1
|
Lu H, Li Z, Zhu L, Xu P, Wang H, Li Y, Zhao W. Fabrication and Temporal Dependency Osteogenic Regulation of Dual-Scale Hierarchical Microstructures on Medical Metal Surface. Adv Healthc Mater 2024; 13:e2402369. [PMID: 39175381 DOI: 10.1002/adhm.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The structural characteristics at the interface of bone implants can guide biological regulation. In this study, a dual-scale hierarchical microstructure is proposed and customized using hybrid machining to achieve temporal dependency osteogenic regulation. It is observed that osteoblasts induced by dual-scale hierarchical structure exhibit adequate protrusion development and rapid cell attachment through the modulation of mechanical forces in the cell growth environment, and further promot the upregulation of the cell membrane receptor PDGFR-α, which is related to cell proliferation. Afterward, transcriptomic analysis reveals that during the differentiation stage, the DSH structure regulates cellular signaling cascades primarily through integrin adhesion mechanisms and then accelerates osteogenic differentiation by activating the TGF-β pathway and cAMP signaling pathway. Furthermore, the calcium nodules are preferentially deposited within the lower honeycomb-like channels, thereby endowing the proposed dual-scale hierarchical structure with the potential to induce oriented deposition and improve the long-term stability of the implant.
Collapse
Affiliation(s)
- Hao Lu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Zhijun Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Lida Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Peihua Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Hai Wang
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Yonghao Li
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Weidong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Alonso A, Ebben A, Dabagh M. Impact of disturbed flow and arterial stiffening on mechanotransduction in endothelial cells. Biomech Model Mechanobiol 2023; 22:1919-1933. [PMID: 37709992 DOI: 10.1007/s10237-023-01743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023]
Abstract
Disturbed flow promotes progression of atherosclerosis at particular regions of arteries where the recent studies show the arterial wall becomes stiffer. Objective of this study is to show how mechanotransduction in subcellular organelles of endothelial cells (ECs) will alter with changes in blood flow profiles applied on ECs surface and mechanical properties of arterial wall where ECs are attached to. We will examine the exposure of ECs to atherogenic flow profiles (disturbed flow) and non-atherogenic flow profiles (purely forward flow), while stiffness and viscoelasticity of arterial wall will change. A multicomponent model of endothelial cell monolayer was applied to quantify the response of subcellular organelles to the changes in their microenvironment. Our results show that arterial stiffening alters mechanotransduction in intra/inter-cellular organelles of ECs by slight increase in the transmitted stresses, particularly over central stress fibers (SFs). We also observed that degradation of glycocalyx and exposure to non-atherogenic flow profiles result in significantly higher stresses in subcellular organelles, while degradation of glycocalyx and exposure to atherogenic flow profiles result in dramatically lower stresses in the organelles. Moreover, we show that increasing the arterial wall viscoelasticity leads to slight increase in the stresses transmitted to subcellular organelles. FAs are particularly influenced with the changes in the arterial wall properties and viscoelasticity. Our study suggests that changes in viscoelasticity of arterial wall and degradation state of glycocalyx have to be considered along with arterial stiffening in designing more efficient treatment strategies for atherosclerosis. Our study provides insight into significant role of mechanotransduction in the localization of atherosclerosis by quantifying the role of ECs mechanosensors and suggests that mechanotransduction may play a key role in design of more efficient and precision therapeutics to slow down or block the progression of atherosclerosis.
Collapse
Affiliation(s)
- Andrea Alonso
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Alessandra Ebben
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
3
|
Karkhaneh Yousefi AA, Petit C, Ben Hassine A, Avril S. Stiffness sensing by smooth muscle cells: Continuum mechanics modeling of the acto-myosin role. J Mech Behav Biomed Mater 2023; 144:105990. [PMID: 37385127 DOI: 10.1016/j.jmbbm.2023.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Aortic smooth muscle cells (SMCs) play a vital role in maintaining homeostasis in the aorta by sensing and responding to mechanical stimuli. However, the mechanisms that underlie the ability of SMCs to sense and respond to stiffness change in their environment are still partially unclear. In this study, we focus on the role of acto-myosin contractility in stiffness sensing and introduce a novel continuum mechanics approach based on the principles of thermal strains. Each stress fiber satisfies a universal stress-strain relationship driven by a Young's modulus, a contraction coefficient scaling the fictitious thermal strain, a maximum contraction stress and a softening parameter describing the sliding effects between actin and myosin filaments. To account for the inherent variability of cellular responses, large populations of SMCs are modeled with the finite-element method, each cell having a random number and a random arrangement of stress fibers. Moreover, the level of myosin activation in each stress fiber satisfies a Weibull probability density function. Model predictions are compared to traction force measurements on different SMC lineages. It is demonstrated that the model not only predicts well the effects of substrate stiffness on cellular traction, but it can also successfully approximate the statistical variations of cellular tractions induced by intercellular variability. Finally, stresses in the nuclear envelope and in the nucleus are computed with the model, showing that the variations of cytoskeletal forces induced by substrate stiffness directly induce deformations of the nucleus which can potentially alter gene expression. The predictability of the model combined to its relative simplicity are promising assets for further investigation of stiffness sensing in 3D environments. Eventually, this could contribute to decipher the effects of mechanosensitivity impairment, which are known to be at the root of aortic aneurysms.
