1
|
Li Q, Xu H, Chen W, Su A, Fu MJ, Walker MF. Short-term learning of the vestibulo-ocular reflex induced by a custom interactive computer game. J Neurophysiol 2024; 131:16-27. [PMID: 37964728 PMCID: PMC11305635 DOI: 10.1152/jn.00130.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Retinal image slip during head rotation drives motor learning in the rotational vestibulo-ocular reflex (VOR) and forms the basis of gaze-stability exercises that treat vestibular dysfunction. Clinical exercises, however, are unengaging, cannot easily be titrated to the level of impairment, and provide neither direct feedback nor tracking of the patient's adherence, performance, and progress. To address this, we have developed a custom application for VOR training based on an interactive computer game. In this study, we tested the ability of this game to induce VOR learning in individuals with normal vestibular function, and we compared the efficacy of single-step and incremental learning protocols. Eighteen participants played the game twice on different days. All participants tolerated the game and were able to complete both sessions. The game scenario incorporated a series of brief head rotations, similar to active head impulses, that were paired with a dynamic acuity task and with a visual-vestibular mismatch (VVM) intended to increase VOR gain (single-step: 300 successful trials at ×1.5 viewing; incremental: 100 trials each of ×1.13, ×1.33, and ×1.5 viewing). Overall, VOR gain increased by 15 ± 4.7% (mean ± 95% CI, P < 0.001). Gains increased similarly for active and passive head rotations, and, contrary to our hypothesis, there was little effect of the learning strategy. This study shows that an interactive computer game provides robust VOR training and has the potential to deliver effective, engaging, and trackable gaze-stability exercises to patients with a range of vestibular dysfunctions.NEW & NOTEWORTHY This study demonstrates the feasibility and efficacy of a customized computer game to induce motor learning in the high-frequency rotational vestibulo-ocular reflex. It provides a physiological basis for the deployment of this technology to clinical vestibular rehabilitation.
Collapse
Affiliation(s)
- Qi Li
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Honglu Xu
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Weicong Chen
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Andrew Su
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Michael J Fu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio, United States
- Functional Electrical Stimulation Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio, United States
- MetroHealth Rehabilitation Institute, The MetroHealth System, Cleveland, Ohio, United States
| | - Mark F Walker
- Neurology Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, United States
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, United States
- Advanced Platform Technology Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Moin-Darbari K, Nooristani M, Bacon BA, Champoux F, Maheu M. Long-term dance training modifies eye-head coordination in response to passive head impulse. J Neurophysiol 2023; 130:999-1007. [PMID: 37702547 DOI: 10.1152/jn.00232.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Long-term dance training is known to improve postural control, especially in challenging postural tasks. However, the effect of dance training on the vestibulo-ocular reflex (VOR) has yet to be properly assessed. This study directly investigated whether VOR parameters are influenced by long-term dance training by testing dancers and controls using the video head impulse test. VOR gains using two of the most common methods (area ratio and instantaneous gains), latency and amplitude of the first saccade, if applicable, were computed. Results revealed a larger VOR gain as measured by area gain and instantaneous gain at 40 ms specifically for left-head impulses, but not right-head impulses. No significant differences in saccade frequency, amplitude, or latency were observed between groups. These differences appear to stem from a modified eye-to-head relationship during high-velocity head impulses in dancers. More specifically, the dancers' eyes lead head movement during passively applied head impulses, which result in higher VOR gain.NEW & NOTEWORTHY This study demonstrates, for the first time, that long-term dance training results in a nonlinear relationship between eye and head velocity within the first milliseconds following passive head impulse. The data also suggest a larger VOR gain in dancers. This finding suggests that dance training may modify eye-head relationship in passive high-frequency head movements. This is of particular interest for vestibular rehabilitation.
