1
|
Carney LH. Neural Fluctuation Contrast as a Code for Complex Sounds: The Role and Control of Peripheral Nonlinearities. Hear Res 2024; 443:108966. [PMID: 38310710 PMCID: PMC10923127 DOI: 10.1016/j.heares.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
The nonlinearities of the inner ear are often considered to be obstacles that the central nervous system has to overcome to decode neural responses to sounds. This review describes how peripheral nonlinearities, such as saturation of the inner-hair-cell response and of the IHC-auditory-nerve synapse, are instead beneficial to the neural encoding of complex sounds such as speech. These nonlinearities set up contrast in the depth of neural-fluctuations in auditory-nerve responses along the tonotopic axis, referred to here as neural fluctuation contrast (NFC). Physiological support for the NFC coding hypothesis is reviewed, and predictions of several psychophysical phenomena, including masked detection and speech intelligibility, are presented. Lastly, a framework based on the NFC code for understanding how the medial olivocochlear (MOC) efferent system contributes to the coding of complex sounds is presented. By modulating cochlear gain control in response to both sound energy and fluctuations in neural responses, the MOC system is hypothesized to function not as a simple feedback gain-control device, but rather as a mechanism for enhancing NFC along the tonotopic axis, enabling robust encoding of complex sounds across a wide range of sound levels and in the presence of background noise. Effects of sensorineural hearing loss on the NFC code and on the MOC feedback system are presented and discussed.
Collapse
Affiliation(s)
- Laurel H Carney
- Depts. of Biomedical Engineering, Neuroscience, and Electrical & Computer Engineering University of Rochester, Rochester, NY, USA.
| |
Collapse
|
2
|
Temporal integration contributes to the masking release by amplitude modulation. Hear Res 2022; 420:108514. [DOI: 10.1016/j.heares.2022.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/29/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
|
3
|
Fan L, Henry KS, Carney LH. Responses to diotic tone-in-noise stimuli in the inferior colliculus: stimulus envelope and neural fluctuation cues. Hear Res 2021; 409:108328. [PMID: 34391193 PMCID: PMC8419138 DOI: 10.1016/j.heares.2021.108328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Human detection thresholds in tone-in-noise (TIN) paradigms cannot be explained by the prevalent power-spectrum model when stimulus energy is made less reliable, e.g., in roving-level or equal-energy paradigms. Envelope-related cues provide an alternative that is more robust across level. The TIN stimulus envelope is encoded by slow fluctuations in auditory-nerve (AN) responses - a temporal representation affected by inner-hair-cell (IHC) saturation and cochlear compression. Here, envelope-related fluctuations in AN responses were hypothesized to be reflected in responses of neurons in the inferior colliculus (IC), which have average discharge rates that are sensitive to amplitude-modulation (AM) depth and frequency. Responses to tones masked by narrowband gaussian noise (GN) and low-noise noise (LNN) were recorded in the IC of awake rabbits. Fluctuation amplitudes in the stimulus envelope and in model AN responses decrease for GN maskers and increase for LNN upon addition of tones near threshold. Response rates of IC neurons that are excited by AM were expected to be positively correlated with fluctuation amplitudes, whereas rates of neurons suppressed by AM were expected to be negatively correlated. Of neurons with measurable TIN-detection thresholds, most had the predicted changes in rate with increasing tone level for both GN and LNN maskers. Changes in rate with tone level were correlated with envelope sensitivity measured with two methods, including the maximum slopes of modulation transfer functions. IC rate-based thresholds were broadly consistent with published human and rabbit behavioral data. These results highlight the importance of midbrain sensitivity to envelope cues, as represented in peripheral neural fluctuations, for detection of signals in noise.
