1
|
Sahoo S, Maiti I, Laha A, De R, Maiti S, De P. Cholate Conjugated Cationic Polymers for Regulation of Actin Dynamics. J Mater Chem B 2022; 10:8033-8045. [DOI: 10.1039/d2tb01364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytoskeletal movement is a compulsory necessity for proper cell functioning and is largely controlled by actin filament dynamics. The actin dynamics can be finetuned by various natural and artificial materials...
Collapse
|
2
|
Wang C, Li S, Ademiloye AS, Nithiarasu P. Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3520. [PMID: 34390323 DOI: 10.1002/cnm.3520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduction and cell functions using experimental and in silico approaches. In the last decade, computational simulation has become increasingly attractive due to its critical role in interpreting experimental data, analysing complex cellular/subcellular structures, facilitating diagnostic designs and therapeutic techniques, and developing biomimetic materials. Despite the significant progress, developing comprehensive and accurate models of living cells remains a grand challenge in the 21st century. To understand current state of the art, this review summarises and classifies the vast array of computational biomechanical models for cells. The article covers the cellular components at multi-spatial levels, that is, protein polymers, subcellular components, whole cells and the systems with scale beyond a cell. In addition to the comprehensive review of the topic, this article also provides new insights into the future prospects of developing integrated, active and high-fidelity cell models that are multiscale, multi-physics and multi-disciplinary in nature. This review will be beneficial for the researchers in modelling the biomechanics of subcellular components, cells and multiple cell systems and understanding the cell functions and biological processes from the perspective of cell mechanics.
Collapse
Affiliation(s)
- Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Si Li
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Adesola S Ademiloye
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| |
Collapse
|
3
|
Sperti M, Malavolta M, Ciniero G, Borrelli S, Cavaglià M, Muscat S, Tuszynski JA, Afeltra A, Margiotta DPE, Navarini L. JAK inhibitors in immune-mediated rheumatic diseases: From a molecular perspective to clinical studies. J Mol Graph Model 2021; 104:107789. [DOI: 10.1016/j.jmgm.2020.107789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
|
4
|
Castaneda N, Park J, Kang EH. Regulation of Actin Bundle Mechanics and Structure by Intracellular Environmental Factors. FRONTIERS IN PHYSICS 2021; 9:675885. [PMID: 34422787 PMCID: PMC8376200 DOI: 10.3389/fphy.2021.675885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mechanical and structural properties of actin cytoskeleton drive various cellular processes, including structural support of the plasma membrane and cellular motility. Actin monomers assemble into double-stranded helical filaments as well as higher-ordered structures such as bundles and networks. Cells incorporate macromolecular crowding, cation interactions, and actin-crosslinking proteins to regulate the organization of actin bundles. Although the roles of each of these factors in actin bundling have been well-known individually, how combined factors contribute to actin bundle assembly, organization, and mechanics is not fully understood. Here, we describe recent studies that have investigated the mechanisms of how intracellular environmental factors influence actin bundling. This review highlights the effects of macromolecular crowding, cation interactions, and actin-crosslinking proteins on actin bundle organization, structure, and mechanics. Understanding these mechanisms is important in determining in vivo actin biophysics and providing insights into cell physiology.
Collapse
Affiliation(s)
- Nicholas Castaneda
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jinho Park
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States
| | - Ellen Hyeran Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States
- Department of Physics, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
5
|
Jaswandkar SV, Faisal HMN, Katti KS, Katti DR. Dissociation Mechanisms of G-actin Subunits Govern Deformation Response of Actin Filament. Biomacromolecules 2021; 22:907-917. [PMID: 33481563 DOI: 10.1021/acs.biomac.0c01602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Actin molecules are essential structural components of the cellular cytoskeleton. Here, we report a comprehensive analysis of F-actin's deformation behavior and highlight underlying mechanisms using steered molecular dynamics simulations (SMD). The investigation of F-actin was done under tension, compression, bending, and torsion. We report that the dissociation pattern of conformational locks at intrastrand and interstrand G-actin interfaces regulates the deformation response of F-actin. The conformational locks at the G-actin interfaces are portrayed by a spheroidal joint, interlocking serrated plates' analogy. Further, the SMD simulation approach was utilized to evaluate Young's modulus, flexural rigidity, persistent length, and torsional rigidity of F-actin, and the values obtained were found to be consistent with available experimental data. The evaluation of the mechanical properties of actin and the insight into the fundamental mechanisms contributing to its resilience described here are necessary for developing accurate models of eukaryotic cells and for assessing cellular viability and mobility.
