1
|
Bracamonte JH, Watkins L, Betty P, Dell’Italia LJ, Saucerman JJ, Holmes JW. Contributions of mechanical loading and hormonal changes to eccentric hypertrophy during volume overload: a Bayesian analysis using logic-based network models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612768. [PMID: 39345523 PMCID: PMC11429691 DOI: 10.1101/2024.09.12.612768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Primary mitral regurgitation (MR) is a pathology that alters mechanical loading on the left ventricle and induces a distinctive ventricular remodeling response known as eccentric hypertrophy. Drug therapies may alleviate symptoms, but only mitral valve repair can provide significant recovery of cardiac function and dimensions. However, 20% of patients still develop systolic dysfunction post-operatively despite being treated according to the current guidelines. Thus, better understanding of the hypertrophic process in the setting of ventricular volume overload (VO) is needed to improve and better personalize the management of MR. To address this knowledge gap, we employ a Bayesian approach to combine data from 70 studies on experimental volume overload in dogs and rats and use it to calibrate a logic-based network model of hypertrophic signaling in myocytes. The calibrated model suggests that growth in experimental VO is mostly driven by the neurohormonal response, with an initial increase in myocardial tissue stretch being compensated by subsequent remodeling fairly early in the time course of VO. This observation contrasts with a common perception that volume-overload hypertrophy is driven primarily by increased myocyte strain. The model suggests that Endothelin1 receptor activity plays a central role in driving hypertrophic responses and the activation of the fetal gene program. The model reproduces a number of responses to drug therapy not used in its calibration, and predicts that a combination of endothelin receptor antagonist and angiotensin receptor blockers would have the greatest potential to dampen cardiomyocyte hypertrophy and dysfunction in VO.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lionel Watkins
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Pat Betty
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Louis J. Dell’Italia
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
2
|
Lassmann Ł, Calamita MA, Manfredini D. Myths surrounding vertical dimension of occlusion in restorative dentistry: A scoping review. J ESTHET RESTOR DENT 2024. [PMID: 39189329 DOI: 10.1111/jerd.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE This scoping review aims to clarify the concept of vertical dimension of occlusion (VDO) in prosthetic dentistry, addressing prevalent myths, and controversies regarding its clinical management and impact on the stomatognathic system. METHODS This paper critically examines common beliefs about VDO alteration and its effects on temporomandibular disorders (TMD) through an extensive literature review and an international survey. The survey included 862 general dentists and prosthodontists and explored their approaches to altering VDO and their perceptions of the clinical implications. The literature review provided a thorough analysis of existing research on VDO modification techniques, the adaptability of the stomatognathic system, and the relationship between VDO changes and TMD. RESULTS The survey revealed insights into dentists' perspectives on VDO, showing that while many practitioners test a new VDO due to concerns about patient adaptation, a significant majority observed that patients typically adjust well to a new VDO regardless of the technique used. The survey highlighted differing beliefs about the need for a gradual process and trial phase for VDO alteration, as well as the stability of modified VDO. Literature review suggests the stability and adaptability of VDO changes due to muscle adaptability and indicates no direct causal or curative link between VDO changes and TMD. Traditional methods for determining VDO in complete dentures may not be suitable for worn dentition, underscoring the need for tailored approaches. CONCLUSION This paper suggests that the traditional belief in the need for a prolonged trial phase for VDO alterations may be reconsidered in light of evidence supporting the adaptability of the stomatognathic system. Moreover, it emphasizes the importance of distinguishing between methods suitable for complete dentures and those for managing cases of worn dentition. The purported link between VDO alterations and TMD is also found to lack scientific evidence, highlighting the need for individualized patient care based on current evidence and clinical judgment.
Collapse
Affiliation(s)
- Łukasz Lassmann
- Independent Researcher, One & Only Institute, Gdánski, Poland
| | - Marcelo A Calamita
- Department of Restorative Dental Sciences, University of Florida, Gainesville, Florida, USA
| | - Danielle Manfredini
- Department of Medical Biotechnology, School of Dentistry, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Hinks A, Power GA. Age-related differences in the loss and recovery of serial sarcomere number following disuse atrophy in rats. Skelet Muscle 2024; 14:18. [PMID: 39095894 PMCID: PMC11295870 DOI: 10.1186/s13395-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Older adults exhibit a slower recovery of muscle mass following disuse atrophy than young adults. At a smaller scale, muscle fibre cross-sectional area (i.e., sarcomeres in parallel) exhibits this same pattern. Less is known, however, about age-related differences in the recovery of muscle fibre length, driven by increases in serial sarcomere number (SSN), following disuse. The purpose of this study was to investigate age-related differences in SSN adaptations and muscle mechanical function during and following muscle immobilization. We hypothesized that older adult rats would experience a similar magnitude of SSN loss during immobilization, however, take longer to recover SSN than young following cast removal, which would limit the recovery of muscle mechanical function. METHODS We casted the plantar flexors of young (8 months) and old (32 months) male rats in a shortened position for 2 weeks, and assessed recovery during 4 weeks of voluntary ambulation. Following sacrifice, legs were fixed in formalin for measurement of soleus SSN and physiological cross-sectional area (PCSA) with the un-casted soleus acting as a control. Ultrasonographic measurements of pennation angle (PA) and muscle thickness (MT) were conducted weekly. In-vivo active and passive torque-angle relationships were constructed pre-cast, post-cast, and following 4 weeks of recovery. RESULTS From pre- to post-cast, young and older adult rats experienced similar decreases in SSN (-20%, P < 0.001), muscle wet weight (-25%, P < 0.001), MT (-30%), PA (-15%, P < 0.001), and maximum isometric torque (-40%, P < 0.001), but there was a greater increase in passive torque in older (+ 180%, P < 0.001) compared to young adult rats (+ 68%, P = 0.006). Following cast removal, young exhibited quicker recovery of SSN and MT than old, but SSN recovered sooner than PA and MT in both young and old. PCSA nearly recovered and active torque fully recovered in young adult rats, whereas in older adult rats these remained unrecovered at ∼ 75%. CONCLUSIONS This study showed that older adult rats retain a better ability to recover longitudinal compared to parallel muscle morphology following cast removal, making SSN a highly adaptable target for improving muscle function in elderly populations early on during rehabilitation.
Collapse
MESH Headings
- Animals
- Male
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/diagnostic imaging
- Aging
- Rats
- Rats, Inbred F344
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/diagnostic imaging
- Muscular Disorders, Atrophic/etiology
- Recovery of Function
- Hindlimb Suspension/adverse effects
- Adaptation, Physiological
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada.
| |
Collapse
|
4
|
Warneke K, Behm DG, Alizadeh S, Hillebrecht M, Konrad A, Wirth K. Discussing Conflicting Explanatory Approaches in Flexibility Training Under Consideration of Physiology: A Narrative Review. Sports Med 2024; 54:1785-1799. [PMID: 38819597 PMCID: PMC11258068 DOI: 10.1007/s40279-024-02043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
The mechanisms underlying range of motion enhancements via flexibility training discussed in the literature show high heterogeneity in research methodology and study findings. In addition, scientific conclusions are mostly based on functional observations while studies considering the underlying physiology are less common. However, understanding the underlying mechanisms that contribute to an improved range of motion through stretching is crucial for conducting comparable studies with sound designs, optimising training routines and accurately interpreting resulting outcomes. While there seems to be no evidence to attribute acute range of motion increases as well as changes in muscle and tendon stiffness and pain perception specifically to stretching or foam rolling, the role of general warm-up effects is discussed in this paper. Additionally, the role of mechanical tension applied to greater muscle lengths for range of motion improvement will be discussed. Thus, it is suggested that physical training stressors can be seen as external stimuli that control gene expression via the targeted stimulation of transcription factors, leading to structural adaptations due to enhanced protein synthesis. Hence, the possible role of serial sarcomerogenesis in altering pain perception, reducing muscle stiffness and passive torque, or changes in the optimal joint angle for force development is considered as well as alternative interventions with a potential impact on anabolic pathways. As there are limited possibilities to directly measure serial sarcomere number, longitudinal muscle hypertrophy remains without direct evidence. The available literature does not demonstrate the necessity of only using specific flexibility training routines such as stretching to enhance acute or chronic range of motion.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria.
- Department of Movement Sciences, Institute of Sport Science, University of Klagenfurt, Universitatsstraße 65, 9020, Klagenfurt Am Wörthersee, Austria.
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
- Human Performance Lab, Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Hillebrecht
- University Sports Center, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
- University Sports Center, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Klaus Wirth
- University of Applied Sciences Wiener Neustadt, Vienna, Austria
| |
Collapse
|
5
|
Wearing SC, Hooper SL, Langton CM, Keiner M, Horstmann T, Crevier-Denoix N, Pourcelot P. The Biomechanics of Musculoskeletal Tissues during Activities of Daily Living: Dynamic Assessment Using Quantitative Transmission-Mode Ultrasound Techniques. Healthcare (Basel) 2024; 12:1254. [PMID: 38998789 PMCID: PMC11241410 DOI: 10.3390/healthcare12131254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.
Collapse
Affiliation(s)
- Scott C. Wearing
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | - Sue L. Hooper
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christian M. Langton
- Griffith Centre of Rehabilitation Engineering, Griffith University, Southport, QLD 4222, Australia
| | - Michael Keiner
- Department of Exercise and Training Science, German University of Health and Sport, 85737 Ismaning, Bavaria, Germany
| | - Thomas Horstmann
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | | | - Philippe Pourcelot
- INRAE, BPLC Unit, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Beck ON, Schroeder JN, Sawicki GS. Habitually wearing high heels may improve user walking economy in any footwear. J Appl Physiol (1985) 2024; 136:567-572. [PMID: 38299222 PMCID: PMC11212819 DOI: 10.1152/japplphysiol.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
The habitual use of high-heeled footwear may structurally remodel user leg muscle tendons, thereby altering their functional capabilities. High heels set users' ankles in relatively plantarflexed positions, causing calf muscle tendons to operate at relatively short lengths. Habitually operating muscle tendons at relatively short lengths induces structural remodeling that theoretically affects muscle metabolism. Because structural changes occur within the body, the user's locomotor metabolism may change in any footwear condition (e.g., conventional shoes, barefoot). Here, we studied the influence of habitual high-heel use on users' leg muscle-tendon structure and metabolism during walking in flat-soled footwear. We tested eight participants before and after 14 wk of agreeing to wear high heels as their daily shoes. Overall, participants who wore high heels >1,500 steps per day, experienced a 9% decrease in their net metabolic power during walking in flat-soled footwear (d = 1.66, P ≤ 0.049), whereas participants who took <1,000 daily steps in high heels did not (d = 0.44; P = 0.524). Across participants, for every 1,000 daily steps in high heels, net metabolic power during walking in flat-soled footwear decreased 5.3% (r = -0.73; P = 0.040). Metabolic findings were partially explained (r2 = 0.43; P = 0.478) by trending shorter medial gastrocnemius fascicle lengths (d = 0.500, P = 0.327) and increased Achilles tendon stiffness (d = 2.889, P = 0.088). The high-heel intervention did not alter user walking stride kinematics in flat-soled footwear (d ≤ 0.567, P ≥ 0.387). While our limited dataset is unable to establish the mechanisms underlying the high-heel-induced walking economy improvement, it appears that prescribing specific footwear use can be implemented to alter user muscle-tendon properties and augment their function in any shoes.NEW & NOTEWORTHY Habitually wearing high-heeled footwear structurally remodels leg muscle tendons and improves user walking economy, regardless of worn attire.
