1
|
Acuña F, Jeria R, Pavez E, Aguilar-Vidal E. Efferent Control in Musicians: A Review. Audiol Res 2023; 13:76-85. [PMID: 36648928 PMCID: PMC9844302 DOI: 10.3390/audiolres13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
It is widely established that musicians possess a higher level in certain auditory perceptual abilities when compared to non-musicians. This improvement may be mediated, at least in part, by changes in the cochlear response induced by reflex activation of the olivocochlear efferent system. In this review, we describe and analyze the scientific evidence regarding possible differences in the efferent response in musicians and non-musicians. The main evidence observed is that musicians present a greater robustness of the efferent olivocochlear reflex when measured by suppression of otoacoustic emissions and compared to non-musicians. Analyzing the articles presented in this review, it is possible to point out that the differential role of the efferent effect in musicians is not yet established. There is not enough evidence to support the idea that the olivocochlear system favors comparative changes in the properties of musicians' auditory filters. New studies with psychoacoustic techniques, among others, are needed to measure the effect of the olivocochlear reflex on tuning, gain, compression, or temporal resolution in musicians and non-musicians.
Collapse
Affiliation(s)
- Francisca Acuña
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo Jeria
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Elisabeth Pavez
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Enzo Aguilar-Vidal
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence:
| |
Collapse
|
2
|
Miranda FA, Aguilar-Vidal E. Magnitude of the contralateral efferent olivocochlear effect as a function of the frequency. J Otol 2022; 17:67-71. [PMID: 35949552 PMCID: PMC9349011 DOI: 10.1016/j.joto.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/07/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background The activation of the medial olivocochlear reflex reduces the cochlear gain, which is manifested perceptually as decreased auditory sensitivity. However, it has remained unclear whether the extent of this suppression varies according to the cochlear region involved. Here we aims to assess the magnitude of contralateral efferent suppression across human cochlea, at low levels, and its impact on hearing sensitivity. Methods Assuming that acoustic stimulation activates the contralateral medial olivocochlear reflex, we evaluated the magnitude of the suppressive effect as a function of frequency in 17 subjects with normal hearing. Absolute thresholds were measured for bursts tones of various durations (10, 100, and 500 ms) and frequencies (250, 500, 1000, 4000, and 8000 Hz) in the presence or absence of contralateral white noise at 60 dB SPL. Results We found that contralateral noise raised the absolute threshold for the burst tones evaluated. The effect was greater at lower than higher frequencies (3.85 dB at 250 Hz vs. 2.22 dB at 8000 Hz). Conclusions Our findings suggest that in humans, the magnitude of this suppression varies according to the cochlear region stimulated, with a greater effect towards the apex (lower frequencies) than the base (higher frequencies) of the cochlea.
Collapse
Affiliation(s)
- Fernanda Anza Miranda
- Laboratorio de Audiología y Percepción Auditiva, Facultad de Medicina, Universidad de Chile, Chile
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Enzo Aguilar-Vidal
- Laboratorio de Audiología y Percepción Auditiva, Facultad de Medicina, Universidad de Chile, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
- Corresponding author. Independencia 1027, Departamento Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, 9786060 Chile.
| |
Collapse
|
3
|
DeRoy Milvae K, Strickland EA. Behavioral Measures of Cochlear Gain Reduction Depend on Precursor Frequency, Bandwidth, and Level. Front Neurosci 2021; 15:716689. [PMID: 34671236 PMCID: PMC8520990 DOI: 10.3389/fnins.2021.716689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Sensory systems adjust to the environment to maintain sensitivity to change. In the auditory system, the medial olivocochlear reflex (MOCR) is a known physiological mechanism capable of such adjustment. The MOCR provides efferent feedback between the brainstem and cochlea, reducing cochlear gain in response to sound. The perceptual effects of the MOCR are not well understood, such as how gain reduction depends on elicitor characteristics in human listeners. Physiological and behavioral data suggest that ipsilateral MOCR tuning is only slightly broader than it is for afferent fibers, and that the fibers feed back to the frequency region of the cochlea that stimulated them. However, some otoacoustic emission (OAE) data suggest that noise is a more effective elicitor than would be consistent with sharp tuning, and that a broad region of the cochlea may be involved in elicitation. If the elicitor is processed in a cochlear channel centered at the signal frequency, the growth of gain reduction with elicitor level would be expected to depend on the frequency content of the elicitor. In the current study, the effects of the frequency content and level of a preceding sound (called a precursor) on signal threshold was examined. The results show that signal threshold increased with increasing precursor level at a shallower slope for a tonal precursor at the signal frequency than for a tonal precursor nearly an octave below the signal frequency. A broadband noise was only slightly more effective than a tone at the signal frequency, with a relatively shallow slope similar to that of the tonal precursor at the signal frequency. Overall, these results suggest that the excitation at the signal cochlear place, regardless of elicitor frequency, determines the magnitude of ipsilateral cochlear gain reduction, and that it increases with elicitor level.