Collapse
Affiliation(s)
- Sharad V Jaswandkar
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - H M Nasrullah Faisal
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
6
|
Jepsen L, Sept D. Effects of Nucleotide and End-Dependent Actin Conformations on Polymerization. Biophys J 2020; 119:1800-1810. [PMID: 33080221 DOI: 10.1016/j.bpj.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
The regulation of actin is key for controlled cellular function. Filaments are regulated by actin-binding proteins, but the nucleotide state of actin is also an important factor. From extended molecular dynamics simulations, we find that both nucleotide states of the actin monomer have significantly less twist than their crystal structures and that the ATP monomer is flatter than the ADP form. We also find that the filament's pointed end is flatter than the remainder of the filament and has a conformation distinct from G-actin, meaning that incoming monomers would need to undergo isomerization that would weaken the affinity and slow polymerization. Conversely, the barbed end of the filament takes on a conformation nearly identical to the ATP monomer, enhancing ATP G-actin's ability to polymerize as compared with ADP G-actin. The thermodynamic penalty imposed by differences in isomerization for the ATP and ADP growth at the barbed end exactly matches experimental results.
Collapse
Affiliation(s)
- Lauren Jepsen
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
7
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Miceli M, Muscat S, Morbiducci U, Cavaglià M, Deriu MA. Ultrasonic waves effect on S-shaped β-amyloids conformational dynamics by non-equilibrium molecular dynamics. J Mol Graph Model 2020; 96:107518. [DOI: 10.1016/j.jmgm.2019.107518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
|
9
|
Schroer CFE, Baldauf L, van Buren L, Wassenaar TA, Melo MN, Koenderink GH, Marrink SJ. Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Proc Natl Acad Sci U S A 2020; 117:5861-5872. [PMID: 32123101 PMCID: PMC7084070 DOI: 10.1073/pnas.1914884117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytoskeletal protein actin polymerizes into filaments that are essential for the mechanical stability of mammalian cells. In vitro experiments showed that direct interactions between actin filaments and lipid bilayers are possible and that the net charge of the bilayer as well as the presence of divalent ions in the buffer play an important role. In vivo, colocalization of actin filaments and divalent ions are suppressed, and cells rely on linker proteins to connect the plasma membrane to the actin network. Little is known, however, about why this is the case and what microscopic interactions are important. A deeper understanding is highly beneficial, first, to obtain understanding in the biological design of cells and, second, as a possible basis for the building of artificial cortices for the stabilization of synthetic cells. Here, we report the results of coarse-grained molecular dynamics simulations of monomeric and filamentous actin in the vicinity of differently charged lipid bilayers. We observe that charges on the lipid head groups strongly determine the ability of actin to adsorb to the bilayer. The inclusion of divalent ions leads to a reversal of the binding affinity. Our in silico results are validated experimentally by reconstitution assays with actin on lipid bilayer membranes and provide a molecular-level understanding of the actin-membrane interaction.
Collapse
Affiliation(s)
- Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Lucia Baldauf
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica, New University of Lisbon, 2780-157, Oeiras, Portugal
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands;
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands;
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
10
|
Muscat S, Pallante L, Stojceski F, Danani A, Grasso G, Deriu MA. The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking to Biophysical Characterization. Int J Mol Sci 2020; 21:ijms21062017. [PMID: 32188076 PMCID: PMC7139307 DOI: 10.3390/ijms21062017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
The pursuit for effective strategies inhibiting the amyloidogenic process in neurodegenerative disorders, such as Alzheimer’s disease (AD), remains one of the main unsolved issues, and only a few drugs have demonstrated to delay the degeneration of the cognitive system. Moreover, most therapies induce severe side effects and are not effective at all stages of the illness. The need to find novel and reliable drugs appears therefore of primary importance. In this context, natural compounds have shown interesting beneficial effects on the onset and progression of neurodegenerative diseases, exhibiting a great inhibitory activity on the formation of amyloid aggregates and proving to be effective in many preclinical and clinical studies. However, their inhibitory mechanism is still unclear. In this work, ensemble docking and molecular dynamics simulations on S-shaped Aβ42 fibrils have been carried out to evaluate the influence of several natural compounds on amyloid conformational behaviour. A deep understanding of the interaction mechanisms between natural compounds and Aβ aggregates may play a key role to pave the way for design, discovery and optimization strategies toward an efficient destabilization of toxic amyloid assemblies.