Collapse
Affiliation(s)
- Langchen Fan
- Department of Biomedical Engineering, University of Rochester, New York, United States.
| | - Kenneth S Henry
- Department of Biomedical Engineering, University of Rochester, New York, United States; Department of Neuroscience, University of Rochester, New York, United States; Department of Otolaryngology, University of Rochester, New York, United States
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester, New York, United States; Department of Neuroscience, University of Rochester, New York, United States
| |
Collapse
|
4
|
Wang Y, Abrams KS, Carney LH, Henry KS. Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues. J Neurosci 2021; 41:7206-7223. [PMID: 34266898 PMCID: PMC8387112 DOI: 10.1523/jneurosci.3103-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Hearing in noise is a problem often assumed to depend on encoding of energy level by channels tuned to target frequencies, but few studies have tested this hypothesis. The present study examined neural correlates of behavioral tone-in-noise (TIN) detection in budgerigars (Melopsittacus undulatus, either sex), a parakeet species with human-like behavioral sensitivity to many simple and complex sounds. Behavioral sensitivity to tones in band-limited noise was assessed using operant-conditioning procedures. Neural recordings were made in awake animals from midbrain-level neurons in the inferior colliculus, the first processing stage of the ascending auditory pathway with pronounced rate-based encoding of stimulus amplitude modulation. Budgerigar TIN detection thresholds were similar to human thresholds across the full range of frequencies (0.5-4 kHz) and noise levels (45-85 dB SPL) tested. Also as in humans, thresholds were minimally affected by a challenging roving-level condition with random variation in background-noise level. Many midbrain neurons showed a decreasing response rate as TIN signal-to-noise ratio (SNR) was increased by elevating the tone level, a pattern attributable to amplitude-modulation tuning in these cells and the fact that higher SNR tone-plus-noise stimuli have flatter amplitude envelopes. TIN thresholds of individual neurons were as sensitive as behavioral thresholds under most conditions, perhaps surprisingly even when the unit's characteristic frequency was tuned an octave or more away from the test frequency. A model that combined responses of two cell types enhanced TIN sensitivity in the roving-level condition. These results highlight the importance of midbrain-level envelope encoding and off-frequency neural channels for hearing in noise.SIGNIFICANCE STATEMENT Detection of target sounds in noise is often assumed to depend on energy-level encoding by neural processing channels tuned to the target frequency. In contrast, we found that tone-in-noise sensitivity in budgerigars was often greatest in midbrain neurons not tuned to the test frequency, underscoring the potential importance of off-frequency channels for perception. Furthermore, the results highlight the importance of envelope processing for hearing in noise, especially under challenging conditions with random variation in background noise level over time.
Collapse
Affiliation(s)
| | | | | | - Kenneth S Henry
- Departments of Biomedical Engineering
- Neuroscience
- Otolaryngology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
5
|
Leong UC, Schwarz DM, Henry KS, Carney LH. Sensorineural Hearing Loss Diminishes Use of Temporal Envelope Cues: Evidence From Roving-Level Tone-in-Noise Detection. Ear Hear 2021; 41:1009-1019. [PMID: 31985535 PMCID: PMC8221074 DOI: 10.1097/aud.0000000000000822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The objective of our study is to understand how listeners with and without sensorineural hearing loss (SNHL) use energy and temporal envelope cues to detect tones in noise. Previous studies of low-frequency tone-in-noise detection have shown that when energy cues are made less reliable using a roving-level paradigm, thresholds of listeners with normal hearing (NH) are only slightly increased. This result is consistent with studies demonstrating the importance of temporal envelope cues for masked detection. In contrast, roving-level detection thresholds are more elevated in listeners with SNHL at the test frequency, suggesting stronger weighting of energy cues. The present study extended these tests to a wide range of frequencies and stimulus levels. The authors hypothesized that individual listeners with SNHL use energy and temporal envelope cues differently for masked detection at different frequencies and levels, depending on the degree of hearing loss. DESIGN Twelve listeners with mild to moderate SNHL and 12 NH listeners participated. Tone-in-noise detection thresholds at 0.5, 1, 2, and 4 kHz in 1/3 octave bands of simultaneously gated Gaussian noise were obtained using a novel, two-part tracking paradigm. A track refers to the sequence of trials in an adaptive test procedure; the signal to noise ratio was the tracked variable. Each part of the track consisted of a two-alternative, two-interval, forced-choice procedure. The initial portion