1
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
2
|
Chen X, Xiang W, Li L, Xu K. Copper Chaperone Atox1 Protected the Cochlea From Cisplatin by Regulating the Copper Transport Family and Cell Cycle. Int J Toxicol 2024; 43:134-145. [PMID: 37859596 DOI: 10.1177/10915818231206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 μM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting β (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiren Xiang
- Department of Otolaryngology, Head and Neck Surgery, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Lihua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Lee JH, Park S, Perez-Flores MC, Chen Y, Kang M, Choi J, Levine L, Gratton MA, Zhao J, Notterpek L, Yamoah EN. Demyelination and Na + Channel Redistribution Underlie Auditory and Vestibular Dysfunction in PMP22-Null Mice. eNeuro 2024; 11:ENEURO.0462-23.2023. [PMID: 38378628 PMCID: PMC11059428 DOI: 10.1523/eneuro.0462-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/22/2024] Open
Abstract
Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
- Prestige BioPharma, Busan 67264, South Korea
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Yingying Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
- Prestige BioPharma, Busan 67264, South Korea
| | - Jinsil Choi
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Lauren Levine
- Program in Audiology and Communication Sciences, Washington University, St. Louis 63110, Missouri
| | | | - Jie Zhao
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Lucia Notterpek
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| |
Collapse
|
4
|
Chen Y, Lee JH, Li J, Park S, Flores MCP, Peguero B, Kersigo J, Kang M, Choi J, Levine L, Gratton MA, Fritzsch B, Yamoah EN. Genetic and pharmacologic alterations of claudin9 levels suffice to induce functional and mature inner hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561387. [PMID: 37873357 PMCID: PMC10592694 DOI: 10.1101/2023.10.08.561387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Hearing loss is the most common form of sensory deficit. It occurs predominantly due to hair cell (HC) loss. Mammalian HCs are terminally differentiated by birth, making HC loss incurable. Here, we show the pharmacogenetic downregulation of Cldn9, a tight junction protein, generates robust supernumerary inner HCs (IHCs) in mice. The putative ectopic IHCs have functional and synaptic features akin to typical IHCs and were surprisingly and remarkably preserved for at least fifteen months >50% of the mouse's life cycle. In vivo, Cldn9 knockdown using shRNA on postnatal days (P) P1-7 yielded analogous functional putative ectopic IHCs that were equally durably conserved. The findings suggest that Cldn9 levels coordinate embryonic and postnatal HC differentiation, making it a viable target for altering IHC development pre- and post-terminal differentiation.
Collapse
Affiliation(s)
- Yingying Chen
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, IN, 46202, USA
| | - Jeong Han Lee
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Jin Li
- Department of Otolaryngology, University of Washington Seattle, WA, USA
| | - Seojin Park
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Maria C. Perez Flores
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Braulio Peguero
- Otolaryngology-Head, Neck Surgery, St. Louis University, St. Louis, Missouri 63108
| | | | - Mincheol Kang
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Jinsil Choi
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | | | | | | | - Ebenezer N. Yamoah
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| |
Collapse
|
5
|
Degranulation of Murine Resident Cochlear Mast Cells: A Possible Factor Contributing to Cisplatin-Induced Ototoxicity and Neurotoxicity. Int J Mol Sci 2023; 24:ijms24054620. [PMID: 36902051 PMCID: PMC10003316 DOI: 10.3390/ijms24054620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Permanent hearing loss is one of cisplatin's adverse effects, affecting 30-60% of cancer patients treated with that drug. Our research group recently identified resident mast cells in rodents' cochleae and observed that the number of mast cells changed upon adding cisplatin to cochlear explants. Here, we followed that observation and found that the murine cochlear mast cells degranulate in response to cisplatin and that the mast cell stabilizer cromoglicic acid (cromolyn) inhibits this process. Additionally, cromolyn significantly prevented cisplatin-induced loss of auditory hair cells and spiral ganglion neurons. Our study provides the first evidence for the possible mast cell participation in cisplatin-induced damage to the inner ear.