Collapse
Affiliation(s)
- Stefano Muscat
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Lorenzo Pallante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, IT-10128 Torino, Italy
| | - Filip Stojceski
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, IT-10128 Torino, Italy
- Correspondence:
| |
Collapse
|
11
|
Stojceski F, Grasso G, Pallante L, Danani A. Molecular and Coarse-Grained Modeling to Characterize and Optimize Dendrimer-Based Nanocarriers for Short Interfering RNA Delivery. ACS OMEGA 2020; 5:2978-2986. [PMID: 32095720 PMCID: PMC7033960 DOI: 10.1021/acsomega.9b03908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Dendrimer nanocarriers are unique hyper-branched polymers with biomolecule-like properties, representing a promising prospect as a nucleic acid delivery system. The design of effective dendrimer-based gene carriers requires considering several parameters, such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity. In detail, the rational design of the dendrimer surface chemistry has been ascertained to play a crucial role on the efficiency of interaction with nucleic acids. Within this framework, advances in the field of organic chemistry have allowed us to design dendrimers with even small difference in the chemical structure of their surface terminals. In this study, we have selected two different cationic phosphorus dendrimers of generation 3 functionalized, respectively, with pyrrolidinium (DP) and morpholinium (DM) surface groups, which have demonstrated promising potential for short interfering RNA (siRNA) delivery. Despite DP and DM differing only for one atom in their chemical structure, in vitro and in vivo experiments have highlighted several differences between them in terms of siRNA complexation properties. In this context, we have employed coarse-grained molecular dynamics simulation techniques to shed light on the supramolecular characteristics of dendrimer-siRNA complexation, the so-called dendriplex formations. Our data provide important information on self-assembly dynamics driven by surface chemistry and competition mechanisms.
Collapse
Affiliation(s)
- Filip Stojceski
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Gianvito Grasso
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Lorenzo Pallante
- PolitoBIOMed
Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Andrea Danani
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| |
Collapse
|
12
|
Grasso G, Leanza L, Morbiducci U, Danani A, Deriu MA. Aminoacid substitutions in the glycine zipper affect the conformational stability of amyloid beta fibrils. J Biomol Struct Dyn 2019; 38:3908-3915. [PMID: 31543007 DOI: 10.1080/07391102.2019.1671224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aggregation of amyloid-beta peptides is associated with the pathogenesis of Alzheimer's disease. The hydrophobic core of the amyloid beta sequence contains a GxxxG repeated motif, called glycine zipper, which involves crucial residues for assuring stability and promoting the process of fibril formation. Mutations in this motif lead to a completely different oligomerization pathway and rate of fibril formation. In this work, we have tested G33L and G37L residue substitutions by molecular dynamics simulations. We found that both protein mutations may lead to remarkable changes in the fibril conformational stability. Results suggest the disruption of the glycine zipper as a possible strategy to reduce the aggregation propensity of amyloid beta peptides. On the basis of our data, further investigations may consider this key region as a binding site to design/discover novel effective inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Applied Sciences of Southern Switzerland (SUPSI), University of Italian Switzerland (USI), Manno, Switzerland
| | - Luigi Leanza
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Applied Sciences of Southern Switzerland (SUPSI), University of Italian Switzerland (USI), Manno, Switzerland
| | - Marco A Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
| |
Collapse
|
13
|
Grasso G, Rebella M, Morbiducci U, Tuszynski JA, Danani A, Deriu MA. The Role of Structural Polymorphism in Driving the Mechanical Performance of the Alzheimer's Beta Amyloid Fibrils. Front Bioeng Biotechnol 2019; 7:83. [PMID: 31106199 PMCID: PMC6499180 DOI: 10.3389/fbioe.2019.00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's Disease (AD) is related with the abnormal aggregation of amyloid β-peptides Aβ1−40 and Aβ1−42, the latter having a polymorphic character which gives rise to U- or S-shaped fibrils. Elucidating the role played by the nanoscale-material architecture on the amyloid fibril stability is a crucial breakthrough to better understand the pathological nature of amyloid structures and to support the rational design of bio-inspired materials. The computational study here presented highlights the superior mechanical behavior of the S-architecture, characterized by a Young's modulus markedly higher than the U-shaped architecture. The S-architecture showed a higher mechanical resistance to the enforced deformation along the fibril axis, consequence of a better interchain hydrogen bonds' distribution. In conclusion, this study, focusing the attention on the pivotal multiscale relationship between molecular phenomena and material properties, suggests the S-shaped Aβ1−42 species as a target of election in computational screen/design/optimization of effective aggregation modulators.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Martina Rebella