Collapse
Affiliation(s)
- Owen N Beck
- Department of Kinesiology and Health Education, University of Texas, Austin, Texas, United States
| | - Jordyn N Schroeder
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Businari GB, Brigatto FA, de Camargo JBB, Soares EG, Braz TV, Batista DR, Col LO, Dias WG, Rosolem JM, Prestes J, Marchetti PH, Lopes CR. Chronic Effects of Inter-Set Static Stretching on Morphofunctional Outcomes in Recreationally Resistance-Trained Male and Female. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:10-23. [PMID: 36638500 DOI: 10.1080/02701367.2022.2134547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/11/2022] [Indexed: 06/17/2023]
Abstract
Purpose: The purpose of this study was to compare the effects of resistance training (RT) with inter-set static stretching (IS) versus traditional RT (TRT) on morphofunctional outcomes in recreationally resistance-trained male and female. Methods: Twenty-two recreationally-trained subjects were allocated to IS group (n = 12) or TRT (n = 10) and completed eight weeks of RT. The only difference between the groups was that IS group included static stretching between sets, while the TRT rested between the sets. Ultrasound images, dynamic and isometric strength tests for the elbow flexors and elbow extensors were evaluated pre- and post-intervention period. Results: Total training volume (TTV) was greater in TRT than IS (p = .031). TRT and IS caused similar increases in maximal dynamic and isometric strength. Fascicle length of the brachialis increased following TRT (p = .033); muscle thickness and the pennation angle of the distal portion of the triceps brachii increased following IS (p = .035 and p = .007, respectively). There were no significant changes in thickness and architecture for biceps brachii in either group. There were no significant differences between groups for any muscle strength and morphology outcome. Conclusion: IS negatively affects TTV but does not affect muscle strength and architecture of recreationally resistance-trained male and female.
Collapse
|
8
|
Cowburn J, Serrancolí G, Pavei G, Minetti A, Salo A, Colyer S, Cazzola D. A novel computational framework for the estimation of internal musculoskeletal loading and muscle adaptation in hypogravity. Front Physiol 2024; 15:1329765. [PMID: 38384800 PMCID: PMC10880100 DOI: 10.3389/fphys.2024.1329765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction: Spaceflight is associated with substantial and variable musculoskeletal (MSK) adaptations. Characterisation of muscle and joint loading profiles can provide key information to better align exercise prescription to astronaut MSK adaptations upon return-to-Earth. A case-study is presented of single-leg hopping in hypogravity to demonstrate the additional benefit computational MSK modelling has when estimating lower-limb MSK loading. Methods: A single male participant performed single-leg vertical hopping whilst attached to a body weight support system to replicate five gravity conditions (0.17, 0.25, 0.37, 0.50, 1 g). Experimental joint kinematics, joint kinetics and ground reaction forces were tracked in a data-tracking direct collocation simulation framework. Ground reaction forces, sagittal plane hip, knee and ankle net joint moments, quadriceps muscle forces (Rectus Femoris and three Vasti muscles), and hip, knee and ankle joint reaction forces were extracted for analysis. Estimated quadriceps muscle forces were input into a muscle adaptation model to predict a meaningful increase in muscle cross-sectional area, defined in (DeFreitas et al., 2011). Results: Two distinct strategies were observed to cope with the increase in ground reaction forces as gravity increased. Hypogravity was associated with an ankle dominant strategy with increased range of motion and net plantarflexor moment that was not seen at the hip or knee, and the Rectus Femoris being the primary contributor to quadriceps muscle force. At 1 g, all three joints had increased range of motion and net extensor moments relative to 0.50 g, with the Vasti muscles becoming the main muscles contributing to quadriceps muscle force. Additionally, hip joint reaction force did not increase substantially as gravity increased, whereas the other two joints increased monotonically with gravity. The predicted volume of exercise needed to counteract muscle adaptations decreased substantially with gravity. Despite the ankle dominant strategy in hypogravity, the loading on the knee muscles and joint also increased, demonstrating this provided more information about MSK loading. Discussion: This approach, supplemented with muscle-adaptation models, can be used to compare MSK loading between exercises to enhance astronaut exercise prescription.
Collapse
Affiliation(s)
- James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Minetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Aki Salo
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| |
Collapse
|
9
|
Satkunskiene D, Skarbalius A, Kniubaite A, Mickevicius M, Snieckus A, Rutkauskas S, Kamandulis S. Hamstring stiffness and injury risk factors during the handball season in female players. Appl Physiol Nutr Metab 2024; 49:190-198. [PMID: 37820386 DOI: 10.1139/apnm-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Monitoring the muscle mechanical properties and functions of female athletes throughout their training season is relevant to understand the relationships between these factors and to predict noncontact injuries, which are prevalent among female athletes. The first aim of this study was to determine whether female handball players' passive stiffness of the hamstring muscles is associated with hamstring extensibility, strength of knee flexors and extensors, and lower limb stiffness. Additionally, the study monitored fluctuations in these factors over 25 weeks. The study utilized an isokinetic dynamometer to record hamstring passive stiffness, extensibility, and hamstring and quadriceps strength of 18 young handball players. Lower limb stiffness was determined from a countermovement vertical jump conducted on a force plate. The countermovement jump involved the calculation of the peak force during the eccentric phase and the mean force during the concentric phase. The results showed a positive correlation between hamstring passive stiffness and lower limb stiffness (r = 0.660, p < 0.01), knee flexion and extension strength (r = 0.592, p < 0.01 and r = 0.497, p < 0.05, respectively), and eccentric peak force (r = 0.587, p < 0.01) during jumping. The strength of knee extensors increased significantly after 6 weeks, and hamstring stiffness after 12 weeks of training. In conclusion, the increased hamstring stiffness following training did not match other factors associated with injury risk. Therefore, preventing multifactorial injury risk requires a comprehensive approach, and monitoring one factor alone is insufficient to predict noncontact injuries in female handball players.
Collapse
Affiliation(s)
- Danguole Satkunskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Antanas Skarbalius
- Department of Coaching ScienceLithuanian Sports University, Kaunas, Lithuania
| | - Audinga Kniubaite
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Mantas Mickevicius
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Audrius Snieckus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Saulius Rutkauskas
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
10
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
11
|
Li X, Cui K, Zheng Y, Ye YN, Yu C, Yang W, Nakajima T, Gong JP. Role of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching. SCIENCE ADVANCES 2023; 9:eadj6856. [PMID: 38117876 PMCID: PMC10732516 DOI: 10.1126/sciadv.adj6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Soft materials with mechanical adaptability have substantial potential for various applications in tissue engineering. Gaining a deep understanding of the structural evolution and adaptation dynamics of soft materials subjected to cyclic stretching gives insight into developing mechanically adaptive materials. Here, we investigate the effect of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching training. A polyampholyte hydrogel, composed of hierarchical structures including ionic bonds, transient and permanent polymer networks, and bicontinuous hard/soft-phase networks, is adopted as a model. Conditions for effective training, mild overtraining, and fatal overtraining are demonstrated in soft materials. We further reveal that mesoscale hard/soft-phase networks dominate the long-term memory effect of training and play a crucial role in the asymmetric dynamics of compliance changes and the symmetric dynamics of hydrogel shape evolution. Our findings provide insights into the design of hierarchical structures for adaptive soft materials.
Collapse
Affiliation(s)
- Xueyu Li
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kunpeng Cui
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong Zheng
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Ya Nan Ye
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chengtao Yu
- Laboratory of Soft and Wet Matter, Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Wenqi Yang
- Laboratory of Soft and Wet Matter, Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tasuku Nakajima
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
12
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Toprak Celenay S, Bayramoglu Demirdogen E, Barut O, Cigdem Karacay B, Ozer Kaya D. Postural stability, spinal alignment, mobility, and postural competency in women with unilateral lower extremity lymphedema after radical hysterectomy following gynecologic cancer: A case-control study. Eur J Oncol Nurs 2023; 67:102416. [PMID: 37879191 DOI: 10.1016/j.ejon.2023.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE To compare postural stability, spinal alignment, mobility, and postural competency in women with unilateral lower extremity lymphedema after radical hysterectomy following gynecologic cancer with a matched control group. METHODS Twenty-seven women with unilateral lower extremity lymphedema (lymphedema group, age: 54.14 ± 5.80 years) and 30 healthy women (control group, age: 51.90 ± 6.54 years) were included. The lymphedema severity was evaluated with circumferential measurements. Postural stability with the Biodex Balance System SD and the spinal alignment, mobility, and postural competency with the Spinal Mouse device were assessed. RESULTS In the lymphedema group, it was found that 3.7% of the women had mild lymphedema, 7.4% had moderate lymphedema, and 88.9% had severe lymphedema. Static eyes open (EO) (overall, medio-lateral and antero-posterior) and eyes closed (EC) (antero-posterior) stability scores and dynamic EO and EC stability scores (overall and antero-posterior) were detected to be higher in the lymphedema group than in the controls (p < 0.05). Spinal mobility and postural competency scores were lower in the lymphedema group than in the control group (p < 0.05). In other parameters, there were no significant differences between the groups (p > 0.05). CONCLUSION Decreased postural stability, spinal mobility, and postural competency were detected in women with unilateral lower extremity lymphedema; however, no difference was seen in spinal alignment. These changes should be taken into account in the assessment and the treatment of unilateral lower extremity lymphedema.