Collapse
Affiliation(s)
| | - Claudie Petit
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Etienne, France
| | - Amira Ben Hassine
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Etienne, France.
| |
Collapse
|
4
|
Bergen J, Karasova M, Bileck A, Pignitter M, Marko D, Gerner C, Del Favero G. Exposure to dietary fatty acids oleic and palmitic acid alters structure and mechanotransduction of intestinal cells in vitro. Arch Toxicol 2023; 97:1659-1675. [PMID: 37117602 PMCID: PMC10182945 DOI: 10.1007/s00204-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Martina Karasova
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Ji X, Tian X, Feng S, Zhang L, Wang J, Guo R, Zhu Y, Yu X, Zhang Y, Du H, Zablotskii V, Zhang X. Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0080. [PMID: 36939445 PMCID: PMC10017101 DOI: 10.34133/research.0080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
F-actin (filamentous actin) has been shown to be sensitive to mechanical stimuli and play critical roles in cell attachment, migration, and cancer metastasis, but there are very limited ways to perturb F-actin dynamics with low cell toxicity. Magnetic field is a noninvasive and reversible physical tool that can easily penetrate cells and human bodies. Here, we show that 0.1/0.4-T 4.2-Hz moderate-intensity low-frequency rotating magnetic field-induced electric field could directly decrease F-actin formation in vitro and in vivo, which results in decreased breast cancer cell migration, invasion, and attachment. Moreover, low-frequency rotating magnetic fields generated significantly different effects on F-actin in breast cancer vs. noncancerous cells, including F-actin number and their recovery after magnetic field retrieval. Using an intermittent treatment modality, low-frequency rotating magnetic fields could significantly reduce mouse breast cancer metastasis, prolong mouse survival by 31.5 to 46.0% (P < 0.0001), and improve their overall physical condition. Therefore, our work demonstrates that low-frequency rotating magnetic fields not only can be used as a research tool to perturb F-actin but also can inhibit breast cancer metastasis through F-actin modulation while having minimum effects on normal cells, which reveals their potential to be developed as temporal-controlled, noninvasive, and high-penetration physical treatments for metastatic cancer.
Collapse
Affiliation(s)
- Xinmiao Ji
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Xiaofei Tian
- Institutes of Physical Science and Information Technology,
Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shuang Feng
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Lei Zhang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Junjun Wang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Ruowen Guo
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
| | - Yiming Zhu
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
| | - Xin Yu
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
| | - Yongsen Zhang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Haifeng Du
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Xin Zhang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Institutes of Physical Science and Information Technology,
Anhui University, Hefei, Anhui, 230601, P. R. China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
- International Magnetobiology Frontier Research Center, Science Island, Hefei 230031, P.R. China
- Address correspondence to:
| |
Collapse
|
6
|
McElvain K, Klister J, Ebben A, Gopalakrishnan S, Dabagh M. Impact of Wound Dressing on Mechanotransduction within Tissues of Chronic Wounds. Biomedicines 2022; 10:3080. [PMID: 36551836 PMCID: PMC9775138 DOI: 10.3390/biomedicines10123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic wounds are significant public health problems impacting the health-related quality of individuals' lives (due to disability, decreased productivity, and loss of independence) and an immense economic burden to healthcare systems around the world. In this study, our main objective is to investigate how mechanotransduction can impact the healing process in chronic wounds. We have developed new three-dimensional models of wound tissue to study the distribution of forces within these tissues exerted by wound dressings with different characteristics. The roles of mechanical forces on wound healing have gained significant clinical attention; the application of mechanical forces is expected to influence the physiology of tissue surrounding a wound. We aim to investigate whether the force transmission within wound tissue is impacted by the dressing characteristics and whether this impact may differ with wound tissue's properties. Our results show that wound dressings with lower stiffnesses promote force transmission within a wound tissue. This impact is even more significant on stiffer wound tissues. Furthermore, we show that size of wound dressing alters forces that transmit within the wound tissue where dressings with 9 cm length show higher stresses. The wound tissue stiffening has been associated with healing of a wound. Our results demonstrate that wounds with stiffer tissue experience higher stresses. Taken all together, our findings suggest that low stiffness of wound dressing and its size may be introduced as a criterion to explain parameters predisposing a chronic wound to heal. This study's findings on the role of dressings and tissue characteristics demonstrate that precision dressings are required for wound management and understanding how a dressing impacts mechanotransduction in wound tissue will lead to design of novel dressings promoting healing in chronic wounds.