Collapse
Affiliation(s)
- Kristina DeRoy Milvae
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Salloom WB, Strickland EA. The effect of broadband elicitor laterality on psychoacoustic gain reduction across signal frequency. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2817. [PMID: 34717476 PMCID: PMC8520488 DOI: 10.1121/10.0006662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 05/19/2023]
Abstract
There are psychoacoustic methods thought to measure gain reduction, which may be from the medial olivocochlear reflex (MOCR), a bilateral feedback loop that adjusts cochlear gain. Although studies have used ipsilateral and contralateral elicitors and have examined strength at different signal frequencies, these factors have not been examined within a single study. Therefore, basic questions about gain reduction, such as the relative strength of ipsilateral vs contralateral elicitation and the relative strength across signal frequency, are not known. In the current study, gain reduction from ipsilateral, contralateral, and bilateral elicitors was measured at 1-, 2-, and 4-kHz signal frequencies using forward masking paradigms at a range of elicitor levels in a repeated measures design. Ipsilateral and bilateral strengths were similar and significantly larger than contralateral strength across signal frequencies. Growth of gain reduction with precursor level tended to differ with signal frequency, although not significantly. Data from previous studies are considered in light of the results of this study. Behavioral results are also considered relative to anatomical and physiological data on the MOCR. These results indicate that, in humans, cochlear gain reduction is broad across frequencies and is robust for ipsilateral and bilateral elicitation but small for contralateral elicitation.
Collapse
Affiliation(s)
- William B Salloom
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
5
|
Jennings SG. The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review. J Neurophysiol 2021; 125:2279-2308. [PMID: 33909513 PMCID: PMC8285664 DOI: 10.1152/jn.00672.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/01/2023] Open
Abstract
This review addresses the putative role of the medial olivocochlear (MOC) reflex in psychophysical masking and intensity resolution in humans. A framework for interpreting psychophysical results in terms of the expected influence of the MOC reflex is introduced. This framework is used to review the effects of a precursor or contralateral acoustic stimulation on 1) simultaneous masking of brief tones, 2) behavioral estimates of cochlear gain and frequency resolution in forward masking, 3) the buildup and decay of forward masking, and 4) measures of intensity resolution. Support, or lack thereof, for a role of the MOC reflex in psychophysical perception is discussed in terms of studies on estimates of MOC strength from otoacoustic emissions and the effects of resection of the olivocochlear bundle in patients with vestibular neurectomy. Novel, innovative approaches are needed to resolve the dissatisfying conclusion that current results are unable to definitively confirm or refute the role of the MOC reflex in masking and intensity resolution.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Marrufo-Pérez MI, Johannesen PT, Lopez-Poveda EA. Correlation and Reliability of Behavioral and Otoacoustic-Emission Estimates of Contralateral Medial Olivocochlear Reflex Strength in Humans. Front Neurosci 2021; 15:640127. [PMID: 33664649 PMCID: PMC7921326 DOI: 10.3389/fnins.2021.640127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
The roles of the medial olivocochlear reflex (MOCR) in human hearing have been widely investigated but remain controversial. We reason that this may be because the effects of MOCR activation on cochlear mechanical responses can be assessed only indirectly in healthy humans, and the different methods used to assess those effects possibly yield different and/or unreliable estimates. One aim of this study was to investigate the correlation between three methods often employed to assess the strength of MOCR activation by contralateral acoustic stimulation (CAS). We measured tone detection thresholds (N = 28), click-evoked otoacoustic emission (CEOAE) input/output (I/O) curves (N = 18), and distortion-product otoacoustic emission (DPOAE) I/O curves (N = 18) for various test frequencies in the presence and the absence of CAS (broadband noise of 60 dB SPL). As expected, CAS worsened tone detection thresholds, suppressed CEOAEs and DPOAEs, and horizontally shifted CEOAE and DPOAE I/O curves to higher levels. However, the CAS effect on tone detection thresholds was not correlated with the horizontal shift of CEOAE or DPOAE I/O curves, and the CAS-induced CEOAE suppression was not correlated with DPOAE suppression. Only the horizontal shifts of CEOAE and DPOAE I/O functions were correlated with each other at 1.5, 2, and 3 kHz. A second aim was to investigate which of the methods is more reliable. The test–retest variability of the CAS effect was high overall but smallest for tone detection thresholds and CEOAEs, suggesting that their use should be prioritized over the use of DPOAEs. Many factors not related with the MOCR, including the limited parametric space studied, the low resolution of the I/O curves, and the reduced numbers of observations due to data exclusion likely contributed to the weak correlations and the large test–retest variability noted. These findings can help us understand the inconsistencies among past studies and improve our understanding of the functional significance of the MOCR.