Collapse
Affiliation(s)
- Karina Moin-Darbari
- School of Speech Language Pathology and Audiology, Montreal University, Montreal, Quebec, Canada
| | - Mujda Nooristani
- School of Rehabilitation Sciences, Ottawa University, Ottawa, Ontario, Canada
| | | | - François Champoux
- School of Speech Language Pathology and Audiology, Montreal University, Montreal, Quebec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Maxime Maheu
- School of Speech Language Pathology and Audiology, Montreal University, Montreal, Quebec, Canada
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), pavillon Laurier, CIUSSS du Centre-Sud-de-l'Île-de-Montréal
| |
Collapse
|
3
|
Once-Daily Incremental Vestibular-Ocular Reflex Adaptation Training in Patients With Chronic Peripheral Vestibular Hypofunction: A 1-Week Randomized Controlled Study. J Neurol Phys Ther 2021; 45:87-100. [PMID: 33675600 DOI: 10.1097/npt.0000000000000348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE This was a double-blinded randomized controlled study to investigate the effects of once-daily incremental vestibulo-ocular reflex (VOR) training over 1 week in people with chronic peripheral vestibular hypofunction. METHODS A total of 24 patients with peripheral vestibular hypofunction were randomly assigned to intervention (n = 13) or control (n = 11) groups. Training consisted of either x1 (control) or incremental VOR adaptation exercises, delivered once daily for 15 minutes over 4 days in 1 week. Primary outcome: VOR gain with video-oculography. Secondary outcomes: Compensatory saccades measured using scleral search coils, dynamic visual acuity, static balance, gait, and subjective symptoms. Between-group differences were analyzed with a linear mixed-model with repeated measures. RESULTS There was a difference in the VOR gain increase between groups (P < 0.05). The incremental training group gain increased during active (13.4% ± 16.3%) and passive (12.1% ± 19.9%) head impulse testing (P < 0.02), whereas it did not for the control group (P = 0.59). The control group had reduced compensatory saccade latency (P < 0.02). Both groups had similarly improved dynamic visual acuity scores (P < 0.05). Both groups had improved dynamic gait index scores (P < 0.002); however, only the incremental group had improved scores for the 2 walks involving head oscillations at approximately 2 Hz (horizontal: P < 0.05; vertical: P < 0.02), increased gait speed (P < 0.02), and step length (P < 0.01) during normal gait, and improved total Dizziness Handicap Inventory (P < 0.05). CONCLUSIONS Our results suggest incremental VOR adaptation significantly improves gain, gait with head rotation, balance during gait, and symptoms in patients with chronic peripheral vestibular hypofunction more so than conventional x1 gaze-stabilizing exercises.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A336).
Collapse
|
4
|
Rinaudo CN, Schubert MC, Figtree WVC, Cremer PD, Migliaccio AA. Human Vestibulo-Ocular Reflex Adaptation Reduces when Training Demand Variability Increases. J Assoc Res Otolaryngol 2020; 22:193-206. [PMID: 33090309 DOI: 10.1007/s10162-020-00775-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
One component of vestibular rehabilitation in patients with vestibulo-ocular reflex (VOR) hypofunction is gaze-stabilizing exercises that seek to increase (adapt) the VOR response. These prescribed home-based exercises are performed by the patient and thus their use/training is inherently variable. We sought to determine whether this variability affected VOR adaptation in ten healthy controls (× 2 training only) and ten patients with unilateral vestibular hypofunction (× 1 and × 2 training). During × 1 training, patients actively (self-generated, predictable) move their head sinusoidally while viewing a stationary fixation target; for × 2 training, they moved their outstretched hand anti-phase with their head rotation while attempting to view a handheld target. We defined the latter as manual × 2 training because the subject manually controls the target. In this study, head rotation frequency during training incrementally increased 0.5-2 Hz over 20 min. Active and passive (imposed, unpredictable) sinusoidal (1.3-Hz rotations) and head impulse VOR gains were measured before and after training. We show that for controls, manual × 2 training resulted in significant sinusoidal and impulse VOR adaptation of ~ 6 % and ~ 3 %, respectively, though this was ~two-thirds lower than increases after computer-controlled × 2 training (non-variable) reported in a prior study. In contrast, for patients, there was an increase in impulse but not sinusoidal VOR response after a single session of manual × 2 training. Patients had more than double the variability in VOR demand during manual × 2 training compared to controls, which could explain why adaptation was not significant in patients. Our data suggest that the clinical × 1 gaze-stabilizing exercise is a weak stimulus for VOR adaptation.
Collapse
Affiliation(s)
- Carlo N Rinaudo
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2033, Australia
| | - Michael C Schubert
- Laboratory of Vestibular NeuroAdaptation, Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - William V C Figtree
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2033, Australia
| | - Phillip D Cremer
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, NSW, 2031, Australia.,Royal North Shore Hospital, Sydney, Australia
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, NSW, 2031, Australia. .,University of New South Wales, Sydney, NSW, 2033, Australia. .,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, 21205, USA. .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| |
Collapse
|
5
|
Figtree WVC, Schubert MC, Rinaudo CN, Migliaccio AA. The instantaneous training demand drives vestibulo-ocular reflex adaptation. Exp Brain Res 2020; 238:2965-2972. [PMID: 33070228 DOI: 10.1007/s00221-020-05953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
The vestibulo-ocular reflex (VOR) maintains stable vision during rapid head rotations by rotating the eyes in the opposite direction to the head. The latency between onset of the head rotation and onset of the eye rotation is 5-8 ms in healthy humans. However, VOR latency can be 3-4 times larger in patients treated with intra-tympanic gentamicin. A prior study showed that latency can be trained with head rotations at 0.2 Hz. We sought to determine how the VOR is affected when a delay between vestibular and visual stimuli is added during adaptation training with high-frequency head rotations (impulses), where the VOR is the main vision-stabilizing system. Using a variant of the incremental VOR adaptation technique, the delay between head rotation onset and movement onset of a visual target was gradually increased. With this training, the instantaneous VOR gain demand (= target/head velocity) varied from less than unity to greater than unity during each head impulse, albeit in a consistent and repeatable way. We measured the active and passive VOR gain and latency before and after VOR adaptation training in healthy normal subjects. There was no significant change in VOR latency across subjects; however, there was a significant decrease in VOR gain of - 6.0 ± 4.5%. These data suggest that during high-frequency head rotations delay/latency is interpreted as a changing instantaneous VOR gain demand. Although the gain demand in this study had a complex trajectory, adaptation was evident with the VOR seeming to use an average of the instantaneous gain demand.