of the track estimated detection threshold using a fixed masker level. When the track continued, stimulus levels were randomly varied over a 20-dB rove range (±10 dB with respect to mean masker level), and a second threshold was estimated. Rove effect (RE) was defined as the difference between thresholds for the fixed- and roving-level tests. The size of the RE indicated how strongly a listener weighted energy-based cues for masked detection. Participants were tested at one to three masker levels per frequency, depending on audibility. RESULTS Across all stimulus frequencies and levels, NH listeners had small REs (≈1 dB), whereas listeners with SNHL typically had larger REs. Some listeners with SNHL had larger REs at higher frequencies, where pure-tone audiometric thresholds were typically elevated. RE did not vary significantly with masker level for either group. Increased RE for the SNHL group was consistent with simulations in which energy cues were more heavily weighted than envelope cues. CONCLUSIONS Tone-in-noise detection thresholds in NH listeners were typically elevated only slightly by the roving-level paradigm at any frequency or level tested, consistent with the primary use of level-independent cues, such as temporal envelope cues that are conveyed by fluctuations in neural responses. In comparison, thresholds of listeners with SNHL were more affected by the roving-level paradigm, suggesting stronger weighting of energy cues. For listeners with SNHL, the largest RE was observed at 4000 Hz, for which pure-tone audiometric thresholds were most elevated. Specifically, RE size at 4000 Hz was significantly correlated with higher pure-tone audiometric thresholds at the same frequency, after controlling for the effect of age. Future studies will explore strategies for restoring or enhancing neural fluctuation cues that may lead to improved hearing in noise for listeners with SNHL.
Collapse
Affiliation(s)
- U-Cheng Leong
- Department of Otolaryngology, University of Rochester, Rochester, New York, USA
| | - Douglas M. Schwarz
- Department of Neuroscience, University of Rochester, Rochester, New York, USA
| | - Kenneth S. Henry
- Departments of Otolaryngology and Neuroscience, University of Rochester, Rochester, New York, USA
| | - Laurel H. Carney
- Departments of Biomedical Engineering and Neuroscience, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Henry KS, Abrams KS. Normal Tone-In-Noise Sensitivity in Trained Budgerigars despite Substantial Auditory-Nerve Injury: No Evidence of Hidden Hearing Loss. J Neurosci 2021; 41:118-129. [PMID: 33177067 PMCID: PMC7786208 DOI: 10.1523/jneurosci.2104-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/02/2020] [Accepted: 10/24/2021] [Indexed: 02/01/2023] Open
Abstract
Loss of auditory-nerve (AN) afferent cochlear innervation is a prevalent human condition that does not affect audiometric thresholds and therefore remains largely undetectable with standard clinical tests. AN loss is widely expected to cause hearing difficulties in noise, known as "hidden hearing loss," but support for this hypothesis is controversial. Here, we used operant conditioning procedures to examine the perceptual impact of AN loss on behavioral tone-in-noise (TIN) sensitivity in the budgerigar (Melopsittacus undulatus; of either sex), an avian animal model with complex hearing abilities similar to humans. Bilateral kainic acid (KA) infusions depressed compound AN responses by 40-70% without impacting otoacoustic emissions or behavioral tone sensitivity in quiet. Surprisingly, animals with AN damage showed normal thresholds for tone detection in noise (0.1 ± 1.0 dB compared to control animals; mean difference ± SE), even under a challenging roving-level condition with random stimulus variation across trials. Furthermore, decision-variable correlations (DVCs) showed no difference for AN-damaged animals in their use of energy and envelope cues to perform the task. These results show that AN damage has less impact on TIN detection than generally expected, even under a difficult roving-level condition known to impact TIN detection in individuals with sensorineural hearing loss (SNHL). Perceptual deficits could emerge for different perceptual tasks or with greater AN loss but are potentially minor compared with those caused by SNHL.SIGNIFICANCE STATEMENT Loss of auditory-nerve (AN) cochlear innervation is a common problem in humans that does not affect audiometric thresholds on a clinical hearing test. AN loss is widely expected to cause hearing problems in noise, known as "hidden hearing loss," but existing studies are controversial. Here, using an avian animal model with complex hearing abilities similar to humans, we examined for the first time the impact of an experimentally induced AN lesion on behavioral tone sensitivity in noise. Surprisingly, AN-lesioned animals showed no difference in hearing performance in noise or detection strategy compared with controls. These results show that perceptual deficits from AN damage are smaller than generally expected, and potentially minor compared with those caused by sensorineural hearing loss (SNHL).