Collapse
Affiliation(s)
- Seyda Toprak Celenay
- Ankara Yildirim Beyazit University, Health Sciences Faculty, Department of Physiotherapy and Rehabilitation, Ankara, Turkey.
| | | | - Ozge Barut
- Kirsehir Ahi Evran University, Rectorship, Pilot University Coordinatorship of Health, Kirsehir, Turkey
| | - Basak Cigdem Karacay
- Kirsehir Ahi Evran University, Faculty of Medicine, Department of Physical Therapy and Rehabilitation, Kirsehir, Turkey
| | - Derya Ozer Kaya
- Izmir Katip Celebi University, Health Sciences Faculty, Department of Physiotherapy and Rehabilitation, Izmir, Turkey
| |
Collapse
|
14
|
Kasahara K, Muramatsu J, Kurashina Y, Miura S, Miyata S, Onoe H. Spatiotemporal single-cell tracking analysis in 3D tissues to reveal heterogeneous cellular response to mechanical stimuli. SCIENCE ADVANCES 2023; 9:eadf9917. [PMID: 37831766 PMCID: PMC10575577 DOI: 10.1126/sciadv.adf9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Mechanical stimuli have been recognized as important for tissue maturation, homeostasis and constructing engineered three-dimensional (3D) tissues. However, we know little about the cellular mechanical response in tissues that could be considerably heterogeneous and spatiotemporally dynamic due to the complex structure of tissues. Here, we report a spatiotemporal single-cell tracking analysis of in vitro 3D tissues under mechanical stretch, to reveal the heterogeneous cellular behavior by using a developed stretch and optical live imaging system. The system could affect the cellular orientation and directly measure the distance of cells in in vitro 3D myoblast tissues (3DMTs) at the single-cell level. Moreover, we observed the spatiotemporal heterogeneous cellular locomotion and shape changes under mechanical stretch in 3DMTs. This single-cell tracking analysis can become a principal method to investigate the heterogeneous cellular response in tissues and provide insights that conventional analyses have not yet offered.
Collapse
Affiliation(s)
- Keitaro Kasahara
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Jumpei Muramatsu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Shigenori Miura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Hinks A, Franchi MV, Power GA. Ultrasonographic measurements of fascicle length overestimate adaptations in serial sarcomere number. Exp Physiol 2023; 108:1308-1324. [PMID: 37608723 PMCID: PMC10988429 DOI: 10.1113/ep091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Ultrasound-derived measurements of muscle fascicle length (FL) are often used to infer increases (chronic stretch or training) or decreases (muscle disuse or aging) in serial sarcomere number (SSN). Whether FL adaptations measured via ultrasound can truly approximate SSN adaptations has not been investigated. We casted the right hindlimb of 15 male Sprague-Dawley rats in a dorsiflexed position (i.e., stretched the plantar flexors) for 2 weeks, with the left hindlimb serving as a control. Ultrasound images of the soleus, lateral gastrocnemius (LG), and medial gastrocnemius (MG) were obtained with the ankle at 90° and full dorsiflexion for both hindlimbs pre and post-cast. Following post-cast ultrasound measurements, legs were fixed in formalin with the ankle at 90°, then muscles were dissected and fascicles were teased out for measurement of sarcomere lengths via laser diffraction and calculation of SSN. Ultrasound detected an 11% increase in soleus FL, a 12% decrease in LG FL, and an 8-11% increase in MG FL for proximal fascicles and at full dorsiflexion. These adaptations were partly reflected by SSN adaptations, with a 6% greater soleus SSN in the casted leg than the un-casted leg, but no SSN differences for the gastrocnemii. Weak relationships were observed between ultrasonographic measurements of FL and measurements of FL and SSN from dissected fascicles. Our results showed that ultrasound-derived FL measurements can overestimate an increase in SSN by ∼5%. Future studies should be cautious when concluding a large magnitude of sarcomerogenesis from ultrasound-derived FL measurements, and may consider applying a correction factor. NEW FINDINGS: What is the central question of this study? Measurements of muscle fascicle length via ultrasound are often used to infer changes in serial sarcomere number, such as increases following chronic stretch or resistance training, and decreases with ageing: does ultrasound-derived fascicle length accurately depict adaptations in serial sarcomere number? What is the main finding and its importance? Ultrasound detected an ∼11% increase in soleus fascicle length, but measurements on dissected fascicles showed the actual serial sarcomere number increase was only ∼6%; therefore, measurements of ultrasound-derived fascicle length can overestimate serial sarcomere number adaptations by as much as 5%.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Martino V. Franchi
- Department of Biomedical Sciences, Human Neuromuscular Physiology LaboratoryUniversity of PaduaPaduaItaly
- CIR‐MYO Myology CentreUniversity of PaduaPaduaItaly
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
16
|
Lloyd DG, Jonkers I, Delp SL, Modenese L. The History and Future of Neuromusculoskeletal Biomechanics. J Appl Biomech 2023; 39:273-283. [PMID: 37751904 DOI: 10.1123/jab.2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023]
Abstract
The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society's 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics' affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system. The reader is encouraged to explore this special issue which comprises 6 papers exploring the current state-of the-art, and future directions and roles for neuromusculoskeletal biomechanics. This editorial presents a very brief history of the science of the neuromusculoskeletal system's 4 main components: the central nervous system, musculotendon units, the musculoskeletal system, and joints, and how they biomechanically integrate to enable an understanding of the generation and control of human movement. This also entails a quick exploration of contemporary neuromusculoskeletal biomechanics and its future with new fields of application.
Collapse
Affiliation(s)
- David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, School of Health Science and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Ilse Jonkers
- Institute of Physics-Based Modeling for in Silico Health, Human Movement Science Department, KU Leuven, Leuven, Belgium
| | - Scott L Delp
- Bioengineering, Mechanical Engineering and Orthopedic Surgery, and Wu Tsai Human Performance Alliance at Stanford, Stanford University, Stanford, CA, USA
| | - Luca Modenese
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Gamble DT, Ross J, Khan H, Unger A, Cheyne L, Rudd A, Saunders F, Srivanasan J, Kamya S, Horgan G, Hannah A, Baliga S, Tocchetti CG, Urquhart G, Linke WA, Masannat Y, Mustafa A, Fuller M, Elsberger B, Sharma R, Dawson D. Impaired Cardiac and Skeletal Muscle Energetics Following Anthracycline Therapy for Breast Cancer. Circ Cardiovasc Imaging 2023; 16:e015782. [PMID: 37847761 PMCID: PMC10581415 DOI: 10.1161/circimaging.123.015782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Anthracycline-related cardiac toxicity is a recognized consequence of cancer therapies. We assess resting cardiac and skeletal muscle energetics and myocyte, sarcomere, and mitochondrial integrity in patients with breast cancer receiving epirubicin. METHODS In a prospective, mechanistic, observational, longitudinal study, we investigated chemotherapy-naive patients with breast cancer receiving epirubicin versus sex- and age-matched healthy controls. Resting energetic status of cardiac and skeletal muscle (phosphocreatine/gamma ATP and inorganic phosphate [Pi]/phosphocreatine, respectively) was assessed with 31P-magnetic resonance spectroscopy. Cardiac function and tissue characterization (magnetic resonance imaging and 2D-echocardiography), cardiac biomarkers (serum NT-pro-BNP and high-sensitivity troponin I), and structural assessments of skeletal muscle biopsies were obtained. All study assessments were performed before and after chemotherapy. RESULTS Twenty-five female patients with breast cancer (median age, 53 years) received a mean epirubicin dose of 304 mg/m2, and 25 age/sex-matched controls were recruited. Despite comparable baseline cardiac and skeletal muscle energetics with the healthy controls, after chemotherapy, patients with breast cancer showed a reduction in cardiac phosphocreatine/gamma ATP ratio (2.0±0.7 versus 1.1±0.5; P=0.001) and an increase in skeletal muscle Pi/phosphocreatine ratio (0.1±0.1 versus 0.2±0.1; P=0.022). This occurred in the context of increases in left ventricular end-systolic and end-diastolic volumes (P=0.009 and P=0.008, respectively), T1 and T2 mapping (P=0.001 and P=0.028, respectively) but with preserved left ventricular ejection fraction, mass and global longitudinal strain, and no change in cardiac biomarkers. There was preservation of the mitochondrial copy number in skeletal muscle biopsies but a significant increase in areas of skeletal muscle degradation (P=0.001) in patients with breast cancer following chemotherapy. Patients with breast cancer demonstrated a reduction in skeletal muscle sarcomere number from the prechemotherapy stage compared with healthy controls (P=0.013). CONCLUSIONS Contemporary doses of epirubicin for breast cancer treatment result in a significant reduction of cardiac and skeletal muscle high-energy 31P-metabolism alongside structural skeletal muscle changes. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04467411.
Collapse
Affiliation(s)
- David T. Gamble
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - James Ross
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Hilal Khan
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Lesley Cheyne
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Amelia Rudd
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Fiona Saunders
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Janaki Srivanasan
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Sylvia Kamya
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen (G.H.)
| | - Andrew Hannah
- Department of Cardiology National Health Service (NHS) Grampian (A.H.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Santosh Baliga
- Department of Trauma and Orthopaedic Surgery (S.B.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy (C.G.T.)
| | - Gordon Urquhart
- Department of Oncology NHS Grampian (G.U., R.S.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Yazan Masannat
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Ahmed Mustafa
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Mairi Fuller
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Beatrix Elsberger
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Ravi Sharma
- Department of Oncology NHS Grampian (G.U., R.S.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Dana Dawson
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| |
Collapse
|
18
|
Knaus KR, Handsfield GG, Fiorentino NM, Hart JM, Meyer CH, Blemker SS. Athlete Muscular Phenotypes Identified and Compared with High-Dimensional Clustering of Lower Limb Muscle Volume Measurements. Med Sci Sports Exerc 2023; 55:1913-1922. [PMID: 37259254 DOI: 10.1249/mss.0000000000003224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Athletes use their skeletal muscles to demonstrate performance. Muscle force generating capacity is correlated with volume, meaning that variations in sizes of different muscles may be indicative of how athletes meet different demands in their sports. Medical imaging enables in vivo quantification of muscle volumes; however, muscle volume distribution has not been compared across athletes of different sports. PURPOSE The goal of this work was to define "muscular phenotypes" in athletes of different sports and compare these using hierarchical clustering. METHODS Muscle volumes normalized by body mass of athletes (football, baseball, basketball, or track) were compared with control participants to quantify size differences using z -scores. z -Scores of 35 muscles described the pattern of volume deviation within each athlete's lower limb, characterizing their muscular phenotype. Data-driven high-dimensional clustering analysis was used to group athletes presenting similar phenotypes. Efficacy of clustering to identify similar phenotypes was demonstrated by grouping athletes' contralateral limbs before other athletes' limbs. RESULTS Analyses revealed that athletes did not tend to cluster with others competing in the same sport. Basketball players with similar phenotypes grouped by clustering also demonstrated similarities in performance. Clustering also identified muscles with similar volume variation patterns across athletes, and principal component analysis revealed specific muscles that accounted for most of the variance (gluteus maximus, sartorius, semitendinosus, vastus medialis, vastus lateralis, and rectus femoris). CONCLUSIONS Athletes exhibit heterogeneous lower limb muscle volumes that can be characterized and compared as individual muscular phenotypes. Clustering revealed that athletes with the most similar phenotypes do not always play the same sport such that patterns of muscular heterogeneity across a group of athletes reflect factors beyond their specific sports.