Collapse
|
6
|
Gu J, Wang X, Chen Y, Xu K, Yu D, Wu H. An enhanced antioxidant strategy of astaxanthin encapsulated in ROS-responsive nanoparticles for combating cisplatin-induced ototoxicity. J Nanobiotechnology 2022; 20:268. [PMID: 35689218 PMCID: PMC9185887 DOI: 10.1186/s12951-022-01485-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Background Excessive accumulation of reactive oxygen species (ROS) has been documented as the crucial cellular mechanism of cisplatin-induced ototoxicity. However, numerous antioxidants have failed in clinical studies partly due to inefficient drug delivery to the cochlea. A drug delivery system is an attractive strategy to overcome this drawback. Methods and results In the present study, we proposed the combination of antioxidant astaxanthin (ATX) and ROS-responsive/consuming nanoparticles (PPS-NP) to combat cisplatin-induced ototoxicity. ATX-PPS-NP were constructed by the self-assembly of an amphiphilic hyperbranched polyphosphoester containing thioketal units, which scavenged ROS and disintegrate to release the encapsulated ATX. The ROS-sensitivity was confirmed by 1H nuclear magnetic resonance spectroscopy, transmission electron microscopy and an H2O2 ON/OFF stimulated model. Enhanced release profiles stimulated by H2O2 were verified in artificial perilymph, the HEI-OC1 cell line and guinea pigs. In addition, ATX-PPS-NP efficiently inhibited cisplatin-induced HEI-OC1 cell cytotoxicity and apoptosis compared with ATX or PPS-NP alone, suggesting an enhanced effect of the combination of the natural active compound ATX and ROS-consuming PPS-NP. Moreover, ATX-PPS-NP attenuated outer hair cell losses in cultured organ of Corti. In guinea pigs, NiRe-PPS-NP verified a quick penetration across the round window membrane and ATX-PPS-NP showed protective effect on spiral ganglion neurons, which further attenuated cisplatin-induced moderate hearing loss. Further studies revealed that the protective mechanisms involved decreasing excessive ROS generation, reducing inflammatory chemokine (interleukin-6) release, increasing antioxidant glutathione expression and inhibiting the mitochondrial apoptotic pathway. Conclusions Thus, this ROS-responsive nanoparticle encapsulating ATX has favorable potential in the prevention of cisplatin-induced hearing loss. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01485-8.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China.
| |
Collapse
|
7
|
Fetoni AR, Paciello F, Troiani D. Cisplatin Chemotherapy and Cochlear Damage: Otoprotective and Chemosensitization Properties of Polyphenols. Antioxid Redox Signal 2022; 36:1229-1245. [PMID: 34731023 DOI: 10.1089/ars.2021.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Cisplatin is an important component of treatment regimens for different cancers. Notwithstanding that therapeutic success often results from partial efficacy or stabilizing the disease, chemotherapy failure is driven by resistance to drug treatment and occurrence of side effects, such as progressive irreversible ototoxicity. Cisplatin's side effects, including ototoxicity, are often dose limiting. Recent Advances: Cisplatin ototoxicity results from several mechanisms, including redox imbalance caused by reactive oxygen species production and lipid peroxidation, activation of inflammation, and p53 and its downstream pathways that culminate in apoptosis. Considerable efforts in research have targeted development of molecular interventions that can be concurrently administered with cisplatin or other chemotherapies to reduce side effect toxicities while preserving or enhancing the antineoplastic effects. Evidence from studies has indicated some polyphenols, such as curcumin, can help to regulate redox signaling and inflammatory effects. Furthermore, polyphenols can exert opposing effects in different types of tissues, that is, normal cells undergoing stressful conditions versus cancer cells. Critical Issues: This review article summarizes evidence of curcumin antioxidant effect against cisplatin-induced ototoxicity that is converted to a pro-oxidant activity in cisplatin-treated cancer cells, thus providing an ideal chemosensitivity combined with otoprotection. Polyphenols can modulate the adaptive responses to stress in the cisplatin-exposed cochlea. These adaptive effects can result from the interaction/cross talk between the cell's defenses, inflammatory molecules, and the key signaling molecules of signal transducers and activators of transcription 3 (STAT-3), nuclear factor κ-B (NF-κB), p53, and nuclear factor erythroid 2-related factor 2 (Nrf-2). Future Directions: We provide molecular evidence for alternative strategies for chemotherapy with cisplatin addressing the otoprotection and chemosensitization properties of polyphenols. Antioxid. Redox Signal. 36, 1229-1245.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
DeBacker JR, Hu BH, Bielefeld EC. Mild hearing loss in C57BL6/J mice after exposure to antiretroviral compounds during gestation and nursing. Int J Audiol 2022:1-7. [PMID: 35468305 DOI: 10.1080/14992027.2022.2067081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE There is evidence of ototoxicity from antiretrovirals (ARVs), and ARV therapy in pregnant/nursing mothers can expose offspring to these compounds. The current work modelled whether exposure to ARVs in utero and during nursing altered the functioning of the auditory system in offspring mice. DESIGN The females of seven breeding pairs of C57BL6/J mice were given daily doses of ARVs lamivudine and tenofovir disoproxil fumarate by oral gavage during gestation and nursing. Three breeder females were given equivalent volumes of water as controls. At wean age (3 weeks after birth), the offspring mice were tested with auditory brainstem responses (ABRs). At the conclusion of the experiment, the offspring mice's cochleae were examined for hair cell counts. STUDY SAMPLE Ten breeder female C57BL6/J mice and 69 offspring mice. RESULTS The offspring mice exposed to ARVs during development showed higher ABR thresholds than the control offspring. No differences were found in supra-threshold ABRs. There was no evidence of missing hair cells. CONCLUSIONS Hearing impairment may be a possible consequence of exposure to ARVs during gestation and development. Because the threshold differences were not large, if they are occurring in humans, it is unlikely they would be identified in any hearing screening tests.