- Polito BioMEDLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- Polito BioMEDLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jack A Tuszynski
- Polito BioMEDLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Physics, University of Alberta, Edmonton AB, Canada
| | - Andrea Danani
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Marco A Deriu
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| |
Collapse
|
14
|
Bidone TC, Polley A, Jin J, Driscoll T, Iwamoto DV, Calderwood DA, Schwartz MA, Voth GA. Coarse-Grained Simulation of Full-Length Integrin Activation. Biophys J 2019; 116:1000-1010. [PMID: 30851876 DOI: 10.1016/j.bpj.2019.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/25/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
Integrin conformational dynamics are critical to their receptor and signaling functions in many cellular processes, including spreading, adhesion, and migration. However, assessing integrin conformations is both experimentally and computationally challenging because of limitations in resolution and dynamic sampling. Thus, structural changes that underlie transitions between conformations are largely unknown. Here, focusing on integrin αvβ3, we developed a modified form of the coarse-grained heterogeneous elastic network model (hENM), which allows sampling conformations at the onset of activation by formally separating local fluctuations from global motions. Both local fluctuations and global motions are extracted from all-atom molecular dynamics simulations of the full-length αvβ3 bent integrin conformer, but whereas the former are incorporated in the hENM as effective harmonic interactions between groups of residues, the latter emerge by systematically identifying and treating weak interactions between long-distance domains with flexible and anharmonic connections. The new hENM model allows integrins and single-point mutant integrins to explore various conformational states, including the initiation of separation between α- and β-subunit cytoplasmic regions, headpiece extension, and legs opening.
Collapse
Affiliation(s)
- Tamara C Bidone
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Anirban Polley
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Jaehyeok Jin
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Tristan Driscoll
- Yale Cardiovascular Research Center and Department of Internal Medicine (Section of Cardiovascular Medicine), Yale School of Medicine, New Haven, Connecticut
| | | | - David A Calderwood
- Department of Pharmacology, New Haven, Connecticut; Department of Cell Biology, Yale University, New Haven, Connecticut
| | - Martin A Schwartz
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, Connecticut; Yale Cardiovascular Research Center and Department of Internal Medicine (Section of Cardiovascular Medicine), Yale School of Medicine, New Haven, Connecticut
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
15
|
Gong B, Wei X, Qian J, Lin Y. Modeling and Simulations of the Dynamic Behaviors of Actin-Based Cytoskeletal Networks. ACS Biomater Sci Eng 2019; 5:3720-3734. [DOI: 10.1021/acsbiomaterials.8b01228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bo Gong
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Aydin F, Katkar HH, Voth GA. Multiscale simulation of actin filaments and actin-associated proteins. Biophys Rev 2018; 10:1521-1535. [PMID: 30382557 PMCID: PMC6297090 DOI: 10.1007/s12551-018-0474-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/21/2018] [Indexed: 02/04/2023] Open
Abstract
Actin is an important cytoskeletal protein that serves as a building block to form filament networks that span across the cell. These networks are orchestrated by a myriad of other cytoskeletal entities including the unbranched filament-forming protein formin and branched network-forming protein complex Arp2/3. Computational models have been able to provide insights into many important structural transitions that are involved in forming these networks, and into the nature of interactions essential for actin filament formation and for regulating the behavior of actin-associated proteins. In this review, we summarize a subset of such models that focus on the atomistic features and those that can integrate atomistic features into a larger picture in a multiscale fashion.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Harshwardhan H Katkar