Collapse
Affiliation(s)
- William V C Figtree
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, Sydney, NSW, 2031, Australia
| | - Michael C Schubert
- Laboratory of Vestibular NeuroAdaptation, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Carlo N Rinaudo
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2033, Australia
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, Sydney, NSW, 2031, Australia. .,University of New South Wales, Sydney, NSW, 2033, Australia. .,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, 21205, USA. .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| |
Collapse
|
6
|
Retinal Image Slip Must Pass the Threshold for Human Vestibulo-Ocular Reflex Adaptation. J Assoc Res Otolaryngol 2020; 21:277-285. [PMID: 32232608 DOI: 10.1007/s10162-020-00751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022] Open
Abstract
We sought to determine whether repeated vestibulo-ocular reflex (VOR) adaptation training to increase the VOR gain (eye/head velocity) had a lasting effect in normal subjects and whether there was a retinal image slip tolerance threshold for VOR adaptation. We used the unilateral incremental VOR adaptation technique and horizontal active (self-generated, predictable) head impulses as the vestibular stimulus. Both active and passive (imposed, unpredictable) head impulse VOR gains were measured before and after unilateral incremental VOR adaptation training. The adapting side was pseudo-randomized for left or right. We tested ten normal subjects over one block (10 sessions over 12 days) of VOR adaptation training and testing, immediately followed by a second block (5 sessions over 19 days) of testing only without training. Our findings show robust short-term VOR adaptation of ~ 10 % immediately after each 15-min training session, but that the daily pre-adaptation gain was most different on days 1 and 2, and for subsequent training days before saturating to ~ 5 % greater than the pre-adaptation gain on day 1. This increase was partially retained for 19 days after regular training stopped. The data suggest that stable vision in normal subjects is maintained when there is < 5 % deviation in VOR gain from the original baseline, which corresponds to < 9°/s retinal image slip. Below this threshold, there is poor adaptive drive to return the gain to its original baseline value.
Collapse
|
7
|
Pogson JM, Taylor RL, McGarvie LA, Bradshaw AP, D’Souza M, Flanagan S, Kong J, Halmagyi GM, Welgampola MS. Head impulse compensatory saccades: Visual dependence is most evident in bilateral vestibular loss. PLoS One 2020; 15:e0227406. [PMID: 31940394 PMCID: PMC6961882 DOI: 10.1371/journal.pone.0227406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022] Open
Abstract
The normal vestibulo-ocular reflex (VOR) generates almost perfectly compensatory smooth eye movements during a 'head-impulse' rotation. An imperfect VOR gain provokes additional compensatory saccades to re-acquire an earth-fixed target. In the present study, we investigated vestibular and visual contributions on saccade production. Eye position and velocity during horizontal and vertical canal-plane head-impulses were recorded in the light and dark from 16 controls, 22 subjects after complete surgical unilateral vestibular deafferentation (UVD), eight subjects with idiopathic bilateral vestibular loss (BVL), and one subject after complete bilateral vestibular deafferentation (BVD). When impulses were delivered in the horizontal-canal plane, in complete darkness compared with light, first saccade frequency mean(SEM) reduced from 96.6(1.3)-62.3(8.9) % in BVL but only 98.3(0.6)-92.0(2.3) % in UVD; saccade amplitudes reduced from 7.0(0.5)-3.6(0.4) ° in BVL but were unchanged 6.2(0.3)-5.5(0.6) ° in UVD. In the dark, saccade latencies were prolonged in lesioned ears, from 168(8.4)-240(24.5) ms in BVL and 177(5.2)-196(5.7) ms in UVD; saccades became less clustered. In BVD, saccades were not completely abolished in the dark, but their amplitudes decreased from 7.3-3.0 ° and latencies became more variable. For unlesioned ears (controls and unlesioned ears of UVD), saccade frequency also reduced in the dark, but their small amplitudes slightly increased, while latency and clustering remained unchanged. First and second saccade frequencies were 75.3(4.5) % and 20.3(4.1) %; without visual fixation they dropped to 32.2(5.0) % and 3.8(1.2) %. The VOR gain was affected by vision only in unlesioned ears of UVD; gains for the horizontal-plane rose slightly, and the vertical-planes reduced slightly. All head-impulse compensatory saccades have a visual contribution, the magnitude of which depends on the symmetry of vestibular-function and saccade latency: BVL is more profoundly affected by vision than UVD, and second saccades more than first saccades. Saccades after UVD are probably triggered by contralateral vestibular function.