Collapse
Affiliation(s)
- J Riley DeBacker
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, USA
| | - Bo Hua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, USA
| | - Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Harris KC, Bao J. Optimizing non-invasive functional markers for cochlear deafferentation based on electrocochleography and auditory brainstem responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2802. [PMID: 35461487 PMCID: PMC9034896 DOI: 10.1121/10.0010317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence suggests that cochlear deafferentation may contribute to suprathreshold deficits observed with or without elevated hearing thresholds, and can lead to accelerated age-related hearing loss. Currently there are no clinical diagnostic tools to detect human cochlear deafferentation in vivo. Preclinical studies using a combination of electrophysiological and post-mortem histological methods clearly demonstrate cochlear deafferentation including myelination loss, mitochondrial damages in spiral ganglion neurons (SGNs), and synaptic loss between inner hair cells and SGNs. Since clinical diagnosis of human cochlear deafferentation cannot include post-mortem histological quantification, various attempts based on functional measurements have been made to detect cochlear deafferentation. So far, those efforts have led to inconclusive results. Two major obstacles to the development of in vivo clinical diagnostics include a lack of standardized methods to validate new approaches and characterize the normative range of repeated measurements. In this overview, we examine strategies from previous studies to detect cochlear deafferentation from electrocochleography and auditory brainstem responses. We then summarize possible approaches to improve these non-invasive functional methods for detecting cochlear deafferentation with a focus on cochlear synaptopathy. We identify conceptual approaches that should be tested to associate unique electrophysiological features with cochlear deafferentation.
Collapse
Affiliation(s)
- Kelly C Harris
- Department of Otolaryngology, Head & Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425, USA
| | - Jianxin Bao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| |
Collapse
|
10
|
Bao J, Jegede SL, Hawks JW, Dade B, Guan Q, Middaugh S, Qiu Z, Levina A, Tsai TH. Detecting Cochlear Synaptopathy Through Curvature Quantification of the Auditory Brainstem Response. Front Cell Neurosci 2022; 16:851500. [PMID: 35356798 PMCID: PMC8959412 DOI: 10.3389/fncel.2022.851500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The sound-evoked electrical compound potential known as auditory brainstem response (ABR) represents the firing of a heterogenous population of auditory neurons in response to sound stimuli, and is often used for clinical diagnosis based on wave amplitude and latency. However, recent ABR applications to detect human cochlear synaptopathy have led to inconsistent results, mainly due to the high variability of ABR wave-1 amplitude. Here, rather than focusing on the amplitude of ABR wave 1, we evaluated the use of ABR wave curvature to detect cochlear synaptic loss. We first compared four curvature quantification methods using simulated ABR waves, and identified that the cubic spline method using five data points produced the most accurate quantification. We next evaluated this quantification method with ABR data from an established mouse model with cochlear synaptopathy. The data clearly demonstrated that curvature measurement is more sensitive and consistent in identifying cochlear synaptic loss in mice compared to the amplitude and latency measurements. We further tested this curvature method in a different mouse model presenting with otitis media. The change in curvature profile due to middle ear infection in otitis media is different from the profile of mice with cochlear synaptopathy. Thus, our study suggests that curvature quantification can be used to address the current ABR variability issue, and may lead to additional applications in the clinic diagnosis of hearing disorders.
Collapse
Affiliation(s)
- Jianxin Bao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
- *Correspondence: Jianxin Bao,
| | - Segun Light Jegede
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| | - John W. Hawks
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Bethany Dade
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Qiang Guan
- Department of Computer Science, Kent State University, Kent, OH, United States
| | - Samantha Middaugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Anna Levina
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
11
|
Prayuenyong P, Baguley DM, Kros CJ, Steyger PS. Preferential Cochleotoxicity of Cisplatin. Front Neurosci 2021; 15:695268. [PMID: 34381329 PMCID: PMC8350121 DOI: 10.3389/fnins.2021.695268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cisplatin-induced ototoxicity in humans is more predominant in the cochlea than in the vestibule. Neither definite nor substantial vestibular dysfunction after cisplatin treatment has been consistently reported in the current literature. Inner ear hair cells seem to have intrinsic characteristics that make them susceptible to direct exposure to cisplatin. The existing literature suggests, however, that cisplatin might have different patterns of drug trafficking across the blood-labyrinth-barrier, or different degrees of cisplatin uptake to the hair cells in the cochlear and vestibular compartments. This review proposes an explanation for the preferential cochleotoxicity of cisplatin based on current evidence as well as the anatomy and physiology of the inner ear. The endocochlear potential, generated by the stria vascularis, acting as the driving force for hair cell mechanoelectrical transduction might also augment cisplatin entry into cochlear hair cells. Better understanding of the stria vascularis might shed new light on cochleotoxic mechanisms and inform the development of otoprotective interventions to moderate cisplatin associated ototoxicity.
Collapse
Affiliation(s)
- Pattarawadee Prayuenyong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David M Baguley
- Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Nottingham Audiology Services, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Corné J Kros
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Peter S Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, Omaha, NE, United States
| |
Collapse
|