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| |
Collapse
|
7
|
Jennings SG, Chen J. Masking of short tones in noise: Evidence for envelope-based, rather than energy-based detection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:211. [PMID: 32752781 PMCID: PMC7363451 DOI: 10.1121/10.0001569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 06/01/2023]
Abstract
The "temporal effect" in simultaneous masking may be characterized by better probe detection thresholds for a short, tonal probe presented at the temporal center of a masker compared to at the onset of a masker. Energy-based models of masking have been used to interpret the temporal effect as evidence that the gain of the auditory system decreases during acoustic stimulation. This study shows that masking from temporal-envelope fluctuations of a precursor or from a temporal gap between stimuli violates the assumptions of energy-based models and complicates the interpretation of temporal effects in terms of a reduction in gain. Detection thresholds were measured for a 6-ms, 4000-Hz probe preceded by a narrowband precursor and presented 2-, 197-, or 392-ms after the onset of a narrowband masker. The delay between the precursor offset and masker onset ranged from -2 to 250 ms. Probe thresholds were elevated in the presence of precursors with fluctuating compared to flattened temporal envelopes and when a temporal gap was inserted between the precursor and masker. The results suggest that the interpretation and design of temporal-effect studies should consider the masking effects of temporal-envelope fluctuations. These findings are consistent with speech-perception experiments that show masking from temporal-envelope fluctuations.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, Behavioral Sciences Building 1201, Salt Lake City, Utah 84112, USA
| | - Jessica Chen
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, Behavioral Sciences Building 1201, Salt Lake City, Utah 84112, USA
| |
Collapse
|
8
|
Henry KS, Amburgey KN, Abrams KS, Carney LH. Identifying cues for tone-in-noise detection using decision variable correlation in the budgerigar (Melopsittacus undulatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:984. [PMID: 32113293 PMCID: PMC7010520 DOI: 10.1121/10.0000621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 06/05/2023]
Abstract
Previous studies evaluated cues for masked tone detection using reproducible noise waveforms. Human results founded on this approach suggest that tone detection is based on combined energy and envelope (ENV) cues, but detection cues in nonhuman species are less clear. Decision variable correlation (DVC) was used to evaluate tone-in-noise detection cues in the budgerigar, an avian species with human-like behavioral sensitivity to many complex sounds. DVC quantifies a model's ability to predict trial-by-trial variance in behavioral responses. Budgerigars were behaviorally conditioned to detect 500-Hz tones in wideband (WB; 100-3000 Hz) and narrowband (NB; 452-552 Hz) noise. Behavioral responses were obtained using a single-interval, two-alternative discrimination task and two-down, one-up adaptive tracking procedures. Tone-detection thresholds in WB noise were higher than human thresholds, putatively due to broader peripheral frequency tuning, whereas NB thresholds were within ∼1 dB of human results. Budgerigar average hit and false-alarm rates across noise waveforms were consistent, highly correlated across subjects, and correlated to human results. Trial-by-trial behavioral results in NB noise were best explained by a model combining energy and ENV cues. In contrast, WB results were better predicted by ENV-based or multiple-channel energy detector models. These results suggest that budgerigars and humans use similar cues for tone-in-noise detection.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642, USA
| | - Kassidy N Amburgey
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
9
|
Hu G, Determan SC, Dong Y, Beeve AT, Collins JE, Gai Y. Spectral and Temporal Envelope Cues for Human and Automatic Speech Recognition in Noise. J Assoc Res Otolaryngol 2019; 21:73-87. [PMID: 31758279 DOI: 10.1007/s10162-019-00737-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
Abstract
Acoustic features of speech include various spectral and temporal cues. It is known that temporal envelope plays a critical role for speech recognition by human listeners, while automated speech recognition (ASR) heavily relies on spectral analysis. This study compared sentence-recognition scores of humans and an ASR software, Dragon, when spectral and temporal-envelope cues were manipulated in background noise. Temporal fine structure of meaningful sentences was reduced by noise or tone vocoders. Three types of background noise were introduced: a white noise, a time-reversed multi-talker noise, and a fake-formant noise. Spectral information was manipulated by changing the number of frequency channels. With a 20-dB signal-to-noise ratio (SNR) and four vocoding channels, white noise had a stronger disruptive effect than the fake-formant noise. The same observation with 22 channels was made when SNR was lowered to 0 dB. In contrast, ASR was unable to function with four vocoding channels even with a 20-dB SNR. Its performance was least affected by white noise and most affected by the fake-formant noise. Increasing the number of channels, which improved the spectral resolution, generated non-monotonic behaviors for the ASR with white noise but not with colored noise. The ASR also showed highly improved performance with tone vocoders. It is possible that fake-formant noise affected the software's performance by disrupting spectral cues, whereas white noise affected performance by compromising speech segmentation. Overall, these results suggest that human listeners and ASR utilize different listening strategies in noise.