Collapse
Affiliation(s)
- Kelly McElvain
- Department of Biomedical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., P.O. Box 784, Milwaukee, WI 53201, USA
| | - Joshua Klister
- Department of Biomedical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., P.O. Box 784, Milwaukee, WI 53201, USA
| | - Alessandra Ebben
- Department of Biomedical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., P.O. Box 784, Milwaukee, WI 53201, USA
| | - Sandeep Gopalakrishnan
- College of Nursing, University of Wisconsin-Milwaukee, 1921 E Hartford Ave., P.O. Box 412, Milwaukee, WI 53211, USA
| | - Mahsa Dabagh
- Department of Biomedical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., P.O. Box 784, Milwaukee, WI 53201, USA
| |
Collapse
|
7
|
Ebben A, Dabagh M. Mechanotransduction in Endothelial Cells in Vicinity of Cancer Cells. Cell Mol Bioeng 2022; 15:313-330. [DOI: 10.1007/s12195-022-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
|
8
|
Xu P, Deng B, Zhang B, Luo Q, Song G. Stretch-Induced Tenomodulin Expression Promotes Tenocyte Migration via F-Actin and Chromatin Remodeling. Int J Mol Sci 2021; 22:4928. [PMID: 34066472 PMCID: PMC8124537 DOI: 10.3390/ijms22094928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
The mechanosensitive gene tenomodulin (Tnmd) is implicated in tendon maturation and repair. However, the mechanism by which mechanical loading regulates Tnmd's expression and its role in tenocyte migration is yet to be defined. Here, we show that Tnmd and migration were upregulated in uniaxial cyclic stress-stimulated tenocytes. The knockdown of Tnmd reduced cell migration in the presence and absence of mechanical loading, suggesting that Tnmd is involved in tenocyte migration. Moreover, the treatment of stress-stimulated tenocytes with the actin inhibitor latrunculin (Lat A), histone acetyltransferase inhibitor anacardic acid (ANA), or histone demethylases inhibitor GSK-J4 suppressed Tnmd expression and tenocyte migration. These results show that actin stress fiber formation and chromatin decondensation regulates Tnmd expression, which might then regulate tenocyte migration. Thus, this study proposes the involvement of the actin and chromatin mechanotransduction pathway in the regulation of Tnmd and reveals a novel role of Tnmd in tenocyte migration. The identification of Tnmd function in tenocyte migration provides insight into the molecular mechanisms involved in Tnmd-mediated tendon repair.