Collapse
Affiliation(s)
- Jacob M. Pogson
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rachael L. Taylor
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Leigh A. McGarvie
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Department of Psychology, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Andrew P. Bradshaw
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
| | - Mario D’Souza
- Department of Clinical Research, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sean Flanagan
- Otolaryngology, Head and Neck and Skull Base Surgery, St Vincent’s Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of NSW, Kensington, New South Wales, Australia
| | - Jonathan Kong
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Department of Otolaryngology, Head & Neck Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - G. Michael Halmagyi
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Miriam S. Welgampola
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
8
|
Rinaudo CN, Schubert MC, Figtree WVC, Todd CJ, Migliaccio AA. Human vestibulo-ocular reflex adaptation is frequency selective. J Neurophysiol 2019; 122:984-993. [PMID: 31339801 DOI: 10.1152/jn.00162.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vestibulo-ocular reflex (VOR) is the only system that maintains stable vision during rapid head rotations. The VOR gain (eye/head velocity) can be trained to increase using a vestibular-visual mismatch stimulus. We sought to determine whether low-frequency (sinusoidal) head rotation during training leads to changes in the VOR during high-frequency head rotation testing, where the VOR is more physiologically relevant. We tested eight normal subjects over three sessions. For training protocol 1, subjects performed active sinusoidal head rotations at 1.3 Hz while tracking a laser target, whose velocity incrementally increased relative to head velocity so that the VOR gain required to stabilize the target went from 1.1 to 2 over 15 min. Protocol 2 was the same as protocol 1, except that head rotations were at 0.5 Hz. For protocol 3, head rotation frequency incrementally increased from 0.5 to 2 Hz over 15 min, while the VOR gain required to stabilize the target was kept at 2. We measured the active and passive, sinusoidal (1.3Hz) and head impulse VOR gains before and after each protocol. Sinusoidal and head impulse VOR gains increased in protocols 1 and 3; however, although the sinusoidal VOR gain increase was ~20%, the related head impulse gain increase was only ~10%. Protocol 2 resulted in no-gain adaptation. These data show human VOR adaptation is frequency selective, suggesting that if one seeks to increase the higher-frequency VOR response, i.e., where it is physiologically most relevant, then higher-frequency head movements are required during training, e.g., head impulses.NEW & NOTEWORTHY This study shows that human vestibulo-ocular reflex adaptation is frequency selective at frequencies >0.3 Hz. The VOR in response to mid- (1.3 Hz) and high-frequency (impulse) head rotations were measured before and after mid-frequency sinusoidal VOR adaptation training, revealing that the mid-frequency gain change was higher than high-frequency gain change. Thus, if one seeks to increase the higher-frequency VOR response, where it is physiologically most relevant, then higher-frequency head movements are required during training.
Collapse
Affiliation(s)
- Carlo N Rinaudo
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Michael C Schubert
- Laboratory of Vestibular NeuroAdaptation, Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland.,Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - William V C Figtree
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Christopher J Todd
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| |
Collapse
|
9
|
Schubert MC, Migliaccio AA. New advances regarding adaptation of the vestibulo-ocular reflex. J Neurophysiol 2019; 122:644-658. [PMID: 31215309 DOI: 10.1152/jn.00729.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This is a review summarizing the development of vestibulo-ocular reflex (VOR) adaptation behavior with relevance to rehabilitation over the last 10 years and examines VOR adaptation using head-on-body rotations, specifically the influence of training target contrast, position and velocity error signal, active vs. passive head rotations, and sinusoidal vs. head impulse rotations. This review discusses optimization of the single VOR adaptation training session, consolidation between repeated training sessions, and dynamic incremental VOR adaptation. Also considered are the effects of aging and the roles of the efferent vestibular system, cerebellum, and otoliths on angular VOR adaptation. Finally, this review examines VOR adaptation findings in studies using whole body rotations.
Collapse
Affiliation(s)
- Michael C Schubert
- Laboratory of Vestibular NeuroAdaptation, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland.,School of Biomedical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|