Collapse
Affiliation(s)
- Guangxin Hu
- Biomedical Engineering Department, Saint Louis University, 3007 Lindell Blvd Suite 2007, St Louis, MO, 63103, USA
| | - Sarah C Determan
- Biomedical Engineering Department, Saint Louis University, 3007 Lindell Blvd Suite 2007, St Louis, MO, 63103, USA
| | - Yue Dong
- Biomedical Engineering Department, Saint Louis University, 3007 Lindell Blvd Suite 2007, St Louis, MO, 63103, USA
| | - Alec T Beeve
- Biomedical Engineering Department, Saint Louis University, 3007 Lindell Blvd Suite 2007, St Louis, MO, 63103, USA
| | - Joshua E Collins
- Biomedical Engineering Department, Saint Louis University, 3007 Lindell Blvd Suite 2007, St Louis, MO, 63103, USA
| | - Yan Gai
- Biomedical Engineering Department, Saint Louis University, 3007 Lindell Blvd Suite 2007, St Louis, MO, 63103, USA.
| |
Collapse
|
10
|
Modeling the effects of medial olivocochlear efferent stimulation at the level of the inferior colliculus. Exp Brain Res 2019; 237:1479-1491. [PMID: 30903206 DOI: 10.1007/s00221-019-05511-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
Various studies on medial olivocochlear (MOC) efferents have implicated it in multiple roles in the auditory system (e.g., dynamic range adaptation, masking reduction, and selective attention). This study presents a systematic simulation of inferior colliculus (IC) responses with and without electrical stimulation of the MOC. Phenomenological models of the responses of auditory nerve (AN) fibers and IC neurons were used to this end. The simulated responses were highly consistent with physiological data (replicated 3 of the 4 known rate-level responses all MOC effects-shifts, high stimulus level reduction and enhancement). Complex MOC efferent effects which were previously thought to require integration from different characteristic frequency (CF) neurons were simulated using the same frequency inhibition excitation circuitry. MOC-induced enhancing effects were found only in neurons with a CF range from 750 Hz to 2 kHz. This limited effect is indicative of the role of MOC activation on the AN responses at the stimulus offset.