Collapse
Affiliation(s)
- Katherine R Knaus
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | | | | | - Joseph M Hart
- Department of Orthopedic Surgery, University of North Carolina, Chapel Hill, NC
| | | | | |
Collapse
|
19
|
Guan H, Yonemitsu I, Ikeda Y, Ono T. Reversible Effects of Functional Mandibular Lateral Shift on Masticatory Muscles in Growing Rats. Biomedicines 2023; 11:2126. [PMID: 37626623 PMCID: PMC10452155 DOI: 10.3390/biomedicines11082126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we aimed to determine the effects of functional mandibular lateral shift (FMLS) on the muscle mass, fiber size, myosin heavy chain fiber type, and related gene expression in masticatory muscles (masseter and temporalis), as well as whether the baseline levels could be recovered after FMLS correction in growing rats. The FMLS appliance was placed to shift the mandible leftward by approximately 2 mm. After FMLS placement for 2 and 4 weeks, the muscles on the left side had significantly lower wet weight, mean cross-sectional area, and proportion of type IIa fibers than those on the right side or in the control groups (p < 0.05), with downregulation and upregulation of IGF-1 and GDF-8 gene expression, respectively (p < 0.05). Following 2 weeks devoted to recovery from FMLS, the muscle parameters in the recovery group were not significantly different to those of the control group, and IGF-1 expression in the left-side muscles was enhanced and GDF-8 expression was simultaneously suppressed. These findings indicate that the masticatory muscle changes induced via FMLS tend to revert to normal conditions if the intervention is eliminated at an early stage. Therefore, appropriate orthodontic treatment for FMLS during the growth period is advisable to prevent asymmetric alterations in masticatory muscles.
Collapse
Affiliation(s)
| | - Ikuo Yonemitsu
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | | | | |
Collapse
|
20
|
McNamara SL, Seo BR, Freedman BR, Roloson EB, Alvarez JT, O'Neill CT, Vandenburgh HH, Walsh CJ, Mooney DJ. Anti-inflammatory therapy enables robot-actuated regeneration of aged muscle. Sci Robot 2023; 8:eadd9369. [PMID: 36947599 DOI: 10.1126/scirobotics.add9369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Robot-actuated mechanical loading (ML)-based therapies ("mechanotherapies") can promote regeneration after severe skeletal muscle injury, but the effectiveness of such approaches during aging is unknown and may be influenced by age-associated decline in the healing capacity of skeletal muscle. To address this knowledge gap, this work used a noninvasive, load-controlled robotic device to impose highly defined tissue stresses to evaluate the age dependence of ML on muscle repair after injury. The response of injured muscle to robot-actuated cyclic compressive loading was found to be age sensitive, revealing not only a lack of reparative benefit of ML on injured aged muscles but also exacerbation of tissue inflammation. ML alone also disrupted the normal regenerative processes of aged muscle stem cells. However, these negative effects could be reversed by introducing anti-inflammatory therapy alongside ML application, leading to enhanced skeletal muscle regeneration even in aged mice.
Collapse
Affiliation(s)
- S L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - E B Roloson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - J T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - C T O'Neill
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - H H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - C J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - D J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
21
|
Morgan K, Cowburn J, Farrow M, Carter J, Cazzola D, Walhin JP, McKay C. Understanding the role of physical activity on the pathway from intra-articular knee injury to post-traumatic osteoarthritis disease in young people: a scoping review protocol. BMJ Open 2023; 13:e067147. [PMID: 36868595 PMCID: PMC9990625 DOI: 10.1136/bmjopen-2022-067147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION The prevalence of intra-articular knee injuries and reparative surgeries is increasing in many countries. Alarmingly, there is a risk of developing post-traumatic osteoarthritis (PTOA) after sustaining a serious intra-articular knee injury. Although physical inactivity is suggested as a risk factor contributing to the high prevalence of the condition, there is a paucity of research characterising the association between physical activity and joint health. Consequently, the primary aim of this review will be to identify and present available empirical evidence regarding the association between physical activity and joint degeneration after intra-articular knee injury and summarise the evidence using an adapted Grading of Recommendations Assessment, Development and Evaluations. The secondary aim will be to identify potential mechanistic pathways through which physical activity could influence PTOA pathogenesis. The tertiary aim will be to highlight gaps in current understanding of the association between physical activity and joint degeneration following joint injury. METHODS A scoping review will be conducted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews checklist and best-practice recommendations. The review will be guided by the following research question: what is the role of physical activity in the trajectory from intra-articular knee injury to PTOA in young men and women? We will identify primary research studies and grey literature by searching the electronic databases Scopus, Embase: Elsevier, PubMed, Web of Science: all databases, and Google Scholar. Reviewing pairs will screen abstracts, full texts and will extract data. Data will be presented descriptively using charts, graphs, plots and tables. ETHICS AND DISSEMINATION This research does not require ethical approval due to the data being published and publicly available. This review will be submitted for publication in a peer-reviewed sports medicine journal irrespective of discoveries and disseminated through scientific conference presentations and social media. TRIAL REGISTRATION NUMBER https://osf.io/84pnh/.
Collapse
Affiliation(s)
- Karl Morgan
- Department for Health, University of Bath, Bath, UK
- University of Bath, Centre for Health and Injury and Illness Prevention in Sport (CHI2PS), Bath, UK
- University of Bath, Centre for Nutrition and Exercise Metabolism (CNEM), Bath, UK
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, University of Bath, Bath, UK
| | - James Cowburn
- Department for Health, University of Bath, Bath, UK
- University of Bath, Centre for Health and Injury and Illness Prevention in Sport (CHI2PS), Bath, UK
| | - Matthew Farrow
- Department for Health, University of Bath, Bath, UK
- University of Bath, Centre for Nutrition and Exercise Metabolism (CNEM), Bath, UK
| | - Josh Carter
- Department for Health, University of Bath, Bath, UK
- University of Bath, Centre for Health and Injury and Illness Prevention in Sport (CHI2PS), Bath, UK
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, UK
- University of Bath, Centre for Health and Injury and Illness Prevention in Sport (CHI2PS), Bath, UK
- University of Bath, Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA), Bath, UK
| | - Jean-Philippe Walhin
- Department for Health, University of Bath, Bath, UK
- University of Bath, Centre for Nutrition and Exercise Metabolism (CNEM), Bath, UK
| | - Carly McKay
- Department for Health, University of Bath, Bath, UK
- University of Bath, Centre for Health and Injury and Illness Prevention in Sport (CHI2PS), Bath, UK
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, University of Bath, Bath, UK
| |
Collapse
|
22
|
Mayfield DL, Cronin NJ, Lichtwark GA. Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomech Model Mechanobiol 2023; 22:309-337. [PMID: 36335506 PMCID: PMC9958200 DOI: 10.1007/s10237-022-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, USA.
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Olsen L, Levy M, Medley JK, Hassan H, Miller B, Alexander R, Wilcock E, Yi K, Florens L, Weaver K, McKinney SA, Peuß R, Persons J, Kenzior A, Maldonado E, Delventhal K, Gluesenkamp A, Mager E, Coughlin D, Rohner N. Metabolic reprogramming underlies cavefish muscular endurance despite loss of muscle mass and contractility. Proc Natl Acad Sci U S A 2023; 120:e2204427120. [PMID: 36693105 PMCID: PMC9945943 DOI: 10.1073/pnas.2204427120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 11/15/2022] [Indexed: 01/25/2023] Open
Abstract
Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.
Collapse
Affiliation(s)
- Luke Olsen
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS66160
| | - Michaella Levy
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - J. Kyle Medley
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Brandon Miller
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Emma Wilcock
- Department of Biology, Widener University, Chester, PA19013
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Kyle Weaver
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, Münster48149, Germany
| | - Jenna Persons
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Ernesto Maldonado
- EvoDevo Research Group, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo77580, Mexico
| | - Kym Delventhal
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Andrew Gluesenkamp
- Center for Conservation and Research, San Antonio Zoo, San Antonio, TX78212
| | - Edward Mager
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX76203
| | - David Coughlin
- Department of Biology, Widener University, Chester, PA19013
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
24
|
Pimenta R, Antunes H, Lopes T, Veloso A. Do Repeated Sprints Affect the Biceps Femoris Long Head Architecture in Football Players with and without an Injury History?-A Retrospective Study. BIOLOGY 2023; 12:biology12010096. [PMID: 36671788 PMCID: PMC9855802 DOI: 10.3390/biology12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The aim of this study was to compare the biceps femoris long head (BFlh) architecture between football players with (twelve) and without (twenty) history of BFlh injury before and after a repeated sprint task. Fascicle length (FL), pennation angle (PA) and muscle thickness (MT) were assessed at rest and in the active condition before and after the repeated sprint protocol. Athletes with previous BFlh injury showed shorter FL at rest (p = 0.014; η2p = 0.196) and active state (p < 0.001; η2p = 0.413), and greater PA at rest (p = 0.002; η2p = 0.307) and active state (p < 0.001; η2p = 0.368) before and after the task. Intra-individual comparisons showed that injured limbs have shorter FL at rest (p = 0.012; η2p = 0.519) and in the active state (p = 0.039; η2p = 0.332), and greater PA in passive (p < 0.001; η2p = 0.732) and active conditions (p = 0.018; η2p = 0.412), when compared with contralateral limbs. Injured players, at rest and in the active condition, display shorter BFlh FL and greater PA than contralateral and healthy controls after repeated sprints. Moreover, the BFlh of injured players presented a different architectural response to the protocol compared with the healthy controls.
