1
|
Arán-Tapia I, Soto-Varela A, Pérez-Muñuzuri V, Santos-Pérez S, Arán I, Muñuzuri AP. Numerical Simulations of the Epley Maneuver With Clinical Implications. Ear Hear 2024; 45:1033-1044. [PMID: 38439150 PMCID: PMC11175731 DOI: 10.1097/aud.0000000000001493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVES Canalith repositioning procedures to treat benign paroxysmal positional vertigo are often applied following standardized criteria, without considering the possible anatomical singularities of the membranous labyrinth for each individual. As a result, certain patients may become refractory to the treatment due to significant deviations from the ideal membranous labyrinth, that was considered when the maneuvers were designed. This study aims to understand the dynamics of the endolymphatic fluid and otoconia, within the membranous labyrinth geometry, which may contribute to the ineffectiveness of the Epley maneuver. Simultaneously, the study seeks to explore methods to avoid or reduce treatment failure. DESIGN We conducted a study on the Epley maneuver using numerical simulations based on a three-dimensional medical image reconstruction of the human left membranous labyrinth. A high-quality micro-computed tomography of a human temporal bone specimen was utilized for the image reconstruction, and a mathematical model for the endolymphatic fluid was developed and coupled with a spherical particle model representing otoconia inside the fluid. This allowed us to measure the position and time of each particle throughout all the steps of the maneuver, using equations that describe the physics behind benign paroxysmal positional vertigo. RESULTS Numerical simulations of the standard Epley maneuver applied to this membranous labyrinth model yielded unsatisfactory results, as otoconia do not reach the frontside of the utricle, which in this study is used as the measure of success. The resting times between subsequent steps indicated that longer intervals are required for smaller otoconia. Using different angles of rotation can prevent otoconia from entering the superior semicircular canal or the posterior ampulla. Steps 3, 4, and 5 exhibited a heightened susceptibility to failure, as otoconia could be accidentally displaced into these regions. CONCLUSIONS We demonstrate that modifying the Epley maneuver based on the numerical results obtained in the membranous labyrinth of the human specimen under study can have a significant effect on the success or failure of the treatment. The use of numerical simulations appears to be a useful tool for future canalith repositioning procedures that aim to personalize the treatment by modifying the rotation planes currently defined as the standard criteria.
Collapse
Affiliation(s)
- Ismael Arán-Tapia
- Group of Non-Linear Physics, Department of Physics, Campus Sur, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Center for Mathematical Research and Technology, Santiago de Compostela, Spain
- Cross-disciplinary Research Center in Environmental Technologies (CRETUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrés Soto-Varela
- Division of Neurotology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago, Santiago de Compostela, Spain
| | - Vicente Pérez-Muñuzuri
- Group of Non-Linear Physics, Department of Physics, Campus Sur, University of Santiago de Compostela, Santiago de Compostela, Spain
- Cross-disciplinary Research Center in Environmental Technologies (CRETUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Santos-Pérez
- Division of Neurotology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago, Santiago de Compostela, Spain
| | - Ismael Arán
- Department of Otorhinolaryngology, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Alberto P. Muñuzuri
- Group of Non-Linear Physics, Department of Physics, Campus Sur, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Center for Mathematical Research and Technology, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Comacchio F, Bordin A, Di Pasquale Fiasca VM, Bellemo B, Magnavita P, Fasanaro E, Poletto E. Posterior Semicircular Canal Plugging Relieves Tumarkin's Crisis in Ménière's Disease Patients. Audiol Res 2024; 14:432-441. [PMID: 38804460 PMCID: PMC11130875 DOI: 10.3390/audiolres14030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
(1) Background: Patients affected by Ménière's disease can experience Tumarkin's syndrome, which is characterized by postural instability, gait abnormalities, and, occasionally, an abrupt loss of balance known as vestibular drop attack or Tumarkin's crisis. In this study, semicircular canal plugging is proposed as the definitive treatment for this condition. The outcomes of this type of surgery are discussed. (2) Methods: A total of 9 patients with a confirmed diagnosis of Ménière disease suffering from Tumarkin crisis underwent posterior semicircular canal plugging. These patients were assessed with Video Head Impulse Tests, vestibular evoked myogenic potentials, and Pure Tone Audiometry preoperatively and postoperatively. (3) Results: VHIT showed a postoperative decrease in PSC gain median (Preop. 0.86 and postop. 0.52; p < 0.009). No statistically significant differences were described for the anterior semicircular canal and the lateral semicircular canal. No patient experienced new Tumarkin crisis after the surgical treatment. (4) Conclusions: Our ten years of experience with posterior semicircular canal plugging in Ménière disease patients with Tumarkin's syndrome has shown that this type of surgical procedure is successful in controlling Tumarkin's crisis, with high patient satisfaction and little worsening in hearing level.