Collapse
|
11
|
Carney LH. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss. J Assoc Res Otolaryngol 2018; 19:331-352. [PMID: 29744729 PMCID: PMC6081887 DOI: 10.1007/s10162-018-0669-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
An important topic in contemporary auditory science is supra-threshold hearing. Difficulty hearing at conversational speech levels in background noise has long been recognized as a problem of sensorineural hearing loss, including that associated with aging (presbyacusis). Such difficulty in listeners with normal thresholds has received more attention recently, especially associated with descriptions of synaptopathy, the loss of auditory nerve (AN) fibers as a result of noise exposure or aging. Synaptopathy has been reported to cause a disproportionate loss of low- and medium-spontaneous rate (L/MSR) AN fibers. Several studies of synaptopathy have assumed that the wide dynamic ranges of L/MSR AN fiber rates are critical for coding supra-threshold sounds. First, this review will present data from the literature that argues against a direct role for average discharge rates of L/MSR AN fibers in coding sounds at moderate to high sound levels. Second, the encoding of sounds at supra-threshold levels is examined. A key assumption in many studies is that saturation of AN fiber discharge rates limits neural encoding, even though the majority of AN fibers, high-spontaneous rate (HSR) fibers, have saturated average rates at conversational sound levels. It is argued here that the cross-frequency profile of low-frequency neural fluctuation amplitudes, not average rates, encodes complex sounds. As described below, this fluctuation-profile coding mechanism benefits from both saturation of inner hair cell (IHC) transduction and average rate saturation associated with the IHC-AN synapse. Third, the role of the auditory efferent system, which receives inputs from L/MSR fibers, is revisited in the context of fluctuation-profile coding. The auditory efferent system is hypothesized to maintain and enhance neural fluctuation profiles. Lastly, central mechanisms sensitive to neural fluctuations are reviewed. Low-frequency fluctuations in AN responses are accentuated by cochlear nucleus neurons which, either directly or via other brainstem nuclei, relay fluctuation profiles to the inferior colliculus (IC). IC neurons are sensitive to the frequency and amplitude of low-frequency fluctuations and convert fluctuation profiles from the periphery into a phase-locked rate profile that is robust across a wide range of sound levels and in background noise. The descending projection from the midbrain (IC) to the efferent system completes a functional loop that, combined with inputs from the L/MSR pathway, is hypothesized to maintain "sharp" supra-threshold hearing, reminiscent of visual mechanisms that regulate optical accommodation. Examples from speech coding and detection in noise are reviewed. Implications for the effects of synaptopathy on control mechanisms hypothesized to influence supra-threshold hearing are discussed. This framework for understanding neural coding and control mechanisms for supra-threshold hearing suggests strategies for the design of novel hearing aid signal-processing and electrical stimulation patterns for cochlear implants.
Collapse
Affiliation(s)
- Laurel H Carney
- Departments of Biomedical Engineering, Neuroscience, and Electrical & Computer Engineering, Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Ave., Box 603, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 2018; 360:55-75. [DOI: 10.1016/j.heares.2017.12.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/17/2017] [Accepted: 12/23/2017] [Indexed: 11/21/2022]
|
13
|
Laback B, Dietz M, Joris P. Temporal effects in interaural and sequential level difference perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:3267. [PMID: 29195428 DOI: 10.1121/1.5009563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Temporal effects in interaural level difference (ILD) perception are not well understood. While it is often assumed that ILD sensitivity is independent of the temporal stimulus properties, a reduction of ILD sensitivity for stimuli with a high modulation rate has been reported (known under the term binaural adaptation). Experiment 1 compared ILD thresholds and sequential-level-difference (SLD) thresholds using 300-ms bandpass-filtered pulse trains (centered at 4 kHz) with rates of 100, 400, and 800 pulses per second (pps). In contrast to the SLD thresholds, ILD thresholds were elevated at 800 pps, consistent with literature data that had previously been attributed to binaural adaptation. Experiment 2 showed better ILD sensitivity for pulse trains than for pure tones, suggesting that amplitude modulation enhances ILD sensitivity. The present ILD data and binaural adaptation data from the literature were predicted by a model combining well-established auditory periphery front-ends with an interaural comparison stage. The model also accounted for other published ILD data, including target ILD thresholds in diotic forward and backward fringes and ILD thresholds with different amounts of interaural correlation. Overall, a variety of temporal effects in ILD perception, including binaural adaptation, appear to be largely attributable to monaural peripheral auditory processing.