Collapse
Affiliation(s)
- Ricardo Pimenta
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, 1649-004 Cruz Quebrada-Dafundo, Portugal
- Correspondence: ; Tel.: +35-19-1885-2877
| | - Hugo Antunes
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, 1649-004 Cruz Quebrada-Dafundo, Portugal
| | - Tomás Lopes
- Department of Biochemistry, King’s College London, London WC2R 2LS, UK
| | - António Veloso
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, 1649-004 Cruz Quebrada-Dafundo, Portugal
| |
Collapse
|
25
|
Ren D, Liu R, Yan X, Zhang Q, Zeng X, Yuan X. Intensive stretch-activated CRT-PMCA1 feedback loop promoted apoptosis of myoblasts through Ca 2+ overloading. Apoptosis 2022; 27:929-945. [PMID: 35976579 DOI: 10.1007/s10495-022-01759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stretch exerted pro-apoptotic effect on myoblasts, the mechanism of which is currently unknown. Intracellular Ca2+ accumulation has been implicated in stretch-induced apoptosis. calreticulin (CRT) and plasma membrane Ca2+ transporting ATPase 1 (PMCA1) are two critical components of Ca2+ signaling system participating in intracellular Ca2+ homeostasis. In this study, we explored the contribution of CRT and PMCA1 in mediating stretch-induced Ca2+ accumulation and apoptosis of myoblasts. Stretching stimuli elevated level of CRT while inhibited activity of PMCA1. Moreover, there were bidirectional regulations between CRT and PMCA1, which formed the positive feedback loop leading to continuous increment of CRT level and repression of PMCA1 activity, in stretched myoblasts. Specifically, increased CRT level inhibited PMCA1 activity via suppressing Calmodulin (CaM), while reduced PMCA1 activity promoted CRT expression through activating p38MAPK pathway. Thus, the CRT-CaM-PMCA1 and PMCA1-p38MAPK-CRT pathways constituted a close cycle comprising CRT, PMCA1, CaM and p38MAPK. Inhibition of both CaM and p38MAPK affected the other three factors in stretched myoblasts. Circulation of the vicious cycle resulted in escalated Ca2+ overloading in myoblasts under continuous stretching stimuli. CRT knock-down, PMCA1 overexpression, and p38MAPK inhibition all attenuated the raised intracellular Ca2+ level and ameliorated myoblast apoptosis in the stretching environment. Conversely, CRT overexpression, PMCA1 knock-down, and CaM inhibition all aggravated stretch-induced Ca2+ overloading and myoblast apoptosis. A positive feedback loop between CRT and PMCA1 was activated in stretched myoblasts, which contributed to intracellular Ca2+ accumulation and resultant myoblast apoptosis.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Lambrianides Y, Epro G, Smith K, Mileva KN, James D, Karamanidis K. Impact of Different Mechanical and Metabolic Stimuli on the Temporal Dynamics of Muscle Strength Adaptation. J Strength Cond Res 2022; 36:3246-3255. [DOI: 10.1519/jsc.0000000000004300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol (1985) 2022; 133:87-103. [DOI: 10.1152/japplphysiol.00114.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has the remarkable ability to remodel and adapt, such as the increase in serial sarcomere number (SSN) or fascicle length (FL) observed after overstretching a muscle. This type of remodelling is termed longitudinal muscle fascicle growth, and its impact on biomechanical function has been of interest since the 1960s due to its clinical applications in muscle strain injury, muscle spasticity, and sarcopenia. Despite simplified hypotheses on how longitudinal muscle fascicle growth might influence mechanical function, existing literature presents conflicting results partly due to a breadth of methodologies. The purpose of this review is to outline what is currently known about the influence of longitudinal muscle fascicle growth on mechanical function and suggest future directions to address current knowledge gaps and methodological limitations. Various interventions indicate longitudinal muscle fascicle growth can increase the optimal muscle length for active force, but whether the whole force-length relationship widens has been less investigated. Future research should also explore the ability for longitudinal fascicle growth to broaden the torque-angle relationship's plateau region, and the relation to increased force during shortening. Without a concurrent increase in intramuscular collagen, longitudinal muscle fascicle growth also reduces passive tension at long muscle lengths; further research is required to understand whether this translates to increased joint range of motion. Lastly, some evidence suggests longitudinal fascicle growth can increase maximum shortening velocity and peak isotonic power, however, there has yet to be direct assessment of these measures in a neurologically intact model of longitudinal muscle fascicle growth.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Martino V. Franchi
- Department of Biomedical Sciences,, University of Padua, Padova, Veneto, Italy
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Cox SM, DeBoef A, Salzano MQ, Katugam K, Piazza SJ, Rubenson J. Plasticity of the gastrocnemius elastic system in response to decreased work and power demand during growth. J Exp Biol 2021; 224:jeb242694. [PMID: 34522962 PMCID: PMC10659036 DOI: 10.1242/jeb.242694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022]
Abstract
Elastic energy storage and release can enhance performance that would otherwise be limited by the force-velocity constraints of muscle. Although functional influence of a biological spring depends on tuning between components of an elastic system (the muscle, spring-driven mass and lever system), we do not know whether elastic systems systematically adapt to functional demand. To test whether altering work and power generation during maturation alters the morphology of an elastic system, we prevented growing guinea fowl (Numida meleagris) from jumping. We compared the jump performance of our treatment group at maturity with that of controls and measured the morphology of the gastrocnemius elastic system. We found that restricted birds jumped with lower jump power and work, yet there were no significant between-group differences in the components of the elastic system. Further, subject-specific models revealed no difference in energy storage capacity between groups, though energy storage was most sensitive to variations in muscle properties (most significantly operating length and least dependent on tendon stiffness). We conclude that the gastrocnemius elastic system in the guinea fowl displays little to no plastic response to decreased demand during growth and hypothesize that neural plasticity may explain performance variation.
Collapse
Affiliation(s)
- Suzanne M. Cox
- Biology Department, Duke University, Durham, NC 27708, USA
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adam DeBoef
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew Q. Salzano
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Kinesiology, The University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Kavya Katugam
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J. Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
29
|
Seo BR, Payne CJ, McNamara SL, Freedman BR, Kwee BJ, Nam S, de Lázaro I, Darnell M, Alvarez JT, Dellacherie MO, Vandenburgh HH, Walsh CJ, Mooney DJ. Skeletal muscle regeneration with robotic actuation-mediated clearance of neutrophils. Sci Transl Med 2021; 13:eabe8868. [PMID: 34613813 DOI: 10.1126/scitranslmed.abe8868] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher J Payne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Viam Inc., New York, NY 10023, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Brian J Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Max Darnell
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jonathan T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Herman H Vandenburgh
- Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
30
|
Sharifi H, Mann CK, Rockward AL, Mehri M, Mojumder J, Lee LC, Campbell KS, Wenk JF. Multiscale simulations of left ventricular growth and remodeling. Biophys Rev 2021; 13:729-746. [PMID: 34777616 PMCID: PMC8555068 DOI: 10.1007/s12551-021-00826-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes can adapt their size, shape, and orientation in response to altered biomechanical or biochemical stimuli. The process by which the heart undergoes structural changes-affecting both geometry and material properties-in response to altered ventricular loading, altered hormonal levels, or mutant sarcomeric proteins is broadly known as cardiac growth and remodeling (G&R). Although it is likely that cardiac G&R initially occurs as an adaptive response of the heart to the underlying stimuli, prolonged pathological changes can lead to increased risk of atrial fibrillation, heart failure, and sudden death. During the past few decades, computational models have been extensively used to investigate the mechanisms of cardiac G&R, as a complement to experimental measurements. These models have provided an opportunity to quantitatively study the relationships between the underlying stimuli (primarily mechanical) and the adverse outcomes of cardiac G&R, i.e., alterations in ventricular size and function. State-of-the-art computational models have shown promise in predicting the progression of cardiac G&R. However, there are still limitations that need to be addressed in future works to advance the field. In this review, we first outline the current state of computational models of cardiac growth and myofiber remodeling. Then, we discuss the potential limitations of current models of cardiac G&R that need to be addressed before they can be utilized in clinical care. Finally, we briefly discuss the next feasible steps and future directions that could advance the field of cardiac G&R.
Collapse
Affiliation(s)
- Hossein Sharifi
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Charles K. Mann
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Alexus L. Rockward
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Mohammad Mehri
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Joy Mojumder
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI USA
| | - Lik-Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI USA
| | - Kenneth S. Campbell
- Department of Physiology & Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY USA
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
- Department of Surgery, University of Kentucky, Lexington, KY USA
| |
Collapse
|
31
|
Zhou Y, Zhou W, Aisaiti A, Wang B, Zhang J, Svensson P, Wang K. Dentists have a high occupational risk of neck disorders with impact on somatosensory function and neck mobility. J Occup Health 2021; 63:e12269. [PMID: 34390307 PMCID: PMC8363657 DOI: 10.1002/1348-9585.12269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Musculoskeletal disorders (MSDs) in the neck and shoulder region may be associated with significant impairment of quality of life and well-being. The study was to determine the prevalence of painful MSDs in Chinese dentists and evaluate somatosensory function and neck mobility compared with non-dental professional controls. METHODS One hundred dentists (age: 36.5 ± 9.8 years) and 102 controls (age: 36.2 ± 10.0 years) were recruited between September 2019 and December 2020. The Medical Outcome Study 36-item short-form health survey questionnaire and information of MSDs history were recorded. The cervical range of motion (CROM) with and without pain, and the pressure pain thresholds (PPTs) of the facial and neck muscles were tested. Chi-square test, Mann-Whitney U test and multiple linear regression analysis were used to analyze the data. The factors in the multiple linear regression analysis were occupation, working age, and gender. RESULTS The prevalence rate of neck pain was significantly higher in dentists (73.0%) compared with the controls (52.0%) (P = .002). The regression models of cervical range of posterior extension, lateral flexion and rotation were statistically significant (P ≤ .001). The regression models of PPTs of the tested facial and neck muscles were statistically significant (P < .001). CONCLUSION Dentists are at higher risk of neck pain. The bigger cervical range of left rotation of dentists could be related to the working posture. The lower PPTs in dentists may reflect a hypersensitivity in the facial and neck muscles. Preventive measures are needed to reduce occupational hazards in dentists.
Collapse
Affiliation(s)
- Yanli Zhou
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of TMD and Orofacial Pain, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weina Zhou
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of TMD and Orofacial Pain, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Adila Aisaiti
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of TMD and Orofacial Pain, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Bingjie Wang
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of TMD and Orofacial Pain, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinglu Zhang
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of TMD and Orofacial Pain, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Peter Svensson
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Section for Orofacial Pain and Jaw Function, School of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Faculty of Odontology, Malmø University, Malmo, Sweden
| | - Kelun Wang
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Section for Orofacial Pain and Jaw Function, School of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
32
|
Genest F, Lindström S, Scherer S, Schneider M, Seefried L. Feasibility of simple exercise interventions for men with osteoporosis - A prospective randomized controlled pilot study. Bone Rep 2021; 15:101099. [PMID: 34258330 PMCID: PMC8255176 DOI: 10.1016/j.bonr.2021.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background Aging is associated with progressive loss of musculoskeletal performance. Exercise interventions can improve physical function in the elderly but there is a paucity of comparative assessments in order to understand what specific goals can be achieved particularly with less demanding exercise interventions readily accessible for untrained men. Methods Prospective randomized, controlled, single center exploratory trial to compare four distinct exercise interventions, i.e. Resistance Training (RT), Whole Body Vibration Exercise (WBV), Qi Gong (QG) and wearing a Spinal orthosis (SO) for 6 months in men at risk for osteoporosis aged 65–90 years. Primary endpoint was change in isometric one repetition maximum force trunk strength for extension (TSE) and flexion (TSF) compared to baseline, secondary endpoints covered key parameters of geriatric functional assessment, including Handgrip Strength (HS), Chair-Rise-Test (CRT), Usual Gait Speed (UGS) and Timed-Up-and-Go (TUG). Results Altogether 47 men (mean age 77 ±6.1 years) were randomized to RT, (n = 11) WBV (n = 13), QG (n = 10) and SO(n = 13). RT, defined as reference exercise intervention, lead to significant improvements for TSE (p = 0.009) and TSF (p = 0.013) and was significantly superior in the between-group analysis for TSE (p = 0.038). Vibration exercise caused sign. Improvements in TSE (p = 0.014) and CRT (p = 0.005), the Spinal orthosis improved CRT (p = 0.003) and Gait Speed (p = 0.027), while the QG intervention did not attain any sig. Developments. Subgroup analyses revealed most pronounced musculoskeletal progress in vulnerable patients (age ≥ 80 years, pre-sarcopenia, multimorbidity ≥3chronic diseases). Irrespective of the type of exercise, participants ≥80 years experienced significant gains in TSE (p = 0.029) and CRT (p = 0.017). Presarcopenic subjects (Skeletal muscle Index (SMI) ≤10.75 kg/m2) improved in TSE (p = 0.003), CRT (p = 0.001) and UGS (p = 0.016). Multimorbid participants achieved sig. Gains in TSE (p < 0.001), TSF (p = 0.002), UGS (p = 0.036) and HS (p = 0.046). Conclusions In this exploratory trial we found that simple exercise interventions are feasible in elderly men eliciting specific benefits, i.e. improvements are attained in those tasks addressed with the respective exercise modality. While targeted resistance training is superior in increasing TSE, alternative simple exercise interventions also appear to elicit beneficial effects, even in vulnerable patients, i.e. those with low muscle mass, above 80 years of age or multimorbidity. Simple exercise interventions are safe and feasible in elderly man with elevated fracture risk. Improvements are observed in those tasks specifically addressed by the respective exercise. Simple exercise interventions are particularly effective in vulnerable patients (Presarcopenic, ≥80 years old, multimorbid). Even vulnerable patients at risk for muscular deficits can experience some benefits from exercise.