Collapse
Affiliation(s)
- Miriam I Marrufo-Pérez
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Strickland EA, Salloom WB, Hegland EL. Evidence for Gain Reduction by a Precursor in an On-Frequency Forward Masking Paradigm. ACTA ACUST UNITED AC 2018; 104:809-812. [PMID: 31736681 PMCID: PMC6858064 DOI: 10.3813/aaa.919229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A forward masking technique was used to measure cochlear gain reduction which might be consistent with the medial olivocochlear reflex (MOCR). A 4-kHz signal was set at 20 dB SL, and an on-frequency forward masker adjusted to just mask the signal. Adding a pink noise precursor before the signal and masker increased the level of the masker needed to mask the signal, in contrast to what would be expected from theories such as additivity of masking. The magnitude and pattern of this increase was similar to the increase in signal threshold seen with an off-frequency masker following a precursor.
Collapse
Affiliation(s)
- Elizabeth A. Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue Univ, West Lafayette, Indiana, United States
| | - William B. Salloom
- Department of Speech, Language, and Hearing Sciences, Purdue Univ, West Lafayette, Indiana, United States
| | - Erica L. Hegland
- Department of Speech, Language, and Hearing Sciences, Purdue Univ, West Lafayette, Indiana, United States
| |
Collapse
|
8
|
DeRoy Milvae K, Strickland EA. Psychoacoustic measurements of ipsilateral cochlear gain reduction as a function of signal frequency. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3114. [PMID: 29857720 PMCID: PMC5967972 DOI: 10.1121/1.5038254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/09/2018] [Accepted: 04/30/2018] [Indexed: 05/19/2023]
Abstract
Forward masking experiments at 4 kHz have demonstrated that preceding sound can elicit changes in masking patterns consistent with a change in cochlear gain. However, the acoustic environment is filled with complex sounds, often dominated by lower frequencies, and ipsilateral cochlear gain reduction at frequencies below 4 kHz is largely unstudied in the forward masking literature. In this experiment, the magnitude of ipsilateral cochlear gain reduction was explored at 1, 2, and 4 kHz using forward masking techniques in an effort to evaluate a range of frequencies in listeners with normal hearing. Gain reduction estimates were not significantly different at 2 and 4 kHz using two forward masking measurements. Although the frequency was a significant factor in the analysis, post hoc testing supported the interpretation that gain reduction estimates measured without a masker were not significantly different at 1, 2, and 4 kHz. A second experiment provided evidence that forward masking in this paradigm at 1 kHz cannot be explained by excitation alone. This study provides evidence of ipsilateral cochlear gain reduction in humans at frequencies below the 4 kHz region.
Collapse
Affiliation(s)
- Kristina DeRoy Milvae
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
9
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses. Hear Res 2017; 362:38-47. [PMID: 29291948 DOI: 10.1016/j.heares.2017.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022]
Abstract
The anatomy and physiology of olivocochlear (OC) efferents are reviewed. To help interpret these, recent advances in cochlear mechanics are also reviewed. Lateral OC (LOC) efferents innervate primary auditory-nerve (AN) fiber dendrites. The most important LOC function may be to reduce auditory neuropathy. Medial OC (MOC) efferents innervate the outer hair cells (OHCs) and act to turn down the gain of cochlear amplification. Cochlear amplification had been thought to act only through basilar membrane (BM) motion, but recent reports show that motion near the reticular lamina (RL) is amplified more than BM motion, and that RL-motion amplification extends to several octaves below the local characteristic frequency. Data on efferent effects on AN-fiber responses, otoacoustic emissions (OAEs) and human psychophysics are reviewed and reinterpreted in the light of the new cochlear-mechanical data. The possible origin of OAEs in RL motion is considered. MOC-effect measuring methods and MOC-induced changes in human responses are also reviewed, including that ipsilateral and contralateral sound can produce MOC effects with different patterns across frequency. MOC efferents help to reduce damage due to acoustic trauma. Many, but not all, reports show that subjects with stronger contralaterally-evoked MOC effects have better ability to detect signals (e.g. speech) in noise, and that MOC effects can be modulated by attention.
Collapse
|