Collapse
Affiliation(s)
- Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, Vienna, A-1040, Austria
| | - Mathias Dietz
- Medizinische Physik, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg, 26111, Germany
| | - Philip Joris
- Laboratory of Auditory Neurophysiology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
14
|
Henry KS, Abrams KS, Forst J, Mender MJ, Neilans EG, Idrobo F, Carney LH. Midbrain Synchrony to Envelope Structure Supports Behavioral Sensitivity to Single-Formant Vowel-Like Sounds in Noise. J Assoc Res Otolaryngol 2017; 18:165-181. [PMID: 27766433 PMCID: PMC5243265 DOI: 10.1007/s10162-016-0594-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/05/2016] [Indexed: 11/24/2022] Open
Abstract
Vowels make a strong contribution to speech perception under natural conditions. Vowels are encoded in the auditory nerve primarily through neural synchrony to temporal fine structure and to envelope fluctuations rather than through average discharge rate. Neural synchrony is thought to contribute less to vowel coding in central auditory nuclei, consistent with more limited synchronization to fine structure and the emergence of average-rate coding of envelope fluctuations. However, this hypothesis is largely unexplored, especially in background noise. The present study examined coding mechanisms at the level of the midbrain that support behavioral sensitivity to simple vowel-like sounds using neurophysiological recordings and matched behavioral experiments in the budgerigar. Stimuli were harmonic tone complexes with energy concentrated at one spectral peak, or formant frequency, presented in quiet and in noise. Behavioral thresholds for formant-frequency discrimination decreased with increasing amplitude of stimulus envelope fluctuations, increased in noise, and were similar between budgerigars and humans. Multiunit recordings in awake birds showed that the midbrain encodes vowel-like sounds both through response synchrony to envelope structure and through average rate. Whereas neural discrimination thresholds based on either coding scheme were sufficient to support behavioral thresholds in quiet, only synchrony-based neural thresholds could account for behavioral thresholds in background noise. These results reveal an incomplete transformation to average-rate coding of vowel-like sounds in the midbrain. Model simulations suggest that this transformation emerges due to modulation tuning, which is shared between birds and mammals. Furthermore, the results underscore the behavioral relevance of envelope synchrony in the midbrain for detection of small differences in vowel formant frequency under real-world listening conditions.
Collapse
Affiliation(s)
- Kenneth S. Henry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642 USA
| | - Kristina S. Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642 USA
| | - Johanna Forst
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642 USA
| | - Matthew J. Mender
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642 USA
| | | | - Fabio Idrobo
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215 USA
- Universidad de Los Andes, Bogotá, Colombia
| | - Laurel H. Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642 USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642 USA
| |
Collapse
|
15
|
Modeling Responses in the Superior Paraolivary Nucleus: Implications for Forward Masking in the Inferior Colliculus. J Assoc Res Otolaryngol 2017; 18:441-456. [PMID: 28097439 DOI: 10.1007/s10162-016-0612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
A phenomenological model of the responses of neurons in the superior paraolivary nucleus (SPON) of the rodent is presented in this study. Pure tones at the characteristic frequency (CF) and broadband noise stimuli evoke offset-type responses in these neurons. SPON neurons also phase-lock to the envelope of sinusoidally amplitude-modulated (SAM) stimuli for a range of modulation frequencies. Model SPON neuron received inhibitory input that was relayed by the ipsilateral medial nucleus of the trapezoid body from the contralateral model ventral cochlear nucleus neuron. The SPON model response was simulated by detecting the slope of its inhibitory postsynaptic potential. Responses of the proposed model to pure tones at CF and broadband noise were offset-type independent of the duration of the input stimulus. SPON model responses were also synchronized to the envelope of SAM stimuli with precise timing for a range of modulation frequencies. Modulation transfer functions (MTFs) obtained from the model response to SAM stimuli resemble the physiological MTFs. The output of the proposed SPON model provides an input for models of physiological responses at higher levels of the ascending auditory pathway and can also be utilized to infer possible mechanisms underlying gap detection and duration encoding as well as forward masking at the level of the auditory midbrain.
Collapse
|
16
|
Baumgartner R, Majdak P, Laback B. Modeling the Effects of Sensorineural Hearing Loss on Sound Localization in the Median Plane. Trends Hear 2016; 20:20/0/2331216516662003. [PMID: 27659486 PMCID: PMC5055367 DOI: 10.1177/2331216516662003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Listeners use monaural spectral cues to localize sound sources in sagittal planes (along the up-down and front-back directions). How sensorineural hearing loss affects the salience of monaural spectral cues is unclear. To simulate the effects of outer-hair-cell (OHC) dysfunction and the contribution of different auditory-nerve fiber types on localization performance, we incorporated a nonlinear model of the auditory periphery into a model of sagittal-plane sound localization for normal-hearing listeners. The localization model was first evaluated in its ability to predict the effects of spectral cue modifications for normal-hearing listeners. Then, we used it to simulate various degrees of OHC dysfunction applied to different types of auditory-nerve fibers. Predicted localization performance was hardly affected by mild OHC dysfunction but was strongly degraded in conditions involving severe and complete OHC dysfunction. These predictions resemble the usually observed degradation in localization performance induced by sensorineural hearing loss. Predicted localization performance was best when preserving fibers with medium spontaneous rates, which is particularly important in view of noise-induced hearing loss associated with degeneration of this fiber type. On average across listeners, predicted localization performance was strongly related to level discrimination sensitivity of auditory-nerve fibers, indicating an essential role of this coding property for localization accuracy in sagittal planes.