Collapse
Affiliation(s)
- Pu Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| | - Bin Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| |
Collapse
|
9
|
Dessalles CA, Babataheri A, Barakat AI. Pericyte mechanics and mechanobiology. J Cell Sci 2021; 134:134/6/jcs240226. [PMID: 33753399 DOI: 10.1242/jcs.240226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pericytes are mural cells of the microvasculature, recognized by their thin processes and protruding cell body. Pericytes wrap around endothelial cells and play a central role in regulating various endothelial functions, including angiogenesis and inflammation. They also serve as a vascular support and regulate blood flow by contraction. Prior reviews have examined pericyte biological functions and biochemical signaling pathways. In this Review, we focus on the role of mechanics and mechanobiology in regulating pericyte function. After an overview of the morphology and structure of pericytes, we describe their interactions with both the basement membrane and endothelial cells. We then turn our attention to biophysical considerations, and describe contractile forces generated by pericytes, mechanical forces exerted on pericytes, and pericyte responses to these forces. Finally, we discuss 2D and 3D engineered in vitro models for studying pericyte mechano-responsiveness and underscore the need for more evolved models that provide improved understanding of pericyte function and dysfunction.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| |
Collapse
|
10
|
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 2020; 16:2014-2028. [PMID: 32549750 PMCID: PMC7294938 DOI: 10.7150/ijbs.44943] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complicated, multistep process that is responsible for over 90% of cancer-related death. Metastatic disease or the movement of cancer cells from one site to another requires dramatic remodeling of the cytoskeleton. The regulation of cancer cell migration is determined not only by biochemical factors in the microenvironment but also by the biomechanical contextual information provided by the extracellular matrix (ECM). The responses of the cytoskeleton to chemical signals are well characterized and understood. However, the mechanisms of response to mechanical signals in the form of externally applied force and forces generated by the ECM are still poorly understood. Furthermore, understanding the way cellular mechanosensors interact with the physical properties of the microenvironment and transmit the signals to activate the cytoskeletal movements may help identify an effective strategy for the treatment of cancer. Here, we will discuss the role of tumor microenvironment during cancer metastasis and how physical forces remodel the cytoskeleton through mechanosensing and transduction.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing, 100044, China
| |
Collapse
|
11
|
Wang F, Zhang Z, Zhong Q, Yu Z. Design of Polarization Imaging Detection System for Lung Cancer Cells Based on Microfluidic Chip. J Med Syst 2019; 43:85. [DOI: 10.1007/s10916-019-1199-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
|
12
|
3D artificial round section micro-vessels to investigate endothelial cells under physiological flow conditions. Sci Rep 2018; 8:5898. [PMID: 29651108 PMCID: PMC5897395 DOI: 10.1038/s41598-018-24273-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
In the context of xenotransplantation, in ischemia/reperfusion injury as well as in cardiovascular research, the study of the fascinating interplay between endothelial cells (EC) and the plasma cascade systems often requires in vitro models. Blood vessels are hardly reproducible with standard flat-bed culture systems and flow-plate assays are limited in their low surface-to-volume ratio which impedes the study of the anticoagulant properties of the endothelial cells. According to the 3R regulations (reduce, replace and refine animal experimentation) we developed a closed circuit microfluidic in vitro system in which endothelial cells are cultured in 3D round section microchannels and subjected to physiological, pulsatile flow. In this study, a 3D monolayer of porcine aortic EC was perfused with human serum to mimic a xenotransplantation setting. Complement as well as EC activation was assessed in the presence or absence of complement inhibitors showing the versatility of the model for drug testing. Complement activation products as well as E-selectin expression were detected and visualized in situ by high resolution confocal microscopy. Furthermore, porcine pro-inflammatory cytokines as well as soluble complement components in the recirculating fluid phase were detected after human serum perfusion providing a better overview of the artificial vascular environment.
Collapse
|
13
|
Dabagh M, Jalali P, Butler PJ, Randles A, Tarbell JM. Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow. J R Soc Interface 2018; 14:rsif.2017.0185. [PMID: 28515328 DOI: 10.1098/rsif.2017.0185] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Local haemodynamics are linked to the non-uniform distribution of atherosclerosic lesions in arteries. Low and oscillatory (reversing in the axial flow direction) wall shear stress (WSS) induce inflammatory responses in endothelial cells (ECs) mediating disease localization. The objective of this study is to investigate computationally how the flow direction (reflected in WSS variation on the EC surface over time) influences the forces experienced by structural components of ECs that are believed to play important roles in mechanotransduction. A three-dimensional, multi-scale, multi-component, viscoelastic model of focally adhered ECs is developed, in which oscillatory WSS (reversing or non-reversing) parallel to the principal flow direction, or multi-directional oscillatory WSS with reversing axial and transverse components are applied over the EC surface. The computational model includes the glycocalyx layer, actin cortical layer, nucleus, cytoskeleton, focal adhesions (FAs), stress fibres and adherens junctions (ADJs). We show the distinct effects of atherogenic flow profiles (reversing unidirectional flow and reversing multi-directional flow) on subcellular structures relative to non-atherogenic flow (non-reversing flow). Reversing flow lowers stresses and strains due to viscoelastic effects, and multi-directional flow alters stress on the ADJs perpendicular to the axial flow direction. The simulations predict forces on integrins, ADJ filaments and other substructures in the range that activate mechanotransduction.