Collapse
Affiliation(s)
- Francesco Comacchio
- Otorhinolaryngology Unit, Regional Vertigo Specialized Center, Sant’Antonio Hospital, University Hospital of Padua, 35121 Padua, Italy
| | - Anna Bordin
- Otorhinolaryngology Unit, Regional Vertigo Specialized Center, Sant’Antonio Hospital, University Hospital of Padua, 35121 Padua, Italy
| | | | - Barbara Bellemo
- Otorhinolaryngology Unit, Regional Vertigo Specialized Center, Sant’Antonio Hospital, University Hospital of Padua, 35121 Padua, Italy
| | - Paola Magnavita
- Otorhinolaryngology Unit, Regional Vertigo Specialized Center, Sant’Antonio Hospital, University Hospital of Padua, 35121 Padua, Italy
| | - Elena Fasanaro
- Otorhinolaryngology Unit, Regional Vertigo Specialized Center, Sant’Antonio Hospital, University Hospital of Padua, 35121 Padua, Italy
| | - Elisabetta Poletto
- Otorhinolaryngology Unit, Regional Vertigo Specialized Center, Sant’Antonio Hospital, University Hospital of Padua, 35121 Padua, Italy
| |
Collapse
|
3
|
Carmona S, Fernandez MG, Espona CD. Vestibular Drop Attack: An Analysis of the Therapeutic Response. Audiol Res 2023; 14:27-34. [PMID: 38247560 PMCID: PMC10801597 DOI: 10.3390/audiolres14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The present study evaluates the response to betahistine in patients who presented vestibular drops attacks in the context of Ménière's disease (MD) and the factors that can predict an unfavorable response to it. A total of 43 patients were analyzed, out of which 33 were diagnosed with MD. This is a descriptive, cross-sectional study with retrospective data collection. Data as regards age, accompanying symptoms, etiological diagnosis and response to MD treatment were collected. A statistical analysis was carried out, and we found that the disease evolution time and specific alterations in the vestibulospinal and oculomotor physical examination present an unfavorable response to betahistine. Failures for betahistine were treated with intratympanic gentamicin, with which symptomatic control was achieved in all cases.
Collapse
Affiliation(s)
- Sergio Carmona
- Fundación San Lucas Para la Neurociencia, Rosario 2000, Argentina
| | | | - Cristian David Espona
- Department of Neurology, Hospital Provincial del Centenario, Rosario 2000, Argentina;
| |
Collapse
|
4
|
Parra-Perez AM, Lopez-Escamez JA. Types of Inheritance and Genes Associated with Familial Meniere Disease. J Assoc Res Otolaryngol 2023:10.1007/s10162-023-00896-0. [PMID: 37022572 DOI: 10.1007/s10162-023-00896-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Meniere disease (MD) is a rare disorder of the inner ear defined by sensorineural hearing loss (SNHL) associated with episodes of vertigo and tinnitus. The phenotype is variable, and it may be associated with other comorbidities such as migraine, respiratory allergies, and several autoimmune disorders. The condition has a significant heritability according to epidemiological and familial segregation studies. Familial MD is found in 10% of cases, the most frequently found genes being OTOG, MYO7A, and TECTA, previously associated with autosomal dominant and recessive non-syndromic SNHL. These findings suggest a new hypothesis where proteins involved in the extracellular structures in the apical surface of sensory epithelia (otolithic and tectorial membranes) and proteins in the stereocilia links would be key elements in the pathophysiology of MD. The ionic homeostasis of the otolithic and tectorial membranes could be critical to suppress the innate motility of individual hair cell bundles. Initially, focal detachment of these extracellular membranes may cause random depolarization of hair cells and will explain changes in tinnitus loudness or trigger vertigo attacks in early stages of MD. With the progression of the disease, a larger detachment will lead to an otolithic membrane herniation into the horizontal semicircular canal with dissociation in caloric and head impulse responses. Familial MD shows different types of inheritance, including autosomal dominant and compound recessive patterns and implementation of genetic testing will improve our understanding of the genetic structure of MD.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia.
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
| |
Collapse
|
5
|
Pastras CJ, Gholami N, Jennings S, Zhu H, Zhou W, Brown DJ, Curthoys IS, Rabbitt RD. A mathematical model for mechanical activation and compound action potential generation by the utricle in response to sound and vibration. Front Neurol 2023; 14:1109506. [PMID: 37051057 PMCID: PMC10083375 DOI: 10.3389/fneur.2023.1109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction Calyx bearing vestibular afferent neurons innervating type I hair cells in the striolar region of the utricle are exquisitely sensitive to auditory-frequency air conducted sound (ACS) and bone conducted vibration (BCV). Here, we present experimental data and a mathematical model of utricular mechanics and vestibular compound action potential generation (vCAP) in response to clinically relevant levels of ACS and BCV. Vibration of the otoconial layer relative to the sensory epithelium was simulated using a Newtonian two-degree-of-freedom spring-mass-damper system, action potential timing was simulated using an empirical model, and vCAPs were simulated by convolving responses of the population of sensitive neurons with an empirical extracellular voltage kernel. The model was validated by comparison to macular vibration and vCAPs recorded in the guinea pig, in vivo. Results Transient stimuli evoked short-latency vCAPs that scaled in magnitude and timing with hair bundle mechanical shear rate for both ACS and BCV. For pulse BCV stimuli with durations <0.8 ms, the vCAP magnitude increased in proportion to temporal bone acceleration, but for pulse durations >0.9 ms the magnitude increased in proportion to temporal bone jerk. Once validated using ACS and BCV data, the model was applied to predict blast-induced hair bundle shear, with results predicting acute mechanical damage to bundles immediately upon exposure. Discussion Results demonstrate the switch from linear acceleration to linear jerk as the adequate stimulus arises entirely from mechanical factors controlling the dynamics of sensory hair bundle deflection. The model describes the switch in terms of the mechanical natural frequencies of vibration, which vary between species based on morphology and mechanical factors.
Collapse
Affiliation(s)
- Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nastaran Gholami
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Skyler Jennings
- Communication Sciences and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| | - Hong Zhu
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel J. Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard D. Rabbitt
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Otolaryngology and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|