Collapse
Affiliation(s)
- Robert Baumgartner
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
17
|
Diedesch AC, Stecker GC. Temporal weighting of binaural information at low frequencies: Discrimination of dynamic interaural time and level differences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:125-133. [PMID: 26233013 PMCID: PMC4499054 DOI: 10.1121/1.4922327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/15/2015] [Accepted: 05/27/2015] [Indexed: 05/29/2023]
Abstract
The importance of sound onsets in binaural hearing has been addressed in many studies, particularly at high frequencies, where the onset of the envelope may carry much of the useful binaural information. Some studies suggest that sound onsets might play a similar role in the processing of binaural cues [e.g., fine-structure interaural time differences (ITD)] at low frequencies. This study measured listeners' sensitivity to ITD and interaural level differences (ILD) present in early (i.e., onset) and late parts of 80-ms pure tones of 250-, 500-, and 1000-Hz frequency. Following previous studies, tones carried static interaural cues or dynamic cues that peaked at sound onset and diminished to zero at sound offset or vice versa. Although better thresholds were observed in static than dynamic conditions overall, ITD discrimination was especially impaired, regardless of frequency, when cues were not available at sound onset. Results for ILD followed a similar pattern at 1000 Hz; at lower frequencies, ILD thresholds did not differ significantly between dynamic-cue conditions. The results support the "onset" hypothesis of Houtgast and Plomp [(1968). J. Acoust. Soc. Am. 44, 807-812] for ITD discrimination, but not necessarily ILD discrimination, in low-frequency pure tones.
Collapse
Affiliation(s)
- Anna C Diedesch
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| | - G Christopher Stecker
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| |
Collapse
|
18
|
Mao J, Koch KJ, Doherty KA, Carney LH. Cues for Diotic and Dichotic Detection of a 500-Hz Tone in Noise Vary with Hearing Loss. J Assoc Res Otolaryngol 2015; 16:507-21. [PMID: 25976088 DOI: 10.1007/s10162-015-0518-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/15/2015] [Indexed: 11/26/2022] Open
Abstract
Hearing in noise is a challenge for all listeners, especially for those with hearing loss. This study compares cues used for detection of a low-frequency tone in noise by older listeners with and without hearing loss to those of younger listeners with normal hearing. Performance varies significantly across different reproducible, or "frozen," masker waveforms. Analysis of these waveforms allows identification of the cues that are used for detection. This study included diotic (N0S0) and dichotic (N0Sπ) detection of a 500-Hz tone, with either narrowband or wideband masker waveforms. Both diotic and dichotic detection patterns (hit and false alarm rates) across the ensembles of noise maskers were predicted by envelope-slope cues, and diotic results were also predicted by energy cues. The relative importance of energy and envelope cues for diotic detection was explored with a roving-level paradigm that made energy cues unreliable. Most older listeners with normal hearing or mild hearing loss depended on envelope-related temporal cues, even for this low-frequency target. As hearing threshold at 500 Hz increased, the cues for diotic detection transitioned from envelope to energy cues. Diotic detection patterns for young listeners with normal hearing are best predicted by a model that combines temporal- and energy-related cues; in contrast, combining cues did not improve predictions for older listeners with or without hearing loss. Dichotic detection results for all groups of listeners were best predicted by interaural envelope cues, which significantly outperformed the classic cues based on interaural time and level differences or their optimal combination.
Collapse
Affiliation(s)
- Junwen Mao
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | | | | | | |
Collapse
|