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Gregory A Voth
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Katkar HH, Davtyan A, Durumeric AEP, Hocky GM, Schramm AC, De La Cruz EM, Voth GA. Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments. Biophys J 2018; 115:1589-1602. [PMID: 30249402 PMCID: PMC6260209 DOI: 10.1016/j.bpj.2018.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Actin filaments continually assemble and disassemble within a cell. Assembled filaments "age" as a bound nucleotide ATP within each actin subunit quickly hydrolyzes followed by a slower release of the phosphate Pi, leaving behind a bound ADP. This subtle change in nucleotide state of actin subunits affects filament rigidity as well as its interactions with binding partners. We present here a systematic multiscale ultra-coarse-graining approach that provides a computationally efficient way to simulate a long actin filament undergoing ATP hydrolysis and phosphate-release reactions while systematically taking into account available atomistic details. The slower conformational changes and their dependence on the chemical reactions are simulated with the ultra-coarse-graining model by assigning internal states to the coarse-grained sites. Each state is represented by a unique potential surface of a local heterogeneous elastic network. Internal states undergo stochastic transitions that are coupled to conformations of the underlying molecular system. The model reproduces mechanical properties of the filament and allows us to study whether conformational fluctuations in actin subunits produce cooperative filament aging. We find that the nucleotide states of neighboring subunits modulate the reaction kinetics, implying cooperativity in ATP hydrolysis and Pi release. We further systematically coarse grain the system into a Markov state model that incorporates assembly and disassembly, facilitating a direct comparison with previously published models. We find that cooperativity in ATP hydrolysis and Pi release significantly affects the filament growth dynamics only near the critical G-actin concentration, whereas far from it, both cooperative and random mechanisms show similar growth dynamics. In contrast, filament composition in terms of the bound nucleotide distribution varies significantly at all monomer concentrations studied. These results provide new insights, to our knowledge, into the cooperative nature of ATP hydrolysis and Pi release and the implications it has for actin filament properties, providing novel predictions for future experimental studies.
Collapse
Affiliation(s)
- Harshwardhan H Katkar
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Aram Davtyan
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Aleksander E P Durumeric
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Glen M Hocky
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Anthony C Schramm
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois.
| |
Collapse
|
18
|
Li S, Zhang J, Wang C, Nithiarasu P. Atomistic Modeling of F-Actin Mechanical Responses and Determination of Mechanical Properties. ACS Biomater Sci Eng 2018; 4:2794-2803. [DOI: 10.1021/acsbiomaterials.8b00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Si Li
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Jin Zhang
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| |
Collapse
|
19
|
Abstract
In contrast to most synthetic hydrogels, biological gels are made of fibrous networks. This architecture gives rise to unique properties, like low concentration, high porosity gels with a high mechanical responsiveness as a result of strain-stiffening. Here, we used a synthetic polymer model system, based on polyisocyanides, that we crosslinked selectively inside the bundles. This approach allows us to lock in the fibrous network present at the crosslinking conditions. At minimum crosslink densities, we are able to freeze in the architecture, as well as the associated mechanical properties. Rheology and X-ray scattering experiments show that we able to accurately tailor network mechanics, not by changing the gel composition or architecture, but rather by tuning its (thermal) history. Selective crosslinking is a crucial step in making biomimetic networks with a controlled architecture. Unlike synthetic hydrogels, biological gels are made of fibrous networks which give rise to unique properties, such as high porosity and mechanical responsiveness. Here the authors use polyisocyanide-based gels and selectively crosslink inside the bundles to lock the fibrous network and thus control the architecture and the mechanics.
