN (1-week post noise), and 1MPN (1-month post noise). Auditory function analysis by auditory brainstem response (ABR) and compound action potential (CAP) recordings, as well as ribbon synapse morphological analyses by immunohistochemistry (Ctbp2 and PSD95 staining) were performed 1 day, 1 week, and 1 month after noise exposure. After MTMI noise exposure, the amplitudes of ABR I and III waves were suppressed. The CAP threshold was elevated, and CAP amplitude was reduced in the 1DPN group. No apparent changes in hair cell shape, arrangement, or number were observed, but the number of ribbon synapse was reduced. The 1WPN and 1MPN groups showed that part of ABR and CAP changes recovered, as well as the synapse number. The defects in cochlea auditory function and synapse changes were observed mainly in the high-frequency region. Together, repeated exposure in MTMI noise can cause hidden hearing loss (HHL), which is partially reversible after leaving the noise environment; and MTMI noise-induced HHL is associated with inner hair cell ribbon synapses.
Collapse
|
49
|
Wang Q, Yang L, Qian M, Hong Y, Wang X, Huang Z, Wu H. Acute Recreational Noise-Induced Cochlear Synaptic Dysfunction in Humans With Normal Hearing: A Prospective Cohort Study. Front Neurosci 2021; 15:659011. [PMID: 33897366 PMCID: PMC8062885 DOI: 10.3389/fnins.2021.659011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives The objective of the study was to identify the acute high-intensity recreational noise-induced effects on auditory function, especially the cochlear synaptopathy-related audiological metrics, in humans with normal hearing. Methods This prospective cohort study enrolled 32 young adults (14 males and 18 females); the mean age was 24.1 ± 2.4 years (ranging from 20 to 29). All participants with normal hearing (audiometric thresholds ≤25 dB HL at frequencies of 0.25, 0.5, 1, 2, 3, 4, 6, and 8 kHz for both ears) had already decided to participate in the outdoor music festival. Participants were asked to measure the noise exposure dose and complete auditory examinations, including the air-conduction pure-tone audiometry (PTA), distortion product otoacoustic emission (DPOAE), contralateral suppression (CS) on transient evoked otoacoustic emission (TEOAE), auditory brainstem response (ABR) test and Mandarin Hearing in Noise Test (MHINT), at baseline and 1 day and 14 days after music festival noise exposure. Results The mean time of attending the music festival was 7.34 ± 0.63 h (ranging from 6.4 to 9.5), the mean time-weighted average (TWA) of noise exposure dose was 93.2 ± 2.39 dB(A) (ranging from 87.9 to 97.7). At neither 1 day nor 14 days post exposure, there were no statistically significant effects on PTA thresholds, DPOAE amplitudes, CS on TEOAEs, or MHINT signal-to-noise ratios (SNRs) of acute outdoor music festival noise exposure, regardless of sex. While the ABR wave I amplitudes significantly decreased at 1 day after exposure and recovered at 14 days after exposure, the exposed/unexposed ABR wave I amplitude ratio was significantly correlated with MHINT SNR change at 1 day after exposure, although it was not correlated with the noise exposure dose. Conclusion In young adults with normal hearing, we found the self-compared decrement of ABR wave I amplitudes at 1 day post acute recreational noise exposure at high intensity, which also contributes to the change in speech perceptual ability in noisy backgrounds. This study indicated that auditory electrophysiological metric changes might be a more sensitive and efficient indicator of noise-induced cochlear synaptic dysfunction in humans. More attention should be paid to the recreational noise-induced cochlear synaptopathy and auditory perceptual disorder.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lu Yang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Hearing and Speech Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minfei Qian
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yingying Hong
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Hearing and Speech Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Biobank, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwu Huang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Hearing and Speech Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
50
|
Henton A, Tzounopoulos T. What's the buzz? The neuroscience and the treatment of tinnitus. Physiol Rev 2021; 101:1609-1632. [PMID: 33769102 DOI: 10.1152/physrev.00029.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tinnitus is a pervasive public health issue that affects ∼15% of the United States population. Similar estimates have also been shown on a global scale, with similar prevalence found in Europe, Asia, and Africa. The severity of tinnitus is heterogeneous, ranging from mildly bothersome to extremely disruptive. In the United States, ∼10-20% of individuals who experience tinnitus report symptoms that severely reduce their quality of life. Due to the huge personal and societal burden, in the last 20 yr a concerted effort on basic and clinical research has significantly advanced our understanding and treatment of this disorder. Yet, neither full understanding, nor cure exists. We know that tinnitus is the persistent involuntary phantom percept of internally generated nonverbal indistinct noises and tones, which in most cases is initiated by acquired hearing loss and maintained only when this loss is coupled with distinct neuronal changes in auditory and extra-auditory brain networks. Yet, the exact mechanisms and patterns of neural activity that are necessary and sufficient for the perceptual generation and maintenance of tinnitus remain incompletely understood. Combinations of animal model and human research will be essential in filling these gaps. Nevertheless, the existing progress in investigating the neurophysiological mechanisms has improved current treatment and highlighted novel targets for drug development and clinical trials. The aim of this review is to thoroughly discuss the current state of human and animal tinnitus research, outline current challenges, and highlight new and exciting research opportunities.
Collapse
Affiliation(s)
- A Henton
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - T Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|