Collapse
Affiliation(s)
- Mahsa Dabagh
- Department of Biomedical Engineering, Duke University, Durham, NC, USA .,School of Energy Systems, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Payman Jalali
- School of Energy Systems, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Peter J Butler
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, PA, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
14
|
Szczesny SE, Mauck RL. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng 2017; 139:2592356. [PMID: 27918797 DOI: 10.1115/1.4035350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104;Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
15
|
Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P. Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 2017; 23:850-868. [PMID: 28811171 DOI: 10.1016/j.molmed.2017.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Mechanical stress from blood flow has a significant effect on endothelial physiology, with a key role in initiating vasoregulatory signals. Disturbances in blood flow, such as in regions of disease-associated stenosis, arterial branch points, and sharp turns, can induce proatherogenic phenotypes in endothelial cells. The disruption of vascular homeostasis as a result of endothelial dysfunction may contribute to early and late stages of atherosclerosis, the underlying cause of coronary artery disease. In-depth knowledge of the mechanobiology of endothelial cells is essential to identifying mechanosensory complexes involved in the pathogenesis of atherosclerosis. In this review, we describe different blood flow patterns and summarize current knowledge on mechanosensory molecules regulating endothelial vasoregulatory functions, with clinical implications. Such information may help in the search for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | | | - Owen L Woodman
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Simon Potocnik
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
16
|
Abstract
Atherosclerosis is triggered by chronic inflammation of arterial endothelial cells (ECs). Because atherosclerosis develops preferentially in regions where blood flow is disturbed and where ECs have a cuboidal morphology, the interplay between EC shape and mechanotransduction events is of primary interest. In this work we present a simple microfluidic device to study relationships between cell shape and EC response to fluid shear stress. Adhesive micropatterns are used to non-invasively control EC elongation and orientation at both the monolayer and single cell levels. The micropatterned substrate is coupled to a microfluidic chamber that allows precise control of the flow field, high-resolution live-cell imaging during flow experiments, and in situ immunostaining. Using micro particle image velocimetry, we show that cells within the chamber alter the local flow field so that the shear stress on the cell surface is significantly higher than the wall shear stress in regions containing no cells. In response to flow, we observe the formation of lamellipodia in the downstream portion of the EC and cell retraction in the upstream portion. We quantify flow-induced calcium mobilization at the single cell level for cells cultured on unpatterned surfaces or on adhesive lines oriented either parallel or orthogonal to the flow. Finally, we demonstrate flow-induced intracellular calcium waves and show that the direction of propagation of these waves is determined by cell polarization rather than by the flow direction. The combined versatility and simplicity of this microfluidic device renders it very useful for studying relationships between EC shape and mechanosensitivity.
Collapse
|
17
|
Zhang Z, Xia S, Kanchanawong P. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs. BMC Bioinformatics 2017; 18:268. [PMID: 28532442 PMCID: PMC5440974 DOI: 10.1186/s12859-017-1684-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. RESULT Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. CONCLUSION We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.
Collapse
Affiliation(s)
- Zhen Zhang
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Shumin Xia
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Republic of Singapore.
| |
Collapse
|
18
|
Deshpande RS, Spector AA. Modeling Stem Cell Myogenic Differentiation. Sci Rep 2017; 7:40639. [PMID: 28106095 PMCID: PMC5247743 DOI: 10.1038/srep40639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/09/2016] [Indexed: 01/04/2023] Open
Abstract
The process of stem cell myogenesis (transformation into skeletal muscle cells) includes several stages characterized by the expression of certain combinations of myogenic factors. The first part of this process is accompanied by cell division, while the second part is mainly associated with direct differentiation. The mechanical cues are known to enhance stem cell myogenesis, and the paper focuses on the stem cell differentiation under the condition of externally applied strain. The process of stem cell myogenic differentiation is interpreted as the interplay among transcription factors, targeted proteins and strain-generated signaling molecule, and it is described by a kinetic multi-stage model. The model parameters are optimally adjusted by using the available data from the experiment with adipose-derived stem cells subjected to the application of cyclic uniaxial strains of the magnitude of 10%. The modeling results predict the kinetics of the process of myogenic differentiation, including the number of cells in each stage of differentiation and the rates of differentiation from one stage to another for different strains from 4% to 16%. The developed model can help better understand the process of myogenic differentiation and the effects of mechanical cues on stem cell use in muscle therapies.
Collapse
Affiliation(s)
- Rajiv S Deshpande
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alexander A Spector
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Mechanoregulation of Wound Healing and Skin Homeostasis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3943481. [PMID: 27413744 PMCID: PMC4931093 DOI: 10.1155/2016/3943481] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.
Collapse
|