Collapse
|
20
|
Mehrafrooz B, Shamloo A. Mechanical differences between ATP and ADP actin states: A molecular dynamics study. J Theor Biol 2018; 448:94-103. [PMID: 29634959 DOI: 10.1016/j.jtbi.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 11/15/2022]
Abstract
This paper aims to give a comprehensive atomistic modeling of the nanomechanical behavior of actin monomer. Actin is a ubiquitous and essential component of cytoskeleton which forms many different cellular structures. Despite for several years great effort has been devoted to the investigation of mechanical properties of the actin filament, studies on the nanomechanical behavior of actin monomer are still lacking. These scales are, however, important for a complete understanding of the role of actin as an important component in the cytoskeleton structure. Based on the accuracy of atomistic modeling methods such as molecular dynamics simulations, steered molecular dynamics method is performed to assess tension of monomeric G-actin molecule under different types of mechanical loading including axial and lateral. As a result, stress-strain curves are obtained in aqueous solution, with either ATP or ADP bound in the nucleotide binding pocket. The obtained results yield evaluation of the tensile stiffness of a single actin monomer in lateral and normal direction. In order to compare the behavior of ATP and ADP G-actins, the number of hydrogen bonds and nonbonded interactions between the nucleotide and the protein are analyzed. Moreover, The effect of virtual spring of steered molecular dynamics on the mechanical behavior of actin monomer is investigated. The results reveal increasing the virtual spring constant leads to convergence of the stiffness. Moreover, in this paper, a generalized model is proposed to extend the obtained results for the monomeric G-actin scale to the actin filament. Our modeling estimated a persistence length of actin filament 15.41 µm, close to experimental measurements. Moreover, In this paper, the breaking force actin-actin bond is evaluated using steered molecular dynamics simulation. By applying a tensile force, actin-actin bond ruptured at 4197.5 pN.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
21
|
Shamloo A, Mehrafrooz B. Nanomechanics of actin filament: A molecular dynamics simulation. Cytoskeleton (Hoboken) 2018; 75:118-130. [PMID: 29272080 DOI: 10.1002/cm.21429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
Abstract
Actin is known as the most abundant essentially protein in eukaryotic cells. Actin plays a crucial role in many cellular processes involving mechanical forces such as cell motility, adhesion, muscle contraction, and intracellular transport. However, little is known about the mechanical properties of this protein when subjected to mechanical forces in cellular processes. In this article, a series of large-scale molecular dynamics simulations are carried out to elucidate nanomechanical behavior such as elastic and viscoelastic properties of a single actin filament. Here, we used two individual methods namely, all-atoms and coarse-grained molecular dynamics, to evaluate elastic properties of a single actin filament. In the other word, based on Brownian motions of the filament and using the principle of the equipartition theorem, in aqueous solution, tensile stiffness, torsional rigidity, and bending rigidity of the single actin filament are studied. The results revealed that increasing the sampling window time leads to convergence of obtained mechanical properties to the experimental values. Moreover, in order to investigate viscoelastic properties of a single actin filament, constant force steered molecular dynamics method is used to apply different external tensile loads and perform five individual creep tests on the molecule. The strain-time response of the filament for each creep test is obtained. Based on the Kelvin-Voigt model, the results reveal that a single actin filament shows a nonlinear viscoelastic behavior, with a Young's modulus of 2.85 GPa, a viscosity of 4.06 GPa.ns, and a relaxation time in the range of 1.42 ns which were measured here for the first time at the single filament level. The findings of this article suggest that molecular dynamics simulations could also be a useful tool for investigating the mechanical behavior of bio-nanomaterials.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Behzad Mehrafrooz
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Lykov K, Nematbakhsh Y, Shang M, Lim CT, Pivkin IV. Probing eukaryotic cell mechanics via mesoscopic simulations. PLoS Comput Biol 2017; 13:e1005726. [PMID: 28922399 PMCID: PMC5619828 DOI: 10.1371/journal.pcbi.1005726] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/28/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Cell mechanics has proven to be important in many biological processes. Although there is a number of experimental techniques which allow us to study mechanical properties of cell, there is still a lack of understanding of the role each sub-cellular component plays during cell deformations. We present a new mesoscopic particle-based eukaryotic cell model which explicitly describes cell membrane, nucleus and cytoskeleton. We employ Dissipative Particle Dynamics (DPD) method that provides us with the unified framework for modeling of a cell and its interactions in the flow. Data from micropipette aspiration experiments were used to define model parameters. The model was validated using data from microfluidic experiments. The validated model was then applied to study the impact of the sub-cellular components on the cell viscoelastic response in micropipette aspiration and microfluidic experiments.