Collapse
Key Words
- 6MW, 6 min walk test
- BIA, bioimpedance analysis
- CRT, Chair-Rise-Test
- HS, handgrip strength
- Osteoporosis
- QG, Qi Gong training
- Qi gong
- ROM, range of motion
- RT, resistance training
- Resistance training
- SB, static balance
- SMI, skeletal muscle index
- SO, spinal orthosis training
- SPPB, Short Physical Performance Battery
- Sarcopenia
- Spinal Orthosis
- TSE, trunk strength for extension
- TSF, trunk strength for flexion
- TUG, timed up and go test
- UGS, usual gait speed
- WBV, Whole Body Vibration training
- Whole Body Vibration
Collapse
Affiliation(s)
- Franca Genest
- Clinical Trial Unit, Orthopedic Department, University of Wuerzburg, Germany
| | - Sarah Lindström
- Clinical Trial Unit, Orthopedic Department, University of Wuerzburg, Germany
| | - Sophia Scherer
- Clinical Trial Unit, Orthopedic Department, University of Wuerzburg, Germany
| | - Michael Schneider
- Clinical Trial Unit, Orthopedic Department, University of Wuerzburg, Germany
| | - Lothar Seefried
- Clinical Trial Unit, Orthopedic Department, University of Wuerzburg, Germany
| |
Collapse
|
33
|
Preece SJ, Brookes N, Williams AE, Jones RK, Starbuck C, Jones A, Walsh NE. A new integrated behavioural intervention for knee osteoarthritis: development and pilot study. BMC Musculoskelet Disord 2021; 22:526. [PMID: 34103040 PMCID: PMC8188786 DOI: 10.1186/s12891-021-04389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/04/2023] Open
Abstract
Background Exercise-based approaches have been a cornerstone of physiotherapy management of knee osteoarthritis for many years. However, clinical effects are considered small to modest and the need for continued adherence identified as a barrier to clinical efficacy. While exercise-based approaches focus on muscle strengthening, biomechanical research has identified that people with knee osteoarthritis over activate their muscles during functional tasks. Therefore, we aimed to create a new behavioural intervention, which integrated psychologically informed practice with biofeedback training to reduce muscle overactivity, and which was suitable for delivery by a physiotherapist. Methods Through literature review, we created a framework linking theory from pain science with emerging biomechanical concepts related to overactivity of the knee muscles. Using recognised behaviour change theory, we then mapped a set of intervention components which were iteratively developed through ongoing testing and consultation with patients and physiotherapists. Results The underlying framework incorporated ideas related to central sensitisation, motor responses to pain and also focused on the idea that increased knee muscle overactivity could result from postural compensation. Building on these ideas, we created an intervention with five components: making sense of pain, general relaxation, postural deconstruction, responding differently to pain and functional muscle retraining. The intervention incorporated a range of animated instructional videos to communicate concepts related to pain and biomechanical theory and also used EMG biofeedback to facilitate visualization of muscle patterns. User feedback was positive with patients describing the intervention as enabling them to “create a new normal” and to be “in control of their own treatment.” Furthermore, large reductions in pain were observed from 11 patients who received a prototype version of the intervention. Conclusion We have created a new intervention for knee osteoarthritis, designed to empower individuals with capability and motivation to change muscle activation patterns and beliefs associated with pain. We refer to this intervention as Cognitive Muscular Therapy. Preliminary feedback and clinical indications are positive, motivating future large-scale trials to understand potential efficacy. It is possible that this new approach could bring about improvements in the pain associated with knee osteoarthritis without the need for continued adherence to muscle strengthening programmes. Trial registration ISRCTN51913166 (Registered 24-02-2020, Retrospectively registered). Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04389-0.
Collapse
Affiliation(s)
- Stephen J Preece
- Centre for Health Sciences Research, University of Salford, Manchester, M6 6PU, UK.
| | - Nathan Brookes
- Centre for Health Sciences Research, University of Salford, Manchester, M6 6PU, UK.,Physiotherapy Department, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Anita E Williams
- Centre for Health Sciences Research, University of Salford, Manchester, M6 6PU, UK
| | - Richard K Jones
- Centre for Health Sciences Research, University of Salford, Manchester, M6 6PU, UK
| | - Chelsea Starbuck
- Centre for Health Sciences Research, University of Salford, Manchester, M6 6PU, UK
| | - Anthony Jones
- Human Pain Research Group, University of Manchester, Clinical Sciences Building, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Nicola E Walsh
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1DD, UK
| |
Collapse
|
34
|
Malartre S, Bachasson D, Mercy G, Sarkis E, Anquetil C, Benveniste O, Allenbach Y. MRI and muscle imaging for idiopathic inflammatory myopathies. Brain Pathol 2021; 31:e12954. [PMID: 34043260 PMCID: PMC8412099 DOI: 10.1111/bpa.12954] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Although idiopathic inflammatory myopathies (IIM) are a heterogeneous group of diseases nearly all patients display muscle inflammation. Originally, muscle biopsy was considered as the gold standard for IIM diagnosis. The development of muscle imaging led to revisiting not only the IIM diagnosis strategy but also the patients' follow-up. Different techniques have been tested or are in development for IIM including positron emission tomography, ultrasound imaging, ultrasound shear wave elastography, though magnetic resonance imaging (MRI) remains the most widely used technique in routine. Whereas guidelines on muscle imaging in myositis are lacking here we reviewed the relevance of muscle imaging for both diagnosis and myositis patients' follow-up. We propose recommendations about when and how to perform MRI on myositis patients, and we describe new techniques that are under development.
Collapse
Affiliation(s)
- Samuel Malartre
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Damien Bachasson
- Neuromuscular Physiology Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Guillaume Mercy
- Department of Medical Imaging, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles-Foix, Sorbonne Université, Paris, France
| | - Elissone Sarkis
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Céline Anquetil
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| |
Collapse
|
35
|
Dietary reversal reverts diet-induced alterations in obstructed bladders of Wistar rats. Nutrition 2021; 89:111346. [PMID: 34166895 DOI: 10.1016/j.nut.2021.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of diet reversal to standard chow on diet-induced changes in structure and function of normal and obstructed bladders in male Wistar rats. METHODS Eighty animals were equally divided into sham-surgery and bladder outlet obstruction (BOO) dietary groups and fed standard chow (control), high-carbohydrate, high-fat, and high-protein diets. BOO groups had surgically induced BOO, whereas sham surgery was performed on sham groups at the end of week 8. Animals were continued on the treatment diets for 4 wk after surgery, then the diets were all changed to standard chow for the remainder of the study period. Bladder weight, detrusor contractility, Rho-associated protein kinase (Rho-kinase), and myosin light chain kinase were determined. Polymerase chain reaction was used to assay for transforming growth factor-β, connecting tissue growth factor, hypoxia-inducible factor-1α, and platelet-derived growth factor subunit A levels in the bladder. C-reactive protein, insulin-like growth factor-1, nerve growth factor, and C-X-C motif chemokine ligand 12 concentrations were determined by enzyme-linked immunosorbent assay. The collagen content of the bladder was estimated by liquid chromatography/mass spectrometry. RESULTS Reversal of diet to standard chow resulted in reversal of diet-induced changes in all variables measured in obstructed bladders. High-fat-diet-induced alterations in normal bladders were also reversed. CONCLUSION The results suggested that in obstructed bladders of animals, reversal of the diet could reverse all diet-associated changes that increase inflammation and fibrosis in obstructed bladders. This is especially important in changes related to high consumption of fatty diets and associated lower urinary tract symptoms.
Collapse
|
36
|
Marris J, Barrett S, Abt G, Towlson C. Quantifying technical actions in professional soccer using foot-mounted inertial measurement units. SCI MED FOOTBALL 2021; 6:203-214. [DOI: 10.1080/24733938.2021.1910333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Joshua Marris
- Department of Sport, Health and Exercise Science, University of Hull, Kingston upon Hull, UK
- Sports Science and Medicine Department, Hull City AFC, Kingston upon Hull, UK
| | - Steve Barrett
- Department of Sports Science and Research Innovation, PlayerMaker™, London, UK
| | - Grant Abt
- Department of Sport, Health and Exercise Science, University of Hull, Kingston upon Hull, UK
| | - Chris Towlson
- Department of Sport, Health and Exercise Science, University of Hull, Kingston upon Hull, UK
| |
Collapse
|
37
|
Min S, Ko MJ, Jung HJ, Kim W, Han SB, Kim Y, Bae G, Lee S, Thangam R, Choi H, Li N, Shin JE, Jeon YS, Park HS, Kim YJ, Sukumar UK, Song JJ, Park SK, Yu SH, Kang YC, Lee KB, Wei Q, Kim DH, Han SM, Paulmurugan R, Kim YK, Kang H. Remote Control of Time-Regulated Stretching of Ligand-Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008353. [PMID: 33527502 DOI: 10.1002/adma.202008353] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Native extracellular matrix (ECM) can exhibit cyclic nanoscale stretching and shrinking of ligands to regulate complex cell-material interactions. Designing materials that allow cyclic control of changes in intrinsic ligand-presenting nanostructures in situ can emulate ECM dynamicity to regulate cellular adhesion. Unprecedented remote control of rapid, cyclic, and mechanical stretching ("ON") and shrinking ("OFF") of cell-adhesive RGD ligand-presenting magnetic nanocoils on a material surface in five repeated cycles are reported, thereby independently increasing and decreasing ligand pitch in nanocoils, respectively, without modulating ligand-presenting surface area per nanocoil. It is demonstrated that cyclic switching "ON" (ligand nanostretching) facilitates time-regulated integrin ligation, focal adhesion, spreading, YAP/TAZ mechanosensing, and differentiation of viable stem cells, both in vitro and in vivo. Fluorescence resonance energy transfer (FRET) imaging reveals magnetic switching "ON" (stretching) and "OFF" (shrinking) of the nanocoils inside animals. Versatile tuning of physical dimensions and elements of nanocoils by regulating electrodeposition conditions is also demonstrated. The study sheds novel insight into designing materials with connected ligand nanostructures that exhibit nanocoil-specific nano-spaced declustering, which is ineffective in nanowires, to facilitate cell adhesion. This unprecedented, independent, remote, and cytocompatible control of ligand nanopitch is promising for regulating the mechanosensing-mediated differentiation of stem cells in vivo.