Collapse
Affiliation(s)
- Kirill Lykov
- Institute of Computational Science, Faculty of Informatics, USI Lugano, Lugano, Switzerland
| | - Yasaman Nematbakhsh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Menglin Shang
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Igor V. Pivkin
- Institute of Computational Science, Faculty of Informatics, USI Lugano, Lugano, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
23
|
Grasso G, Tuszynski JA, Morbiducci U, Licandro G, Danani A, Deriu MA. Thermodynamic and kinetic stability of the Josephin Domain closed arrangement: evidences from replica exchange molecular dynamics. Biol Direct 2017; 12:2. [PMID: 28103906 PMCID: PMC5244572 DOI: 10.1186/s13062-016-0173-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/21/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Molecular phenomena driving pathological aggregation in neurodegenerative diseases are not completely understood yet. Peculiar is the case of Spinocerebellar Ataxia 3 (SCA3) where the conformational properties of the AT-3 N-terminal region, also called Josephin Domain (JD), play a key role in the first step of aggregation, having the JD an amyloidogenic propensity itself. For this reason, unraveling the intimate relationship between JD structural features and aggregation tendency may lead to a step forward in understanding the pathology and rationally design a cure. In this connection, computational modeling has demonstrated to be helpful in exploring the protein molecular dynamics and mechanism of action. RESULTS Conformational dynamics of the JD is here finely investigated by replica exchange molecular dynamics simulations able to sample the microsecond time scale and to provide both a thermodynamic and kinetic description of the protein conformational changes. Accessible structural conformations of the JD have been identified in: open, intermediate and closed like arrangement. Data indicated the closed JD arrangement as the most likely protein arrangement. The protein transition from closed toward intermediate/open states was characterized by a rate constant higher than 700 ns. This result also explains the inability of classical molecular dynamics to explore transitions from closed to open JD configuration on a time scale of hundreds of nanoseconds. CONCLUSION This work provides the first kinetic estimation of the JD transition pathway from open-like to closed-like arrangement and vice-versa, indicating the closed-like arrangement as the most likely configuration for a JD in water environment. More widely, the importance of our results is also underscored considering that the ability to provide a kinetic description of the protein conformational changes is a scientific challenge for both experimental and theoretical approaches to date. REVIEWERS This article was reviewed by Oliviero Carugo, Bojan Zagrovic.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928 Switzerland
| | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy
| | | | - Ginevra Licandro
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928 Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928 Switzerland
| | - Marco A. Deriu
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928 Switzerland
| |
Collapse
|
24
|
Tran AQ, Kaulen C, Simon U, Offenhäusser A, Mayer D. Surface coupling strength of gold nanoparticles affects cytotoxicity towards neurons. Biomater Sci 2017; 5:1051-1060. [DOI: 10.1039/c7bm00054e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Weakly bound gold nanoparticles reveal awful toxicity towards neurons.
Collapse
Affiliation(s)
- A. Q. Tran
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| | - C. Kaulen
- JARA-FIT
- Aachen
- Germany
- Institute of Inorganic Chemistry
- RWTH Aachen University
| | - U. Simon
- JARA-FIT
- Aachen
- Germany
- Institute of Inorganic Chemistry
- RWTH Aachen University
| | - A. Offenhäusser
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| | - D. Mayer
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| |
Collapse
|
25
|
Bidone TC, Jung W, Maruri D, Borau C, Kamm RD, Kim T. Morphological Transformation and Force Generation of Active Cytoskeletal Networks. PLoS Comput Biol 2017; 13:e1005277. [PMID: 28114384 PMCID: PMC5256887 DOI: 10.1371/journal.pcbi.1005277] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation.
Collapse
Affiliation(s)
- Tamara Carla Bidone
- Department of Mechanical and Aerospace Engineering, Polytechnic University of Turin, Turin, Italy
| | - Wonyeong Jung
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Daniel Maruri
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Carlos Borau
- Department of Mechanical Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Roger D. Kamm
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
26
|
Kim TH, Gill NK, Nyberg KD, Nguyen AV, Hohlbauch SV, Geisse NA, Nowell CJ, Sloan EK, Rowat AC. Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J Cell Sci 2016; 129:4563-4575. [PMID: 27875276 DOI: 10.1242/jcs.194803] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022] Open
Abstract
Invasion by cancer cells is a crucial step in metastasis. An oversimplified view in the literature is that cancer cells become more deformable as they become more invasive. β-adrenergic receptor (βAR) signaling drives invasion and metastasis, but the effects on cell deformability are not known. Here, we show that activation of β-adrenergic signaling by βAR agonists reduces the deformability of highly metastatic human breast cancer cells, and that these stiffer cells are more invasive in vitro We find that βAR activation also reduces the deformability of ovarian, prostate, melanoma and leukemia cells. Mechanistically, we show that βAR-mediated cell stiffening depends on the actin cytoskeleton and myosin II activity. These changes in cell deformability can be prevented by pharmacological β-blockade or genetic knockout of the β2-adrenergic receptor. Our results identify a β2-adrenergic-Ca2+-actin axis as a new regulator of cell deformability, and suggest that the relationship between cell mechanical properties and invasion might be dependent on context.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095, USA
| | - Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA
| | - Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA.,Department of Bioengineering, University of California, Los Angeles 90095, USA
| | - Angelyn V Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA
| | - Sophia V Hohlbauch
- Asylum Research, an Oxford Instruments Company, Santa Barbara, CA 93117, USA
| | - Nicholas A Geisse
- Asylum Research, an Oxford Instruments Company, Santa Barbara, CA 93117, USA
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Erica K Sloan
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095, USA.,Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, USA.,UCLA AIDS Institute, University of California, Los Angeles 90095, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA .,Department of Bioengineering, University of California, Los Angeles 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, USA
| |
Collapse
|
27
|
Grasso G, Deriu MA, Tuszynski JA, Gallo D, Morbiducci U, Danani A. Conformational fluctuations of the AXH monomer of Ataxin-1. Proteins 2015; 84:52-9. [PMID: 26522012 DOI: 10.1002/prot.24954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022]
Abstract
In this paper, we report the results of molecular dynamics simulations of AXH monomer of Ataxin-1. The AXH domain plays a crucial role in Ataxin-1 aggregation, which accompanies the initiation and progression of Spinocerebellar ataxia type 1. Our simulations involving both classical and replica exchange molecular dynamics, followed by principal component analysis of the trajectories obtained, reveal substantial conformational fluctuations of the protein structure, especially in the N-terminal region. We show that these fluctuations can be generated by thermal noise since the free energy barriers between conformations are small enough for thermally stimulated transitions. In agreement with the previous experimental findings, our results can be considered as a basis for a future design of ataxin aggregation inhibitors that will require several key conformations identified in the present study as molecular targets for ligand binding.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle Di Studi Sull'intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale Della Svizzera Italiana (SUPSI), Università Della Svizzera Italiana (USI), Centro Galleria 2, Manno, 6928, Switzerland
| | - Marco A Deriu
- Istituto Dalle Molle Di Studi Sull'intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale Della Svizzera Italiana (SUPSI), Università Della Svizzera Italiana (USI), Centro Galleria 2, Manno, 6928, Switzerland
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, Torino, 10128, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, Torino, 10128, Italy
| | - Andrea Danani
- Istituto Dalle Molle Di Studi Sull'intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale Della Svizzera Italiana (SUPSI), Università Della Svizzera Italiana (USI), Centro Galleria 2, Manno, 6928, Switzerland
| |
Collapse
|
28
|
Mak M, Kim T, Zaman MH, Kamm RD. Multiscale mechanobiology: computational models for integrating molecules to multicellular systems. Integr Biol (Camb) 2015; 7:1093-108. [PMID: 26019013 DOI: 10.1039/c5ib00043b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanical signals exist throughout the biological landscape. Across all scales, these signals, in the form of force, stiffness, and deformations, are generated and processed, resulting in an active mechanobiological circuit that controls many fundamental aspects of life, from protein unfolding and cytoskeletal remodeling to collective cell motions. The multiple scales and complex feedback involved present a challenge for fully understanding the nature of this circuit, particularly in development and disease in which it has been implicated. Computational models that accurately predict and are based on experimental data enable a means to integrate basic principles and explore fine details of mechanosensing and mechanotransduction in and across all levels of biological systems. Here we review recent advances in these models along with supporting and emerging experimental findings.
Collapse
Affiliation(s)
- Michael Mak
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|