Collapse
Affiliation(s)
- Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Min Jun Ko
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Evanston, IL, USA
- NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Wonsik Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Jeong Eun Shin
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Jin Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Uday Kumar Sukumar
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Seung-Keun Park
- Department of Chemical Engineering, Kongju National University, Cheonan, 31080, Republic of Korea
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Min Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
38
|
Brearley MC, Loczenski-Brown DM, Loughna PT, Parr T, Brameld JM. Response of the porcine MYH4-promoter and MYH4-expressing myotubes to known anabolic and catabolic agents in vitro. Biochem Biophys Rep 2021; 25:100924. [PMID: 33614996 PMCID: PMC7880916 DOI: 10.1016/j.bbrep.2021.100924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 11/18/2022] Open
Abstract
Myosin heavy chain-IIB (MyHC-IIB; encoded by MYH4 or Myh4) expression is often associated with muscle hypertrophic growth. Unlike other large mammals, domestic pig breeds express MyHC-IIB at both the mRNA and protein level. Aim To utilise a fluorescence-based promoter-reporter system to test the influence of anabolic and catabolic agents on increasing porcine MYH4-promoter activity and determine whether cell hypertrophy was subsequently induced. Methods C2C12 myoblasts were co-transfected with porcine MYH4-promoter-driven ZsGreen and CMV-driven DsRed expression plasmids. At the onset of differentiation, treatments (dibutyryl cyclic-AMP (dbcAMP), Des(1–3) Insulin-Like Growth Factor-1 (IGF-I), triiodo-l-thyronine (T3) and dexamethasone (Dex)) or appropriate vehicle controls were added and cells maintained for up to four days. At day 4 of differentiation, measurements were collected for total fluorescence and average myotube diameter, as indicators of MYH4-promoter activity and cell hypertrophy respectively. Results Porcine MYH4-promoter activity increased during C2C12 myogenic differentiation, with a marked increase between days 3 and 4. MYH4-promoter activity was further increased following four days of dbcAMP treatment and average myotube diameter was significantly increased by dbcAMP. Porcine MYH4-promoter activity also tended to be increased by T3 treatment, but there were no effects of Des(1–3) IGF-I or Dex treatment, whereas average myotube diameter was increased by Des(1–3) IGF-I, but not T3 or Dex. Conclusion Porcine MYH4-promoter activity responded to dbcAMP, Des(1–3) IGF-I and T3 treatment in vitro as observed previously in reported in vivo studies. However, we report that increased MYH4-promoter activity was not always associated with muscle cell hypertrophy. The fluorescence-based reporter system offers a useful tool to study muscle cell hypertrophic growth. In vitro porcine MYH4-promoter-reporter system to test anabolic & catabolic agents. Changes in porcine MYH4-promoter activity & myotube diameter measured in tandem. MYH4-promoter activity responded to dbcAMP, Des(1–3) IGF-I and T3 as seen in vivo. Increased MYH4-promoter activity was not always associated with cell hypertrophy.
Collapse
Affiliation(s)
- Madelaine C Brearley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - David M Loczenski-Brown
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Paul T Loughna
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Tim Parr
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - John M Brameld
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
39
|
Boukabache A, Preece SJ, Brookes N. Prolonged sitting and physical inactivity are associated with limited hip extension: A cross-sectional study. Musculoskelet Sci Pract 2021; 51:102282. [PMID: 33188982 DOI: 10.1016/j.msksp.2020.102282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/29/2020] [Accepted: 10/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND It is possible that physical inactivity and prolonged sitting could lead to changes in muscle properties or bony limitations which may reduce passive hip extension. OBJECTIVES This study explored the association between passive hip extension and sitting/physical activity patterns. DESIGN Cross sectional study. METHOD The modified Thomas Test is a clinical test used to characterise hip flexion contracture. This test was used to measure passive hip extension across 144 individuals. In addition, sitting behaviours and physical activity patterns were quantified using the Global Physical Activity Questionnaire. Cut off points were defined for low/high physical activity (150 min per week), prolonged sitting (>7 h per day) and minimal sitting (<4 h per day). ANOVA testing was then used to compare passive hip extension between three groups, defined using the specified thresholds: low activity & prolonged sitting, high activity & minimal sitting and high activity & prolonged sitting. RESULTS A total of 98 participants were allocated to one of the three groups which were shown to differ significantly in passive hip extension (P < 0.001). Importantly, there was 6.1° more passive hip extension in the high activity & minimal sitting group when compared to the low activity & prolonged sitting group. CONCLUSION This study is the first to demonstrate an association between passive hip extension and prolonged sitting/physical inactivity. It is possible that these findings indicate a physiological adaptation in passive muscle stiffness. Further research is required to understand whether such adaptation may play a role in the aetiology of musculoskeletal pain linked to prolonged sitting.
Collapse
Affiliation(s)
| | - Stephen J Preece
- Centre for Health Sciences Research, University of Salford, Salford, Manchester, M6 6PU, UK
| | - Nathan Brookes
- Centre for Health Sciences Research, University of Salford, Salford, Manchester, M6 6PU, UK.
| |
Collapse
|
40
|
Wakeling JM, Tijs C, Konow N, Biewener AA. Modeling muscle function using experimentally determined subject-specific muscle properties. J Biomech 2021; 117:110242. [PMID: 33545605 DOI: 10.1016/j.jbiomech.2021.110242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Muscle models are commonly based on intrinsic properties pooled across a number of individuals, often from a different species, and rarely validated against directly measured muscle forces. Here we use a rich data set of rat medial gastrocnemius muscle forces recorded during in-situ and in-vivo isometric, isotonic, and cyclic contractions to test the accuracy of forces predicted using Hill-type muscle models. We identified force-length and force-velocity parameters for each individual, and used either these subject-specific intrinsic properties, or population-averaged properties within the models. The modeled forces for cyclic in-vivo and in-situ contractions matched with measured muscle-tendon forces with r2 between 0.70 and 0.86, and root-mean square errors (RMSE) of 0.10 to 0.13 (values normalized to the maximum isometric force). The modeled forces were least accurate at the highest movement and cycle frequencies and did not show an improvement in r2 when subject-specific intrinsic properties were used; however, there was a reduction in the RMSE with fewer predictions having higher errors. We additionally recorded and tested muscle models specific to proximal and distal regions of the muscle and compared them to measures and models from the whole muscle belly: there was no improvement in model performance when using data from specific anatomical regions. These results show that Hill-type muscle models can yield very good performance for cyclic contractions typical of locomotion, with small reductions in errors when subject-specific intrinsic properties are used.
Collapse
Affiliation(s)
- J M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - C Tijs
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA, United States
| | - N Konow
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA, United States; Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - A A Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA, United States
| |
Collapse
|
41
|
Lee T, Holland MA, Weickenmeier J, Gosain AK, Tepole AB. The Geometry of Incompatibility in Growing Soft Tissues: Theory and Numerical Characterization. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2021; 146:104177. [PMID: 34054143 PMCID: PMC8153650 DOI: 10.1016/j.jmps.2020.104177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tissues in vivo are not stress-free. As we grow, our tissues adapt to different physiological and disease conditions through growth and remodeling. This adaptation occurs at the microscopic scale, where cells control the microstructure of their immediate extracellular environment to achieve homeostasis. The local and heterogeneous nature of this process is the source of residual stresses. At the macroscopic scale, growth and remodeling can be accurately captured with the finite volume growth framework within continuum mechanics, which is akin to plasticity. The multiplicative split of the deformation gradient into growth and elastic contributions brings about the notion of incompatibility as a plausible description for the origin of residual stress. Here we define the geometric features that characterize incompatibility in biological materials. We introduce the geometric incompatibility tensor for different growth types, showing that the constraints associated with growth lead to specific patterns of the incompatibility metrics. To numerically investigate the distribution of incompatibility measures, we implement the analysis within a finite element framework. Simple, illustrative examples are shown first to explain the main concepts. Then, numerical characterization of incompatibility and residual stress is performed on three biomedical applications: brain atrophy, skin expansion, and cortical folding. Our analysis provides new insights into the role of growth in the development of tissue defects and residual stresses. Thus, we anticipate that our work will further motivate additional research to characterize residual stresses in living tissue and their role in development, disease, and clinical intervention.
Collapse
Affiliation(s)
- Taeksang Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Maria A Holland
- Aerospace & Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Arun K Gosain
- Lurie Children Hospital, Northwestern University, Chicago, IL, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
42
|
A mathematical model-based approach to optimize loading schemes of isometric resistance training sessions. SPORTS ENGINEERING 2020. [DOI: 10.1007/s12283-020-00337-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIndividualized resistance training is necessary to optimize training results. A model-based optimization of loading schemes could provide valuable impulses for practitioners and complement the predominant manual program design by customizing the loading schemes to the trainee and the training goals. We compile a literature overview of model-based approaches used to simulate or optimize the response to single resistance training sessions or to long-term resistance training plans in terms of strength, power, muscle mass, or local muscular endurance by varying the loading scheme. To the best of our knowledge, contributions employing a predictive model to algorithmically optimize loading schemes for different training goals are nonexistent in the literature. Thus, we propose to set up optimal control problems as follows. For the underlying dynamics, we use a phenomenological model of the time course of maximum voluntary isometric contraction force. Then, we provide mathematical formulations of key performance indicators for loading schemes identified in sport science and use those as objective functionals or constraints. We then solve those optimal control problems using previously obtained parameter estimates for the elbow flexors. We discuss our choice of training goals, analyze the structure of the computed solutions, and give evidence of their real-life feasibility. The proposed optimization methodology is independent from the underlying model and can be transferred to more elaborate physiological models once suitable ones become available.
Collapse
|
43
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
44
|
Rodriguez BL, Vega-Soto EE, Kennedy CS, Nguyen MH, Cederna PS, Larkin LM. A tissue engineering approach for repairing craniofacial volumetric muscle loss in a sheep following a 2, 4, and 6-month recovery. PLoS One 2020; 15:e0239152. [PMID: 32956427 PMCID: PMC7505427 DOI: 10.1371/journal.pone.0239152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023] Open
Abstract
Volumetric muscle loss (VML) is the loss of skeletal muscle that results in significant and persistent impairment of function. The unique characteristics of craniofacial muscle compared trunk and limb skeletal muscle, including differences in gene expression, satellite cell phenotype, and regenerative capacity, suggest that VML injuries may affect craniofacial muscle more severely. However, despite these notable differences, there are currently no animal models of craniofacial VML. In a previous sheep hindlimb VML study, we showed that our lab’s tissue engineered skeletal muscle units (SMUs) were able to restore muscle force production to a level that was statistically indistinguishable from the uninjured contralateral muscle. Thus, the goals of this study were to: 1) develop a model of craniofacial VML in a large animal model and 2) to evaluate the efficacy of our SMUs in repairing a 30% VML in the ovine zygomaticus major muscle. Overall, there was no significant difference in functional recovery between the SMU-treated group and the unrepaired control. Despite the use of the same injury and repair model used in our previous study, results showed differences in pathophysiology between craniofacial and hindlimb VML. Specifically, the craniofacial model was affected by concomitant denervation and ischemia injuries that were not exhibited in the hindlimb model. While clinically realistic, the additional ischemia and denervation likely created an injury that was too severe for our SMUs to repair. This study highlights the importance of balancing the use of a clinically realistic model while also maintaining control over variables related to the severity of the injury. These variables include the volume of muscle removed, the location of the VML injury, and the geometry of the injury, as these affect both the muscle’s ability to self-regenerate as well as the probability of success of the treatment.
Collapse
Affiliation(s)
- Brittany L. Rodriguez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emmanuel E. Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher S. Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew H. Nguyen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa M. Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
45
|
Valagussa G, Balatti V, Trentin L, Piscitelli D, Yamagata M, Grossi E. Relationship between tip-toe behavior and soleus - gastrocnemius muscle lengths in individuals with autism spectrum disorders. J Orthop 2020; 21:444-448. [PMID: 32982098 PMCID: PMC7493131 DOI: 10.1016/j.jor.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND About 20% of individuals with autism spectrum disorders (ASD) showed tip-toe behavior (TTB). This behavior may be related to a decreased ankle joint range of motion (ROM) in dorsiflexion. Physiologically, gastrocnemius (GM) and soleus (SM) muscles influence ankle ROM independently. However, no studies investigated the relationship between the amount of time individuals with ASD spend in TTB and GM and SM muscle lengths. OBJECTIVE To evaluate the relationship between three mutually exclusive clinical patterns of TTB i.e., during standing, walking and running (TTB Class 1), or during walking and running (TTB Class 2), or only when running (TTB Class 3), and GM and SM muscle lengths. METHODS Sixty-nine individuals with ASD (average age: 14.1 ± 3.6 years, 56 males) were enrolled. In a clinical setting, SM and GM muscle lengths of both legs were assessed through a manual goniometer. Measurements were performed by two trained assessors blinded to TTB classifications. RESULTS Individuals with ASD classified as TTB Class 1 demonstrated a shortening of both GM and SM compared with NO-TTB and TTB Class 3 individuals. CONCLUSIONS Our results support the relationship between TTB severity and GM and SM shortening assessed by a decreased ankle joint ROM in dorsiflexion. Further studies are needed to determine the factors associated with TTB and decreased ankle ROM.
Collapse
Affiliation(s)
- Giulio Valagussa
- Autism Research Unit, Villa Santa Maria Foundation, Via IV Novembre 15, Tavernerio, CO, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
- Corresponding author. Autism Research Unit, Villa Santa Maria Foundation, Tavernerio, CO, Italy.
| | - Valeria Balatti
- Autism Research Unit, Villa Santa Maria Foundation, Via IV Novembre 15, Tavernerio, CO, Italy
| | - Luca Trentin
- Autism Research Unit, Villa Santa Maria Foundation, Via IV Novembre 15, Tavernerio, CO, Italy
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada
| | - Momoko Yamagata
- Faculty of Human Development, Graduate School of Human Development and Environment, Kobe University, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, Via IV Novembre 15, Tavernerio, CO, Italy
| |
Collapse
|
46
|
Association between ultrasound quadriceps muscle status with premorbid functional status and 60-day mortality in mechanically ventilated critically ill patient: A single-center prospective observational study. Clin Nutr 2020; 40:1338-1347. [PMID: 32919818 DOI: 10.1016/j.clnu.2020.08.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS In critically ill patients, direct measurement of skeletal muscle using bedside ultrasound (US) may identify a patient population that might benefit more from optimal nutrition practices. When US is not available, survey measures of nutrition risk and functional status that are associated with muscle status may be used to identify patients with low muscularity. This study aims to determine the association between baseline and changing ultrasound quadriceps muscle status with premorbid functional status and 60-day mortality. METHODS This single-center prospective observational study was conducted in a general ICU. Mechanically ventilated critically ill adult patients (age ≥18 years) without pre-existing systemic neuromuscular diseases and expected to stay for ≥96 h in the ICU were included. US measurements were performed within 48 h of ICU admission (baseline), at day 7, day 14 of ICU stay and at ICU discharge (if stay >14 days). Quadriceps muscle layer thickness (QMLT), rectus femoris cross sectional area (RFCSA), vastus intermedius pennation angle (PA) and fascicle length (FL), and rectus femoris echogenicity (mean and standard deviation [SD]) were measured. Patients' next-of-kin were interviewed by using established questionnaires for their pre-hospitalization nutritional risk (nutrition risk screening-2002) and functional status (SARC-F, clinical frailty scale [CFS], Katz activities of daily living [ADL] and Lawton Instrumental ADL). RESULTS Ninety patients were recruited. A total of 86, 53, 24 and 10 US measures were analyzed, which were performed at a median of 1, 7, 14 and 22 days from ICU admission, respectively. QMLT, RFCSA and PA reduced significantly over time. The overall trend of change of FL was not significant. The only independent predictor of 60-day mortality was the change of QMLT from baseline to day 7 (adjusted odds ratio 0.95 for every 1% less QMLT loss, 95% confidence interval 0.91-0.99; p = 0.02). Baseline measures of high nutrition risk (modified nutrition risk in critically ill ≥5), sarcopenia (SARC-F ≥4) and frailty (CFS ≥5) were associated with lower baseline QMLT, RFCSA and PA and higher 60-day mortality. CONCLUSIONS Every 1% loss of QMLT over the first week of critical illness was associated with 5% higher odds of 60-day mortality. SARC-F, CFS and mNUTRIC are associated with quadriceps muscle status and 60-day mortality and may serve as a potential simple and indirect measures of premorbid muscle status at ICU admission.
Collapse
|
47
|
Nunes JP, Schoenfeld BJ, Nakamura M, Ribeiro AS, Cunha PM, Cyrino ES. Does stretch training induce muscle hypertrophy in humans? A review of the literature. Clin Physiol Funct Imaging 2020; 40:148-156. [DOI: 10.1111/cpf.12622] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
| | | | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Alex S. Ribeiro
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
- Center for Research in Health Sciences University of Northern Paraná Londrina Brazil
| | - Paolo M. Cunha
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
| | - Edilson S. Cyrino
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
| |
Collapse
|
48
|
Verheul J, Nedergaard NJ, Vanrenterghem J, Robinson MA. Measuring biomechanical loads in team sports – from lab to field. SCI MED FOOTBALL 2020. [DOI: 10.1080/24733938.2019.1709654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jasper Verheul
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | | - Mark A. Robinson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
49
|
Satkunskiene D, da Silva TM, Kamandulis S, Leite NM, Domeika A, Mickevicius M, Snieckus A. Effect of Training and Match Loads on Hamstring Passive Stiffness in Professional Soccer Players. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:488-497. [PMID: 33265076 PMCID: PMC7716684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE the purpose of this study was to identify differences in hamstring passive stiffness between the pre-season and in-season periods. METHODS Hamstring strength and passive stiffness were measured in professional male soccer players before and after the pre-season (4 weeks), and after the in-season (6 weeks) periods using an isokinetic dynamometer. Muscle passive stiffness was determined from the slope of the passive torque-angle relationship. External loads (acceleration and jumps) were monitored by GPS and internal loads by questionnaire. RESULTS Hamstring passive stiffness increased after 10 weeks of training and matches, without changes in passive peak torque and range of motion. The hamstring passive stiffness modifications were associated with the volume and intensity of accelerations and jumps. The individual data analysis also provided some support for the suppression of the biomechanical adaptation in the subjects with relatively large external load. CONCLUSIONS Regular training and match workouts increase hamstring passive stiffness in professional soccer players but the adaptation of muscle-tendon unit passive elements might not occur if players experience excessive mechanical stress.
Collapse
Affiliation(s)
- Danguole Satkunskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | | | - Sigitas Kamandulis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Nuno M.C. Leite
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | - Mantas Mickevicius
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania,Corresponding author: Mantas Mickevicius, Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto g. 6, LT-44221, Kaunas, Lithuania E-mail:
| | - Audrius Snieckus
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
50
|
Cox SM, Salzano MQ, Piazza SJ, Rubenson J. Eliminating high-intensity activity during growth reduces mechanical power capacity but not submaximal metabolic cost in a bipedal animal model. J Appl Physiol (1985) 2019; 128:50-58. [PMID: 31751181 DOI: 10.1152/japplphysiol.00679.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Decreases in activity levels in children worldwide are feared to have long-term health repercussions. Yet, because of the difficulty of performing controlled long-term studies in humans, we do not yet understand how decreases in childhood activity influence adult functional capacity. Here, in an avian bipedal model, we evaluated the elimination of all high-intensity activity during growth on adult performance. We evaluated three alternative hypotheses: Elimination of high-intensity activity 1) does not influence adult function, 2) results in task-specific deficits in adulthood, or 3) results in deficits that generalize across locomotor tasks. We found that animals restricted from jumping and sprinting during growth showed detriments as adults in maximal jump performance in comparison to controls, but did not require more metabolic energy during steady-state running or standing. From this, we conclude that functional deficits from elimination of high-intensity exercise are task specific and do not generalize across all locomotor functions.NEW & NOTEWORTHY Decreasing childhood activity levels are feared to have long-term health repercussions, but testing this hypothesis is hampered by restrictions of human experimentation. Here, in a bipedal animal model, we examine how the elimination of high-intensity activity during all of maturation influences adult locomotor capacity. We found restricted activity during growth reduced mechanical power capacity but not submaximal metabolic cost. This suggests that reduced childhood activity may result in task-specific, rather than generalized locomotor deficits.
Collapse
Affiliation(s)
- Suzanne Michelle Cox
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Matthew Q Salzano
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania.,Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, Pennsylvania
| | - Stephen J Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania.,Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|